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Abstract Functional properties and antioxidant activities

of protein hydrolysates from tuna (Thunnus thynnus) heads

(THPHs), with different degrees of hydrolysis, obtained by

treatment with Bacillus mojavensis A21 alkaline proteases

and Alcalase, were investigated. Protein content of all

freeze-dried THPHs ranged from 73.74 ± 0.5 to 78.56 ±

1.2%. The THPHs had excellent solubility, compared to

untreated tuna head proteins and possessed interfacial

properties, which were governed by their concentrations.

Similarly, at a degree of hydrolysis (DH) of 12 and 15%,

> 90% nitrogen solubility was observed at all experimental

pH values tested. The emulsifying activity index (EAI) and

emulsion stability index (ESI) of both hydrolysates at

different DHs decreased (p < 0.05) with increasing DH. At

low DH (5%), hydrolysates exhibited strong emulsifying

properties. All THPHs produced by the A21 proteases

generally showed higher antioxidative activity than that of

the Alcalase protein hydrolysates. The highest DPPH

radical-scavenging activity (78 ± 2.1% at 3 mg/mL) was

obtained with a DH of 15%. The IC50 value for the β-

carotene bleaching assay was 0.5 ± 0.03 mg/mL. Alcalase

(DH = 12%) and A21 (DH = 15%) protein hydrolysates

contained glutamic acid/glutamine and arginine as the

major amino acids, followed by lysine, aspartic acid/

asparagine, histidine, valine, phenylalanine, and leucine. In

addition, the THPHs had a high percentage of essential

amino acids, which made up 50.52 and 50.47%, of the

protein hydrolysates obtained by the Alcalase and A21

proteases, respectively. Therefore, THPHs can be used as a

promising source of functional peptides with antioxidant

properties. 
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1. Introduction

Fish processing by-products and under-utilized species are

commonly recognized as low-value resources with negligible

market value. Additionally, inappropriate disposal is a major

cause of environmental pollution. Hydrolysis processes

have been developed to convert under-utilized fish and fish

by-products into marketable and acceptable forms [1,2],

that can be widely used in food rather than as animal feed

or fertilizer [3].

Besides nutritional quality, functional properties of

proteins are also important for food product formulations.

The importance of these properties varies with the type of

food product in which the protein is used. As most native

proteins do not show functional properties desirable for the

food industries, their modification for improvement of

these properties, particularly, solubility, need to be addressed

[4]. Enzymatic hydrolysis is known to improve functional

properties of dietary protein without affecting their nutritive

value by converting them into peptides with desired size,

charge, and surface properties [4-6].

Besides their functionalities, protein hydrolysates from

different sources, such as whey, soy protein [7], egg-yolk

[8], prawn [9], tuna cooking juice [10], yellow fin sole

frame [11], Alaska Pollack frame [12], herring [13],

mackerel [14], and capelin [15] have antioxidant activity.

Many synthetic antioxidants, such as buthylated hydroxy-

anisole and butylated hydroxytoluene, are used as food
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additives to prevent deterioration. Although these synthetic

antioxidants show stronger antioxidant activity than that of

natural antioxidants such as tocopherol and ascorbic acid,

there is concern about their health safety [16]. Therefore,

the development of natural antioxidants as an alternative to

synthetic antioxidants is of great interest among researchers.

Vitamin C, α-tocopherol, and phenolic compounds, which

are present naturally in vegetables, fruits, and seeds, reduce

oxidative damage associated with many diseases. The

ability of phenolic substances including flavonoids and

phenolic acid to act as antioxidants has been extensively

investigated [17-19].

A number of studies have demonstrated that protein

hydrolysates from marine organisms act as potential

antioxidants, such as jumbo squid [20,21], oyster [22], blue

mussel [21,23], hoki [12,20,24], tuna [25,26], cod [27],

Pacific hake [28], capelin [15], scad [29], mackerel [14],

Alaska pollack [12,30], conger eel [31], yellow fin sole

[11], yellow stripe trevally [32], and microalgae [33].

In the present study, we investigated some functional

properties and antioxidant activity of enzymatically prepared

tuna heads protein hydrolysates (THPHs) using Alcalase

and Bacillus mojavensis A21 proteases.

2. Materials and Methods

2.1. Tuna sample preparation

Bluefin tuna (Thunnus thynnus) was provided by the

Institut Nationale des Sciences et Technologie de la Mer,

Centre de Mahdia, Tunisia. It is neither a warm blooded

nor a cold-blooded fish and can live for up to 40 years, and

grow to over 4 meters in length and 600 kg in weight. The

bluefin tuna used in this work were about 2.5 meters long

and weighed about 350 kg. Immediately after catch, the

heads were removed using an electrical saw. Approximately

2 h later, the heads were packed in polyethylene bags,

placed in ice with a sample/ice ratio of approximately 1:3

(w/w), and transported to the research laboratory within 30

min. Once received in the laboratory, the fish heads were

immediately ground twice using an industrial grinder

(FATOSA P 130, Hachoir E130; Technocarne, La Wantzenau,

France) at medium speed for 30 min. The mixed heads

were frozen again at -20oC for 24 h.

2.2. Enzymes

The enzymes used were B. mojavensis A21 proteases [34]

and Alcalase from B. licheniformis (Novozyme).

2.3. Production of THPHs using the proteases

Mixed T. thynnus heads (500 g), in 1,000 mL distilled water

were cooked at 90oC for 20 min to inactivate endogenous

enzymes. The cooked head protein sampled was then

homogenized in a Moulinex blender for about 2 min. The

samples were adjusted to optimal pH and temperature for

each enzyme; crude enzyme from A21 (pH 10.0; 50oC),

Alcalase (pH 8.0; 50oC). The alkali protease from B.

mojavensis A21 was prepared in our laboratory according

to Haddar et al. [34]. Protease activity was measured by

the method of Kembhavi et al. [35] using casein as a

substrate. A 0.5 mL diluted aliquot of protease was mixed

with 0.5 mL 100 mM glycine-NaOH (pH 10.0) or Tris-HCl

(pH 8.0) containing 1% casein, and incubated for 15 min

at 60oC. The reaction was stopped by the adding 0.5 ml

trichloroacetic acid (20%; w/v). The mixture was allowed

to stand at room temperature for 15 min and then centrifuged

at 10,000 × g using a microcentrifuge (MIKRO20, Hettich

Zentrifugen, Tuttlingen, Germany) for 15 min to remove

the precipitate. The acid-soluble material was estimated

spectrophotometrically at 280 nm (T70 UV/VIS spectropho-

tometer, PG Instruments, Beijing, China). A standard curve

was generated using solutions of 0 ~ 50 mg/L tyrosine.

One unit of protease activity was defined as the amount of

enzyme required to liberate 1 µg of tyrosine per minute

under the experimental conditions used. The enzyme was

added to the reaction at the same enzyme/substrate ratio

(E/S = 3U/mg) to compare hydrolytic efficiencies. During

the reaction, the pH of the mixture was maintained constant

by continuously adding 4 M NaOH solution. After the

required digestion time, the reaction was stopped by

heating the solution at 80oC during 20 min to inactivate

enzymes. The tuna head protein hydrolysates were then

centrifuged at 5,000 ×g for 20 min to separate insoluble

and soluble fractions. Finally, the soluble phase was freeze-

dried using a freeze-dryer (Bioblock Scientific Christ

ALPHA 1-2, IllKrich-Cedex, France) and stored at -20oC

for further use. 

2.4. Determination of the degree of hydrolysis (DH)

The DH, defined as the percent ratio of the number of

peptide bonds broken (h) to the total number of peptide

bonds in the substrate (htot), was calculated from the

amount of base (NaOH) added to keep the pH constant

during the hydrolysis [36] as given below:

where B is the amount of NaOH consumed (ml) to keep

the pH constant during the reaction, Nb is the normality of

the base, MP is the mass (g) of protein (N × 6.25), and α

is the average degree of dissociation of the α-NH2 groups

released during hydrolysis expressed as:

DH %( )
h

htot

------- 100×
B Nb×

MP
--------------

1

α

---×
1

htot

-------× 100×= =
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where pH and pK are the values at which the proteolysis

was conducted. The total number of peptide bonds (htot) in

the fish protein concentrate was assumed to be 8.6 meq/g

[36].

2.5. Chemical analysis

Moisture and ash content were determined according to the

AOAC standard methods 930.15 and 942.05, respectively

[37]. Total nitrogen content of the fish protein hydrolysates

was determined by the Kjeldahl method. Crude protein

was estimated by multiplying total nitrogen content by

6.25. Lipids were determined gravimetrically after Soxhlet

extraction of dried samples with hexane. All measurements

were performed in triplicate. The protein and fat contents

were expressed on a dry weight basis.

2.6. Antioxidant activity

2.6.1. DPPH radical-scavenging assay 

DPPH radical-scavenging activity of the hydrolysates was

determined as described by Bersuder et al. [38]. A 500 µL

aliquot of each sample at different concentrations (0.5 ~ 3

mg/mL) was mixed with 500 µL of 99.5% ethanol and

125 µL of 0.02% DPPH in 99.5% ethanol. The mixture

were shaken and incubated for 60 min in the dark at room

temperature. Reduction of the DPPH radical was measured

at 517 nm using a UV-visible spectrophotometer (T70,

UV/VIS spectrophotometer, PG Instruments Ltd, Beijing,

China). The DPPH radical-scavenging activity was calculated

as follows:

The control was assessed in the same manner, except

that distilled water was used instead of sample. A lower

absorbance of the reaction mixture indicated a higher

DPPH radical-scavenging activity. Butylated hydroxyanisole

(BHA) was used as a positive standard at different

concentrations ranging from 0.5 to 3 mg/mL. The test was

carried out in triplicate.

2.6.2. Reducing power assay

The ability of the hydrolysate to reduce iron (III) was

determined according to the method of Yildirim et al. [39].

An 1 mL aliquot of each hydrolysate sample at different

concentrations (0.5 ~ 3 mg/mL) was mixed with 2.5 mL of

0.2 M phosphate buffer (pH 6.6) and 2.5 mL of 1%

potassium ferricyanide. The mixture was incubated at 50oC

for 30 min, followed by adding 2.5 mL of 10% (w/v)

trichloroacetic acid. The mixture was then centrifuged at

1,650 × g for 10 min. Finally, 2.5 mL of the supernatant

solution was mixed with 2.5 mL of distilled water and

0.5 mL of 0.1% (w/v) ferric chloride. After a 10 min

reaction, the absorbance of the resulting solution was

measured at 700 nm. Increased absorbance of the reaction

mixture indicated increased reducing power. The values are

presented as the means of triplicate analyses. BHA was

used as the positive standard at different concentrations of

0.5 ~ 3 mg/mL.

2.6.3. Antioxidant assay using the β-carotene bleaching

method 

The ability of the hydrolysates to prevent bleaching of ß-

carotene was determined as described by Koleva et al.

[40]. Briefly, 0.5 mg β-carotene in 1 mL chloroform was

mixed with 25 mg of linoleic acid and 200 mg of Tween-

40. The chloroform was evaporated under vacuum at 45oC,

then 100 mL distilled water was added, and the resulting

mixture was vigorously stirred. The emulsion obtained was

freshly prepared before each experiment. An aliquot (2.5 mL)

of the β-carotene-linoleic acid emulsion was transferred to

tubes containing 0.5 mL of each sample at different

concentrations (0.5 ~ 3 mg/mL). The tubes were immediately

placed in a water bath and incubated at 50oC for 2 h.

Thereafter, the absorbance of each sample was measured at

470 nm. A control consisted of 0.5 mL of distilled water

instead of the sample solution. BHA was used as the

positive standard at different concentrations ranging from

0.5 to 3 mg/mL.

2.6.4. Metal-chelating activity

The Fe2+chelating activity was determined using the

method of Decker and Welch [41]. One ml of sample

solution (2 mg/mL) was mixed with 3.7 mL of distilled

water. The mixture was then reacted with 0.1 mL of 2 mM

FeCl2 and 0.2 mL of 5 mM 3-(2-pyridyl)-5,6-bis(4-phenyl-

sulfonic acid)-1,2,4-triazine (ferrozine) for 20 min at room

temperature. The absorbance was read at 562 nm. The control

was prepared in the same manner except that distilled

water was used instead of sample. EDTA was used as the

reference. Chelating activity (%) was calculated as follows:

2.7. Functional properties of tuna head protein hyd-

rolysates

2.7.1. Peptide solubility (PS)

PS was carried out according to Tsumura et al. [42] with

α
10

pH pK–

1 10
pH pK–

+
--------------------------=

DPPH radical scavenging activity %( )–

1
A

517
 of sample

A
517

 of control
------------------------------------– 100×=

Chelating activity %( ) 1
A

562
 of sample

A
562

 of control
------------------------------------– 100×=



844 Biotechnology and Bioprocess Engineering 17: 841-852 (2012)

slight modifications. Briefly, 200 mg of THPHs were

dissolved in 20 mL deionized distilled water, and the pH of

the mixture was adjusted to 2.0 ~ 10.0 using 2 N HCl or 2 N

NaOH solutions. The mixtures were stirred for 10 min at

room temperature (25 ± 1oC) and then centrifuged at 8,000

× g for 10 min. After appropriate dilution, the nitrogen

content in the supernatant was determined by the Kjeldhal

method. The nitrogen solubility of the THPHs, defined as

the amount of soluble nitrogen from the total nitrogen, was

calculated as follows:

The solubility analysis was carried out in triplicate.

2.7.2. Emulsifying properties

Emulsifying properties were determined according to the

method of Pearce and Kinsella [43]. Vegetable oil (10 mL)

and 30 mL of 1% (w/v) THPH solution were mixed, and

the pH was adjusted to different values from 2.0 to 10.0.

The mixtures were homogenized for 3 min. Aliquots of the

emulsion (50 µL) were pipetted immediately and then

mixed with 5 mL of 0.1% sodium dodecyl sulfate (SDS)

solution after 10 min. The absorbance of the diluted solution

was measured at 500 nm using a spectrophotometer (T70,

UV/VIS spectrophotometer). The absorbances measured

immediately (A0) and 10 min (A10) after forming the emulsion

were used to calculate the emulsifying activity index (EAI)

and the emulsion stability index (ESI) as follows:

Emulsion stability was determined by measuring the

absorbance at 500 nm in aliquots of the emulsion 30 min

after forming the emulsion.

2.8. Statistical analysis

Statistical analyses were performed with Statgraphics ver.

5.1, professional edition (Manugistics Corp., Bethesda,

MD, USA) using analysis of variance . Differences were

considered significant at p < 0.05. 

3. Results and Discussion

Protease digestion of tuna head proteins was conducted

under the same conditions except we used different optimum

pHs for the A21 proteases and Alcalase. Furthermore, to

study the effect of the DH on protein recovery and the

evolution of functional properties and antioxidant activities,

hydrolysates with DH values of 5, 10, and 15% and 5, 10,

and 12% were generated by the A21 proteases and Alcalase,

respectively.

The proximate composition of the freeze-dried tuna

protein hydrolysates is shown in Table 1. The protein

hydrolysate had high a protein content (78%) and could be

an essential source of proteins. The high protein content

was a result of protein solubilization during hydrolysis, the

removal of insoluble undigested nonprotein substances,

and the partial removal of lipids after hydrolysis [3]. The

percentage of solubilized protein depended on the amount

of lipids in the raw material [44]. Raw material containing

the highest amount of lipids gave the lowest percentage of

solubilized protein [44]. The high ash content of the

samples was attributed to the addition of alkali required to

adjust the pH and its control during the hydrolytic process.

The hydrolysis curve of the tuna head proteins is shown

in Fig. 1. The curve showed a high rate of hydrolysis for

the first 1 h. The rate of hydrolysis subsequently decreased

and the enzymatic reaction reached a steady state phase

when no apparent hydrolysis occurred. The DH reached 15

and 12% after 240 min of hydrolysis for the A21 proteases

and Alcalase, respectively. The higher DH observed with

the A21 proteases indicates higher proteolytic activity of B.

mojavensis proteases toward tuna head proteins, compared

Nitrogen solubility %( )

Supernatant nitrogen concentration

Sample nitrogen concentration
------------------------------------------------------------------------------------ 100×=

EAI m
2

g⁄( )
2 2.303× A

500
×

0.25 protein weight g( )×
----------------------------------------------------------=

ESI %( ) 100 EAI
t=0( ) EAI

t=30min( ) EAI
t=0( )⁄–(–[ ] 100×=

Table 1. Composition of undigested tuna heads and its hydrolysates

Moisture (%) Lipids (%) Ash (%) Protein (%)

Tuna heads 69.4 ± 0.4 10.4 ± 0.7 7.9 ± 0.5 12.1 ± 0.3

A21 protein hydrolysates

DH 5% 2.88 ± 0.4 1.52 ± 0.1 11.9 ± 0.3 76.23 ± 0.7

DH 10% 2.07 ± 0.6 0.88 ± 0.2 12.2 ± 0.4 77.81 ± 0.6

DH 15% 2.25 ± 0.1 0.22 ± 0.02 14.9 ± 1.1 78.56 ± 1.2

Alcalase protein hydrolysates

DH 5% 3.52 ± 0.1 2.21 ± 0.3 10.6 ± 0.5 73.74 ± 0.5

DH 10% 3.58 ± 0.7 1.38 ± 0.5 11.9 ± 0.6 74.63 ± 0.2

DH 12% 4.02 ± 0.5 1.12 ± 0.5 13.7 ± 0.9 76.57 ± 1.0
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to that of Alcalase. 

3.1. Effect of DH and enzyme type on functional

properties of the tuna protein hydrolysates

3.1.1. Solubility of the protein hydrolysates with different

DHs

Good protein solubility is required in many functional

applications, particularly for emulsions, foams, and gels.

Soluble proteins provide a homogeneous dispersible matrix

in a colloidal system and enhance interfacial properties

[45]. Our results suggested that the high solubility of the

protein hydrolysate was due to the size reduction and the

formation of smaller, more hydrophilic and more solvated

polypeptide units [36]. Additionally, insoluble protein

fractions were removed by centrifugation before the protein

hydrolysate was freeze-dried. The high nitrogen solubility

of the protein hydrolysate indicates potential applications

in formulated food systems by providing an attractive

appearance and smooth mouth feel to the product [46].

The solubility profiles of the untreated tuna heads protein

(UTHP) and THPH as a function of pH are presented in

Fig. 2. UTHP was less soluble than the hydrolysates, with

solubility < 30% at pH 2 ~ 10. Hydrolysis of the tuna head

proteins with A21 proteases (Fig. 2A) and Alcalase (Fig. 2B)

increased their solubility. Moreover, solubility increased as

a function of DH. At low DH (5%), the solubility increased

up to 80% at pHs of 2 ~ 10. Similarly, at DH of 12 and

15%, > 90% soluble nitrogen was observed at all experimental

pH values. The solubilities of the A21 and Alcalase

hydrolysates were quite low at pH 4, whereas salmon by-

product hydrolysates show the lowest solubility at pH 4

[47]. pH affects the charge on the weakly acidic and basic

side chain groups; thus, hydrolysates generally show low

solubility at their isoelectric points [48]. Solubility variations

could be attributed to both a net charge of peptides that

increase as pH moves away from pI, and surface hydro-

phobicity, that promotes aggregation via hydrophobic

interaction [49]. The high nitrogen solubility of the protein

hydrolysate indicates its potential applications in formulated

food systems by providing attractive appearance and

smooth mouth feel to the product [46].

3.1.2. Emulsifying properties

The EAI and ESI of both the A21 and Alcalase protein

hydrolysates with various DHs are shown in Figs. 3A, 3B,

3C, and –3D. The EAI and ESI of both hydrolysates at

Fig. 1. Hydrolysis curves of tuna heads treated with proteases
from Bacillus mojavensis A21 and Alcalase.

Fig. 2. Solubility profiles of the tuna head protein hydrolysates
prepared using proteases from Bacillus mojavensis A21 (A) and
Alcalase (B) with different degrees of hydrolysis as influenced by
pH. UTHP: untreated tuna head protein.
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different DHs decreased (p < 0.05) with increasing DH. At

low DH (5%), the hydrolysates exhibited strong emulsifying

properties. With a limited DH, hydrolysates have exceptional

emulsifying activity and stability [5]. A higher content of

larger molecular weight peptides or more hydrophobic

peptides contribute to emulsion stability [50]. In contrast,

excessive hydrolysis results in the loss of emulsifying

properties [2,5,47]. The mechanism to generate the emulsion

system is attributed to the adsorption of peptides on the

surface of freshly formed oil droplets during homogenization

and the formation of a protective membrane that inhibits

oil droplet coalescence [51]. Hydrolysates are surface-

active materials and promote an oil-in-water emulsion

because of their hydrophilic and hydrophobic groups with

their associated charges [47,52]. Thus, hydrolysates with a

higher DH had a poorer EAI and ESI due to their smaller

peptide size. A direct relationship between surface activity

and peptide length was reported by Jost et al. [53] and it is

generally accepted that a peptide should have a minimum

length of 20 residues to possess good emulsifying and

interfacial properties. These results are in accordance with

those reported by Klompong et al. [32] and Wasswa et al.

[54] who found that the EAI decreased with increasing

protein hydrolysis and that this decrease could be attributed

to the presence of smaller peptides, which are less effective

for stabilizing emulsions. The results in Figs. 3A and 3B

also show that the EAI increased with increasing pH.

Generally, the EAI increased as the pH moved from pH 4.

A higher EAI of the hydrolysates was associated with

higher solubility. Hydrolysates with high solubility can

rapidly diffuse and adsorb at the interface.

Enzymatic hydrolysis of fish proteins generates a mixture

of free amino acids, di-, tri-, and oligopeptides, while

increasing the number of polar groups and the solubility of

the hydrolysate, and, therefore, modifies the functional

characteristics of the proteins, and improves some of their

functional qualities and bioavailability. The choice of

substrate and proteases employed and the degree to which

Fig. 3. Emulsifying activity index (EAI) and emulsion stability index (ESI) of the tuna head protein hydrolysates prepared using
proteases from Bacillus mojavensis A21 (A) and Alcalase (B) at different degrees of hydrolysis as influenced by pH. UTHP: untreated
tuna heads protein.
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the protein is hydrolyzed affects the physicochemical

properties of the resulting hydrolysates [55]. Enzyme

specificity is important to peptide functionality, because it

strongly influences the molecular size and hydrophobicity

of the hydrolysate [56]. As reported by Haddar et al. [34]

the crude extract from B. mojavensis A21 showed at least

six clear zones on casein zymography, indicating that at

least six major proteinases are produced by the strain.

These endoprotease and exoprotease activities may offer

the ability to achieve a higher DH in tuna heads proteins

than Alcalase, which is a serine type endo-protease with

very broad substrate specificity. 

When considering the effect of pH on the EAI and ESI,

the lowest EAI and ESI were found at pH 4, with a

coincident decrease in solubility (Fig. 2). As the lowest

solubility occurred at pH 4, peptides could not move

rapidly to the interface. At the same DH, A21 protein

hydrolysates had a better EAI than that of the Alcalase

hydrolysates. 

3.2. Effect of DH and enzyme type on antioxidant activity

Antioxidative activity of protein hydrolysates depends on

the proteases and hydrolysis conditions employed [10,11].

A wide variety of smaller peptides and free amino acids are

generated during hydrolysis, depending on enzyme specificity.

Changes in size, level, and composition of free amino acids

and small peptides affect antioxidative activity [14].

3.2.1. DPPH radical-scavenging activity

DPPH is a stable free radical that shows maximum absorbance

at 517 nm in ethanol. When DPPH encounters a proton-

donating substance such as an antioxidant, the radical is

scavenged and absorbance decreases [57]. This radical-

scavenging assay is quick, convenient, and reproducible

and, thus, is widely used to predict the antioxidant activities

of compounds. Figs. 4A and 4B shows the results of DPPH

radical scavenging activity of the A21 and Alcalase THPHs

at various concentrations. The A21 protein hydrolysate

with a 15% DH exhibited the highest DPPH radical-

scavenging activity (p < 0.05) (87% at 3 mg/mL) (Fig. 4A).

As the DH increased, DPPH radical scavenging activity of

the THPHs increased (p < 0.05). At low DH (5%), the A21

hydrolysate exhibited a better DPPH radical scavenging

activity than did the Alcalase hydrolysate. However,

Klompong et al. [32] found no differences in DPPH radical

scavenging activities for a yellow stripe trevall protein

hydrolysate prepared with Flavourzyme at different DHs

ranging from 5 to 25%. Hydrolysates contain peptides and

proteins, which are hydrogen donors that react with radicals

to convert them to more stable products, thereby terminating

the radical chain reaction [58].

The IC50 values were determined. A lower IC50 indicates

higher free radical-scavenging ability. The hydrolysate at

15% DH obtained by treatment with the A21 proteases was

the most active radical-scavenger (IC50 = 0.7 ± 0.02 mg/mL)

followed by the Alcalase protein hydrolysate at 12% DH

(IC50 = 2 ± 0.12 mg/mL) (Fig. 4B). These results suggest

that the THPHs probably contained peptides, which are

electron donors that could react with free radicals to

convert them to more stable products and terminate the

radical chain reaction. 

3.2.2. Reducing power

The presence of antioxidants in tested samples results in

Fig. 4. DPPH scavenging activity of the tuna head protein hydrolysates prepared using proteases from Bacillus mojavensis A21 (A) and
Alcalase (B) at different concentrations as influenced by the degree of hydrolysis. BHA was used as a positive control.
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reducing the Fe3+/ferricyanide complex to the ferrous form

and, thus, can be used to evaluate potential antioxidant

activity [59]. Figs. 5A and 5B shows that the A21 and

Alcalase protein hydrolysates exhibited a dose-dependent

increase in reducing power. The reducing power was

correlated with the DH. The highest activity (1.45 ± 0.005

at 3 mg/mL) was observed for the A21 protein hydrolysate

with a DH of 15%, whereas the lowest (0.72 ± 0.012 at 3

mg/mL) was exhibited by the Alcalase hydrolysate at a DH

of 5%. Within the concentration range of 0.5 ~ 3.0 mg/mL,

the reducing power of the Alcalase hydrolysate at different

DHs was lower than that of the A21 hydrolysate. Thus, the

protein hydrolysate from tuna heads obtained by the A21

treatment functioned by donating electrons to the free

radicals.

3.2.3. Antioxidant activity measured by the β-carotene

bleaching method

The antioxidant assay using the discoloration of β-carotene

is widely used to measure the antioxidant activity of

Fig. 5. Reducing power of the tuna protein hydrolysates prepared using proteases from Bacillus mojavensis A21 (A) and Alcalase (B) at
different concentrations as influenced by the degree of hydrolysis. BHA was used as a positive control.

Fig. 6. Determination of antioxidant activity using the β-carotene bleaching method of tuna protein hydrolysates prepared using proteases
from Bacillus mojavensis A21 (A) and Alcalase (B) at different concentrations as influenced by the degree of hydrolysis. BHA was used
as the positive control.
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bioactive compounds, because β-carotene is extremely

susceptible to free radical-mediated oxidation of linoleic

acid [60]. Furthermore, β-carotene is used as a coloring

agent in beverages, and discoloration markedly reduces the

quality of these products. In this test, β-carotene undergoes

rapid discoloration in the absence of antioxidant, which

results in a reduction in absorbance of the test solution over

time. The presence of antioxidant hinders the extent of

bleaching by neutralizing the linoleic free radical and

linoleic hydroperoxyl radicals formed. The antioxidant

activities of the THPHs as measured by β-carotene bleaching

are shown in Figs. 6A and 6B. When treated with the A21

proteases at different DHs, the THPHs showed a higher

ability to prevent β-carotene bleaching of than that of the

Alcalase protein hydrolysates.

In addition, among the A21 hydrolysates resulting from

various DH, the highest antioxidant activity was observed

in hydrolysates with a 15% DH (IC50 = 0.5 ± 0.03 mg/mL)

(Fig. 6A). Furthermore, inhibition of β-carotene bleaching

by all hydrolysates was lower than that obtained with BHA

(92.5%). These results indicate that the THPHs had strong

effects against β-carotene discoloration. The results indicate

that THPHs obtained by treatment with A21 proteases ex-

hibited antioxidant activities against β-carotene discoloration.

3.2.4. Metal chelating activity 

Metal chelating activities of the THPHs at various DHs

were determined. The chelating activity of the hydrolysates

increased with hydrolysis time (Figs. 7A and 7B). A21-

hydrolyzed tuna head proteins showed high chelating

activity (p < 0.05), and the 15% DH hydrolysate exhibited

the highest metal-chelating activity. Metal-chelating activity

could be increased through hydrolysis with certain enzymes.

Similar results were reported by Klompong et al. [32]. A

higher degree of peptide bond cleavage rendered hydrolysates

with higher metal-chelating activities. Hydrolyzed protein

from capelin also possessed antioxidant activity [15].

Peptides in hydrolysates chelate the pro-oxidants, leading

to decreased lipid oxidation. Transition metals, such as Fe,

Cu, and Co in foods affect the rate of autoxidation and

breakdown of hydroperoxide to volatile compounds.

Transition metal ions react very quickly with peroxides by

acting as single-electron donors to form the alkoxyl radical

[61]. Therefore, chelation of transition metal ions by

antioxidizing peptides retards the oxidation reaction [62]. It

was about 78.8 ± 1.5% and 67.5 ± 2.78% mg/mL, respectively,

for the A21 and Alcalase protein hydrolysates, at a DH of

15%. This finding suggests that the sequence and composition

of amino acids in the peptides of the A21 and Alcalase

hydrolysates might be different, leading to differences in

the resulting peptides at a particular pH. Ranathunga et al.

[31] reported that smaller sized peptides derived from muscle

of conger eel (Conger myriaster) may have contributed to

higher antioxidative activity in a lipid peroxidation model

system. This was expected due to the higher possibility of

smaller antioxidant molecules interacting more effectively

with free radicals and inhibiting the lipid peroxidation

propagation cycles.

3.3. Amino acid composition 

The amino acid compositions of the THPHs are shown in

Table 2. Both hydrolysates contained glutamic acid/glutamine

and arginine as the major amino acids, followed by lysine,

aspartic acid/asparagine, histidine, valine, phenylalanine,

and leucine. Based on total amino acid content, essential

amino acids comprised 50.52 and 50.47% of the Alcalase

and A21 protein hydrolysates, respectively. Therefore,

these hydrolysates could serve as an excellent source of

useful nutrients. The differences in amino acid composition

between the hydrolysates depended on the differences in

enzyme specificity and the hydrolysis conditions [63]. As

presented in Table 2, the total of hydrophobic amino acid

Fig. 7. Metal chelating activity of the tuna protein hydrolysates
prepared using proteases from Bacillus mojavensis A21 (A) and
Alcalase (B) at different concentrations as influenced by the
degree of hydrolysis. BHA was used as the positive control.
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content of the THPHs obtained at DHs of 12 and 15% with

Alcalase and the A21 proteases was higher and accounted

for 34.8 and 34.75% of the total amino acids, respectively.

Amino acids in THPHs are possibly involved in antioxidative

activity. Amino acids exhibit antioxidant activity; tryptophan

and histidine show high antioxidative activity in comparison

with methionine, cysteine, glycine, and alanine [64].

Antioxidative activity of histidine or a histidine containing

peptides may be attributed to the chelating and lipid

radical-trapping ability of the imidazole ring, whereas the

tyrosine residues may act as potent hydrogen donors [12].

Aromatic amino acids are generally considered to be

effective radical scavengers, because they donate protons

easily to electron-deficient radicals. At the same time, their

antioxidative stability remains via the resonance structure

[21]. The THPHs had high nutritional value, based on their

amino acid profiles.

4. Conclusion

The antioxidant activity of THPHs varied with DH and

enzymes used. The solubility and emulsifying properties of

the protein hydrolysates were also dictated by both these

factors. Additionally, the functionality of the hydrolysates

was affected by pH. 

Our results indicate that B. mojavensis proteases are

suitable for preparing protein hydrolysates from tuna heads

by-products. About 80% nitrogen solubilization and a 15%

DH were achieved after 4 h of hydrolysis. The A21 protein

hydrolysate exhibited high antioxidant activity and notable

functional properties.

We conclude that the antioxidative THPHs may be

useful ingredients for food and nutraceutical applications.
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