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Abstract
One of the highest risk of esophageal squamous cell carcinoma (ESCC) in the world has been reported in Iran, which is located in the
Asian esophageal cancer belt. ESCC constitutes 90% of the esophageal cancer cases in Iran. Genome wide association studies
(GWASs) in Chinese have identified a number of candidate variants, of which PLCE1rs2274223, C20orf54rs13042395 and
RUNX1rs2014300 are studied in high risk populations including Chinese, Caucasians and Africans. However, results are inconsistent
and it is unknownwhether similar associations exist in Iranian population.We evaluated association of three GWAS identified variants
with risk of ESCC in an Iranian cohort consisted of 200 ESCCpatients and 300 healthy controls and conductedmeta-analysis of ESCC
risk associated with rs2274223 (involving 9810 cases and 13,128 controls) and rs13042395 (involving 2363 cases and 5329 controls).
Logistic regression analysis showed that rs2274223was associatedwith ESCCunder codominant [GG/AA, 2.47(1.17–5.23),P:0.021],
dominant [AG+GG/AA, 1.57(1.09–2.27), P:0.016], recessive [GG/AA+AG, 2.18(1.04–4.56), P:0.036] and log-additive models
[1.51(1.12–2.02), P:0.006]. C20orf54 rs13042395 was not associated with ESCC under any genetic model. RUNX1 rs2014300 was
associated with risk of ESCC assuming codominant [AG/GG, 0.63(0.41–0.97), P:0.018], dominant [AG+AA/GG, 0.59 (0.39–0.89),
P:0.010] and log-additive models [0.61 (0.42–0.87), P: 0.005]. Meta-analysis found significant associations between rs2274223 and
ESCC under all analyzed genetic models. However, meta-analysis stratified by ethnicity showed a significant association in Asians but
not non-Asian populations. No significant association was found for rs13042395 in meta-analysis. This study provided first evidence
for association of GWAS-identified variants with risk of ESCC in an Iranian cohort.
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Introduction

Esophageal cancer (EC), which is the sixth most lethal cancer
worldwide [1], usually occurs as esophageal squamous cell
carcinoma (ESCC) either in the middle or upper third of the
esophagus, or as esophageal adenocarcinoma (EAC) in the
distal third [1]. EAC is the predominant histologic type in
western countries [2]. However, in developing countries such
as Iran, ESCC is still the most prevalent form accounting for
over 90% of cases [3]. Iran is located in a high risk region for
ESCC, the Asian esophageal cancer belt, which stretches from
Caspian littoral to northern China [4]. One of the highest risk
of ESCC in the world has been reported for this region (about
100 per 105 per year for Gonbad, Golestan Province, Iran) [3].
There are incidence variations across the country, ranging
from age standardized rate (ASR) of 2–3 (per 105 populations
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per year) in the south to 43–63 in the north [5]. Several risk
factors including family history, drinking hot tea or unhealthy
water, poor nutritional diet, consumption of opium products
and low socioeconomic status have been suggested to contrib-
ute to risk of ESCC in this region [5, 6]. In Iran, aside from
these well-studied risk factors, the genetic components of
ESCC in are not fully recognized.

Increasing evidences have suggested that genetic com-
ponents may participate to risk of ESCC [7–9]. Genome
wide association studies (GWASs) have yield enormous
progress in illuminating the genetic contributors of com-
plex diseases especially ESCC [10, 11], and revealed
several molecular mechanisms contributing to pathophys-
iology of ESCC [12–14]. Among these, PLCE1
rs2274223 is a well-known risk variant that has been
identified by three large-scale GWASs in Chinese popu-
lations [7, 12, 14]. C20orf54 rs13042395 and RUNX1
rs2014300 were also discovered through GWASs in large
Chinese cohorts [7, 14]. Association of these variants
with risk of ESCC has been further evaluated in high
risk populations like Chinese [15], Caucasians [16] and
Africans [17]. However, in spite of the high prevalence
of ESCC in Iran, there is currently no data regarding
possible contribution of these variants to risk of ESCC
in this population. In this study, we evaluated the asso-
ciation between three GWAS identified variants (namely
PLCE1 rs2274223, C20orf54 rs13042395 and RUNX1
rs2014300) and risk of ESCC in an Iranian cohort and
conducted meta-analysis of association between
rs2274223 and ESCC.

Materials and Methods

Study Cohort

The study cohort was described elsewhere [18]. A total
of 500 unrelated Iranian subjects, including 200 ESCC
patients and 300 age and sex-matched participants of the
control group, were enrolled in this study. ESCC was
diagnosed by upper gastrointestinal endoscopy and histo-
pathology evaluation. The mean age of patients at diag-
nosis was 61.4 years (range within 20–87 years); 101
patients (50.5%) were male and 99 (49.5%) were female.
The participants in the control group had no personal or
family history of cancer and were recruited from individ-
uals who had been referred for routine check-ups. The
mean age for the control group was 62.7 years (range
within 50–86 years); 151 control subjects (50.33%) were
male and 149 (49.66%) were female. Written informed
consent was obtained from all participants. The study
was approved by the ethics committee of Tehran
University of Medical Sciences.

DNA Extraction and Genotyping

Genomic DNAwas extracted from peripheral blood using the
standard salting out protocol. Genotyping was performed
using the polymerase chain reaction-restriction fragment
length polymorphism (PCR-RFLP) procedure. Genomic re-
gions containing the studied SNPs were amplified with spe-
cific primers outlined in Table 1. Mismatches were inserted
into the primers of c20orf54 and RUNX1 to create correspond-
ing restriction endonuclease sites (Table 1). A 25 μl reaction
consisted of genome DNA (~50 ng), 12.5 μl of 2× Taq DNA
Polymerase Master Mix Red (Ampliqon, Denmark), 1.5 μl
forward primer (5 μM), 1.5 μl reverse primer (5 μM) and
8.5 μl sterilized water. For PLCE1 rs2274223, a 243 bp ge-
nomic region was amplified using touchdown PCR. PLCE1
primers were retrieved from a previous study [19]. An initial
denaturation of 5 min at 94 °C was followed by seven cycles
at 94 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s with
annealing temperature decreasing one °C per cycle, and then
28 cycles at 94 °C for 30 s, 54 °C for 30 s and 72 °C for 30 s
and a final extension step of 72 °C for 5 min. The PCR product
was digested with the restriction enzyme (BstUI, Thermo
Scientific, United States) according to the manufacturer’s in-
structions. For C20orf54 rs13042395, a 140 bp genomic re-
gion was amplified using touchdown PCR. An initial denatur-
ation of 5 min at 94 °C was followed by seven cycles at 94 °C
for 30 s, 66 °C for 30 s and 72 °C for 30 s with annealing
temperature decreasing one °C per cycle, and then 28 cycles at
94 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s and a final
extension step at 72 °C for 5 min. The PCR product was
digested with the restriction enzyme (Tru1I, Thermo
Scientific, United States) according to the manufacturer’s in-
structions. For RUNX1 rs2014300, a 135 bp genomic region
was amplified using touchdown PCR. An initial denaturation
of 5 min at 94 °C was followed by six cycles at 94 °C for 30 s,
63 °C for 30 s and 72 °C for 30 s with annealing temperature
decreasing one °C per cycle, and then 29 cycles at 94 °C for
30 s, 58 °C for 30 s and 72 °C for 30 s and a final extension
step at 72 °C for 5 min. The PCR product was digested with
the restriction enzyme (TaqI, Thermo Scientific, United
States) according to the manufacturer’s instructions. The
assigned genotypes were confirmed by Sanger sequencing
for nine samples (one sample per SNP-genotype), and these
samples were then served as controls for the digestion process.
The no template control (NTC) PCR and digestion reactions
were also performed for each SNP to monitor for possible
contaminations. Each NTC PCR contained all reagents except
template DNA.

Restriction Enzyme Digestions

Figure 1a demonstrates the cleavage site of BstUI with regard
to the alleles of PLCE1 rs2274223. Digestion of PLCE1
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rs2274223 with BstUI resulted in a 243 bp fragment for the
AA genotype, three fragments (243 bp, 155 bp and 88 bp) for
the AG genotype, and two fragments (155 bp and 88 bp) for
the GG genotype (Fig. 1a and Table 1). Figure 1b shows an
agarose gel electrophoresis of the product of PLCE1 diges-
tions for three samples along with the digestion controls and
the NTC. Digestion of C20orf54 rs13042395 with Tru1I re-
sulted in a 140 bp fragment for the CC genotype, three frag-
ments (140 bp, 116 bp and 24 bp) for the CT genotype and
two fragments (116 bp and 24 bp) for the TT genotype (Fig. 2a
and Table 1). However, the small fragment (i.e. 24 bp) usually
exits off the bottom end and it did not appear on the gel. Fig.
2b represents an agarose gel electrophoresis of the product of
C20orf54 digestions for three samples along with the diges-
tion controls and the NTC. Digestion of RUNX1 rs2014300
AA, AG and GG genotypes with TaqI resulted in a 135 bp
fragment, three fragments (135 bp, 111 bp and 24 bp), and two

fragments (111 bp and 24 bp), respectively (Fig. 3a and
Table 1). The small fragment (i.e. 24 bp) did not appear on
the gel. Figure 3b represents the agarose gel electrophoresis of
RUNX1 digestions for three samples along with the digestion
controls and the NTC. Figure 1c, 2c and 3c illustrate results of
the Sanger sequencing for regions encompassing the studied
SNPs. The reverse strandwas sequenced in the case ofPLCE1
(Fig. 1c).

Meta-Analysis

Eligible studies were identified through searching PubMed
and Embase databases using keywords BPLCE1^ or
BPhospholipase C Epsilon 1^ or B10q23^ or BC20orf54^
OR BSLC52A3^ and Bpolymorphism^ or BSNP^ or Bvariant^
or Bvariation^ or Brs2274223^ or Brs13042395^ and
Besophageal squamous cell carcinoma^ or BESCC^ or

Fig. 1 Restriction site and examples of genotyping results for PLCE1
rs2274223 a The recognition and cleavage site for BstUI. The blue
nucleotides represent the alleles of the SNP. The vertical red line shows
the cleavage site. b The digestion products of three samples analyzed on
agarose gel in parallel with three digestion controls and NTC. M, size

marker; NTC, no template control. c The results of sequencing genomic
region encompassing PLCE1 rs2274223 in three samples. Note that the
reverse strand (−) was sequenced in these samples. Therefore, the
genotypes of these samples relative to the forward (+) strand are GG,
AG and AA (from top to down). SNP position is indicated by an arrow

Table 1 Primer sequences that were used for PCR-RFLP. Nucleotides that were mismatched to create the corresponding restriction sites are underlined

SNP Primer sequence Restriction
endonuclease

Product size

rs2274223 F- GTCTCTGGTCAGAATGTGTG
R- CAGTGGAATGATTCTCTGAG

BstUI AA: 243 bp
AG: 243 + 155 + 88 bp
GG: 155 + 88 bp

rs13042395 F- GCTCAGTTCCAGGCAAAGGTTTCTC
R- GGAGATGTCCCAGCCCACACATT

Tru1I CC: 140 bp
CT: 140 + 116 + 24 bp
TT: 116 + 24 bp

rs2014300 F- GTGAGCATTAAAACACTCTCAGGTC
R- AGGAAGCCAAGTCCACTGAGG

TaqI AA: 135 bp
AG: 135 + 111 + 24 bp
GG: 111 + 24 bp
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Boesophageal squamous cell carcinoma^. A manual search
was also performed to identify additional relevant studies.
The last search was performed on 1 Feb 2018. Original studies
were included based on following criteria: (i) evaluated asso-
ciation of PLCE1 rs2274223 or C20orf54 rs13042395 with
ESCC using a case-control design (excluding GWASs); (ii)
sufficient data for estimating odds ratio (OR) and their corre-
sponding 95% confidence intervals (95% CIs). Data were ex-
tracted from eligible studies by two authors (Z. Nariman-
Saleh-Fam and M. Bastami). For each study following data
were recorded: First author, publication date, ethnicity of

subjects, genotyping method and genotype frequencies. In
case of discrepancies, consensus was reached by discussion.

Statistical Analyses

All statistical analyses were conducted using R (version 3.1.0)
as described elsewhere [20, 21]. SNPs were assessed for sig-
nificant deviation from the HWE among the control group
members, patients and all participants using Χ2 test that was
implemented in the HardyWeinberg package in R [22].
Association of PLCE1 rs2274223, C20orf54 rs13042395

Fig. 3 Restriction site and
examples of genotyping results
for RUNX1 rs2014300 a The
recognition and cleavage site for
TaqI. The blue and red
nucleotides respectively represent
the SNP alleles and the mismatch
that inserted to create the site. The
vertical red line shows the
cleavage site. b The digestion
products of three samples
analyzed on agarose gel in
parallel with three digestion
controls and NTC. M, size
marker; NTC, no template
control. c The results of
sequencing genomic region
encompassing RUNX1 rs2014300
in three samples. SNP position is
indicated by an arrow

Fig. 2 Restriction site and examples of genotyping results for C20orf54
rs13042395 a The recognition and cleavage site for Tru1I. The blue and
red nucleotides, respectively, represent the SNP alleles and the mismatch
that inserted to create the site. The vertical red line shows the cleavage
site. b The digestion products of three samples analyzed on agarose gel in

parallel with three digestion controls and NTC. M, size marker; NTC, no
template control. c The results of sequencing genomic region
encompassing C20orf54 rs13042395 in three samples. SNP position is
indicated by an arrow
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and RUNX1 rs2014300 polymorphisms with ESCC was ana-
lyzed using logistic regression analysis that was implemented
in the SNPassoc package (version 1.9–2) [23]. ORs and 95%
CIs were calculated assuming codominant, dominant, reces-
sive, overdominant and log-additive genetic models. The best
fitting genetic model was selected based on the lowest
Akaike’s information criterion (AIC) value as calculated by
the SNPassoc package [23]. TheMeta package for R was used
to perform meta-analysis [24]. Association of rs2274223 and
rs13042395 with ESCC was estimated by calculating pooled
ORs and their 95% CIs assuming allelic, homozygote, hetero-
zygote, dominant and recessive models. Heterogeneity was
assessed using the Chi-squared based Q test. The random
effect model [25] was used to calculate pooled ORs and
95%CIs if there existed a significant heterogeneity (i.e.
P < 0.1). Otherwise, the fixed effect model was used [26].
Significance of the pooled OR was determined by the Z test
(P < 0.05 was considered significant). In cases of remarkable
heterogeneity (i.e. I2 > 50%), the potential sources of hetero-
geneity across studies was explored using univariate meta-
regression and stratified analysis. Sensitivity analyses were
performed by omitting one study at a time to measure the
consistency of the results and influence of each study on the
pooled OR. Publication bias was evaluated by the Begg’s rank
correlation test of funnel plot asymmetry [27].

Results

PLCE1 rs2274223 and Risk of ESCC in the Iranian
Cohort

Genotype frequency distributions of the studied SNPs are
shown in Table 2. Genotype frequencies of PLCE1
rs2274223 were not significantly deviated from the Hardy-
Weinberg equilibrium among members of the control group,
patients or all subjects (Pvalueswere 0.349, 0.149, and 0.067,
respectively). The frequency of the minor allele (i.e. G) of this
SNP was 0.188 among the control group, 0.265 among pa-
tients and 0.219 among whole participants. Logistic regres-
sion analysis revealed that rs2274223 was associated with
ESCC assuming codominant, dominant, recessive and log-
additive models. In the codominant model, subjects carrying
the GG genotype had a significantly increased risk of ESCC
compared to those with the AA genotype [GG vs. AA, OR
(95% CI): 2.47 (1.17–5.23), Pvalue: 0.021]. The dominant
model showed an approximate 1.5 fold higher risk for ESCC
in individuals carrying at least one G allele than in ones with
the AA genotype [AG + GG vs. AA, OR (95% CI): 1.57
(1.09–2.27), Pvalue: 0.016]. Assuming the recessive model,
individuals carrying the GG genotype had an approximate 2
fold higher risk for ESCC than ones carrying at least one A
allele [GG vs. AA+AG, OR (95% CI): 2.18 (1.04–4.56),

Pvalue: 0.036]. Under the log-additive model, each additional
copy of G allele was associated with a 1.5-fold increased risk
of ESCC [OR (95% CI): 1.51 (1.12–2.02), Pvalue: 0.006].
According to the lowest AIC value, the log-additive was the
model that fitted the data in the best way (AIC: 669.5).

C20orf54 rs13042395 and Risk of ESCC in the Iranian
Cohort

C20orf54 rs13042395 genotypes were not significantly devi-
ated from the Hardy-Weinberg equilibrium among members
of the control group, patients or all subjects (Pvalues were
0.354, 0.833 and 0.532, respectively). The frequency of the
minor allele (i.e. T) of this SNP was 0.25 among the control
group, 0.21 among the patients and 0.234 among whole par-
ticipants. Logistic regression analysis showed that C20orf54
rs13042395 was not associated with ESCC assuming any an-
alyzed genetic model (Table 2).

RUNX1 rs2014300 and Risk of ESCC in the Iranian
Cohort

RUNX1 rs2014300 genotype frequencies were not significant-
ly deviated from the Hardy-Weinberg equilibrium among
members of the control group, patients or all subjects
(Pvalues were 0.341, 1.0 and 0.316, respectively). The fre-
quency of the minor allele (A) of this SNP was 0.1866 among
the control group, 0.12 among the patients and 0.16 among
whole participants. Logistic regression analysis found that
rs2014300 was associated with ESCC under codominant,
dominant and log additive models (Table 2). Subjects carrying
the AG genotype had more than 1.5 fold lower risk of ESCC
than ones carrying the GG genotype assuming the codominant
model [AG vs. GG, OR (95% CI): 0.63 (0.41–0.97), Pvalue:
0.018306]. The dominant model revealed that subjects carry-
ing at least one A allele had an approximate 1.7 fold lower risk
of ESCC than ones with the GG genotype [AG +AAvs. GG,
OR (95% CI): 0.59 (0.39–0.89), Pvalue: 0.010]. Furthermore,
each additional A allele was associated with a 1.63 fold lower
risk of ESCC assuming the log-additive model [OR (95%CI):
0.61 (0.42–0.87), Pvalue: 0.005]. According to the lowest
AIC value, the log-additive was the model that fitted the data
in the best way (AIC: 669.2).

Meta-Analysis of ESCC Risk Associated with PLCE1
rs2274223 and C20orf54 rs13042395

The process of study selection is shown in Fig. 4. A total of 85
articles were identified, of which 34 were duplicated records
and excluded. Moreover, thirty-seven articles did not meet the
inclusion criteria and were excluded. In the study by Malik
MA [28], patients had either squamous cell carcinoma or ad-
enocarcinoma histology; but the genotype distributions were
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not reported separately for each histology. Moreover, in the
study by Dong Y [29] the histological type of EC patients was
not described. Therefore these studies were excluded [28, 29].
Finally, a total of 14 eligible articles [15–17, 19, 30–39] which
contained 13 studies for PLCE1 rs2274223 and seven studies
for C20orf54 rs13042395 were included. Adding the present
study, 14 studies (which involved 9810 cases and 13,128 con-
trols) for PLCE1 rs2274223 and eight studies (which involved
2363 cases and 5329 controls) for C20orf54 rs13042395 were
included in the final meta-analysis. Table 3 shows the charac-
teristics of the included studies. For PLCE1 rs2274223, ten
studies were performed in Asian populations, two studies in

Europeans and two studies in Africans. For C20orf54
rs13042395, five studies were performed in Asians, one in
Europeans and two in Africans.

As shown in Table 4, meta-analysis revealed significant
associations between PLCE1 rs2274223 and ESCC risk as-
suming all the analyzed models [G vs. A: OR (95% CI) 1.270
(1.150–1.403), P: 0.000; GG vs. AA: OR (95% CI) 1.710
(1.534–1.905), P: 0.000; AG vs. AA: OR (95% CI) 1.336
(1.261–1.415), P: 0.000; GG + AG vs. AA: OR (95% CI)
1.393 (1.319–1.472), P: 0.000; GG vs. AG +AA: OR (95%
CI) 1.509 (1.360–1.675), P: 0.000]. There was no evidence of
publication bias in the overall estimation (All Pvalues of the

Table 2 The genotype distributions and association analyses for PLCE1 rs2274223, C20orf54 rs13042395 and RUNX1 rs2014300

Model Genotypes Controls No. (%) Patients No. (%) ORa (95% CIb) Pc AICd

rs2274223

Codominant AA 200 (66.7) 112 (56.0) 1.00 0.0215 671.3
AG 87 (29.0) 70 (35.0) 1.44 (0.97–2.12)

GG 13 (4.3) 18 (9.0) 2.47 (1.17–5.23)

Dominant AA 200 (66.7) 112 (56.0) 1.00 0.016104 671.2
AG+GG 100 (33.3) 88 (44.0) 1.57 (1.09–2.27)

Recessive AA+AG 287 (95.7) 182 (91.0) 1.00 0.036313 672.6
GG 13 (4.3) 18 (9.0) 2.18 (1.04–4.56)

Overdominant AA+GG 213 (71.0) 130 (65.0) 1.00 0.157906 675.0
AG 87 (29.0) 70 (35.0) 1.32 (0.90–1.93)

log-Additive 0,1,2 – – 1.51 (1.12–2.02) 0.006006 669.5

rs13042395

Codominant CC 172 (57.3) 124 (62.0) 1.00 0.2414 676.2
CT 106 (35.3) 68 (34.0) 0.89 (0.61–1.30)

TT 22 (7.3) 8 (4.0) 0.50 (0.22–1.17)

Dominant CC 172 (57.3) 124 (62.0) 1.00 0.2976 675.9
CT + TT 128 (42.7) 76 (38.0) 0.82 (0.57–1.19)

Recessive CC +CT 278 (92.7) 192 (96.0) 1 0.1150 674.5
TT 22 (7.3) 8 (4.0) 0.53 (0.23 1.21)

Overdominant CC + TT 194 (64.7) 132 (66.0) 1.00 0.7590 676.9
CT 106 (35.3) 68 (34.0) 0.94 (0.65–1.37)

log-Additive – – – 0.80 (0.59–1.08) 0.1470 674.9

rs2014300

Codominant GG 201 (67.0) 155 (77.5) 1.00 0.018306 671.0
AG 86 (28.7) 42 (21.0) 0.63 (0.41–0.97)

AA 13 (4.3) 3 (1.5) 0.30 (0.08–1.07)

Dominant GG 201 (67.0) 155 (77.5) 1.00 0.010322 670.4
AG+AA 99 (33.0) 45 (22.5) 0.59 (0.39–0.89)

Recessive GG+AG 287 (95.7) 197 (98.5) 1 0.063788 673.6
AA 13 (4.3) 3 (1.5) 0.34 (0.09–1.20)

Overdominant GG+AA 214 (71.3) 158 (79.0) 1.00 0.052347 673.2
AG 86 (28.7) 42 (21.0) 0.66 (0.43–1.01)

log-Additive 0,1,2 – – 0.61 (0.42–0.87) 0.005098 669.2

P values less than 0.05 are bold faced
a Odds Ratio
b Confidence Interval
cP value
d Akaike’s information Criteria
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Begg’s tests >0.05, Table 4). Figure 5 and Fig. 6a show the
forest and the funnel plots for the homozygote model,

respectively. Significant heterogeneity was observed in all
models (Table 4). Meta-regression showed that ethnicity

Fig. 4 The process of study
selection

Table 3 Characteristics of the studies included in the present meta-analysis

ID Study Region Ethnicity Genotyping
method

Gene Sample size
(cases/controls)

HWE
(controls)

1 Bye H, 2012a Africa South African Blacks TaqMan PLCE1 418/850 0.927

C20orf54 404/846 0.002

2 Bye H, 2012b Africa South Africans

Mixed Ancestry

TaqMan PLCE1 254/857 0.84

C20orf54 254/851 0.369

3 Duan F, 2013 Asia Chinese PCR-RFLP PLCE1 381/420 0.678

4 Dura P, 2012 Europe Caucasian TaqMan PLCE1 86/580 0.977

C20orf54 0.391

5 Gu H, 2012 Asia Chinese TaqMan PLCE1 379/371 0.538

C20orf54 379/375 0.709

6 Hu H, 2012 Asia Chinese TaqMan PLCE1 1061/1211 0.626

7 Palmer AJ, 2012 Europe Caucasian TaqMan PLCE1 52/210 0.051

8 Piao JM, 2013 Asia Korean HRM PLCE1 322/1700 0.162

C20orf54 321/1700 0.757

9 Umar M, 2014 Asia Indians PCR-RFLP PLCE1 293/314 0.507

10 Yang J, 2014 Asia Chinese TaqMan PLCE1 313/314 0.724

11 Zhou RM, 2012 Asia Chinese PCR-LDR PLCE1 517/510 0.716

12 Chen YZ, 2013 Asia Chinese MALDI-TOFMS PLCE1 200/300 0.265

13 Song X, 2012 Asia Chinese Sequenom PLCE1 5334/5191 0.801

14 Tan HZ, 2016 Asia Chinese TaqMan C20orf54 479/479 0.071

15 Wei W, 2013 Asia Chinese Sequencing C20orf54 240/198 0.414

16 Current study Asia Iranian PCR-RFLP PLCE1 200/300 0.463

C20orf54 0.380
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(defined as Asians or non-Asians) may be a significant source
of heterogeneity in the allelic model (coefficient: 0.296, SE:
0.113, P: 0.023, R2: 45.59%), the homozygote model (coeffi-
cient: 0.548, SE: 0.223, P: 0.030, R2: 55.41%), the heterozy-
gote model (coefficient: 0.257, SE: 0.118, P: 0.050, R2:
54.90%), the dominant model (coefficient: 0.317, SE: 0.136,
P: 0.038, R2: 42.28%) and the recessive model (coefficient:
0.457, SE: 0.170, P: 0.019, R2: 73.42%). However, test for
residual heterogeneity revealed that a significant part of het-
erogeneity in the allelic model (QE: 27.556, P: 0.006) and the
dominant model (QE: 22.777, P: 0.029) is still unexplained.
Stratified analysis and meta-regression found statistically sig-
nificant differences among ethnicity subgroups (Table 5), in-
dicating that PLCE1 rs2274223 was associated with ESCC

risk in Asian populations but not non-Asians. Moreover, no
significant source of heterogeneity was found among other
study level moderators (i.e. year of publication and genotyp-
ing method) in the analyzed genetic models. Sensitivity anal-
ysis under all genetic models showed that no single study
influenced the estimated ORs or 95% CI, indicating statistical
robustness of the analysis (Fig. 6b).

Meta-analysis found that C20orf54 rs13042395 was not
associated with ESCC risk under any genetic model
(Table 4). No evidence of publication bias was found (All
Pvalues of the Begg’s tests >0.05, Table 4). The fixed effect
model was used for rs13042395 as there was no significant
heterogeneity among studies. According to the sensitivity
analysis, no single study influenced the estimated pooledORs.

Table 4 Meta-analysis of ESCC risk associated with PLCE1 rs2274223 and C20orf54 rs13042395

Genetic models ORa [95% CI] Modelb Pc PHet
d I2 Pbias

e

PLCE1 rs2274223

Allelic (G vs. A) 1.270 [1.150–1.403] RE 0.000 0.000 71.4% 0.701

Homozygote (GG vs. AA) 1.606 [1.293–1.994] RE 0.000 0.001 61.2% 0.583

Heterozygote (AG vs. AA) 1.293 [1.174–1.423] RE 0.000 0.040 43.8% 0.250

Dominant (GG+AG vs. AA) 1.329 [1.191–1.484] RE 0.000 0.001 61.3% 0.476

Recessive (GG vs. AG+AA) 1.447 [1.198–1.748] RE 0.000 0.010 52.9% 0.784

C20orf54 rs13042395

Allelic (T vs. C) 0.954 [0.870–1.046] FE 0.316 0.818 0.0% 0.322

Homozygote (TT vs. CC) 0.890 [0.722–1.096] FE 0.273 0.647 0.0% 0.176

Heterozygote (CT vs. CC) 0.982 [0.863–1.118] FE 0.790 0.212 27.1% 0.216

Dominant (CT + TT vs. CC) 0.960 [0.848–1.086] FE 0.519 0.479 0.0% 0.322

Recessive (TT vs. CC + CT) 0.902 [0.746–1.089] FE 0.285 0.395 4.1% 0.880

a Pooled OR and 95% CI (Random-effect model)
b either RE (random effect) or FE (fixed effect)
cP value of the Z-test
dP value of the Q-test
eP value of the Begg’s test

Fig. 5 Forest plot of PLCE1
rs2274223 for the homozygote
model. Heterogeneity: I2:61%;
tau2: 0.0859; P < 0.01
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Discussion

Recent large GWASs have yield enormous progress in the
understanding of the genetic basis of ESCC by exploring the
relationship between a large number of variants and disease
predisposition, and discovered several candidate loci in
Chinese populations [7, 13, 14]. Although Iran is considered
as a high-risk region for ESCC [3], currently little is known
about the role of genetic components in the disease risk in this
region. This study evaluated whether similar associations
existed in an Iranian cohort for three GWAS identified variants
and showed that PLCE1 rs2274223 and RUNX1 rs2014300
may contribute to ESCC predisposition in the cohort.

The PLCE1 locus at 10q23 was first identified to indepen-
dently modulate risk of both ESCC and gastric cancer through a
well-powered GWAS in a large Chinese cohort [12]. Among
multiple SNPs that reached genome-wide significance threshold,
the most notable signal was PLCE1 rs2274223 [12]. The

association with ESCC was subsequently confirmed by two in-
dependent GWASs in Chinese cohorts [7, 14], and also,
reproduced in Chinese [15, 32] and Koreans [31]. A recent joint
analysis of three GWASs in Chinese population have found sig-
nificant result for this locus [13]. These studies demonstrated that
the variant allele (i.e. G) increases risk of ESCC. However, sim-
ilar association was not found in South Africans [17] and Indians
[19, 28]. There are inconsistencies between results of studies in
Caucasians. Dura et. al. found no association in Dutch
Caucasians [30], whereas Palmer et. al. reported an association
in U.S. Caucasians in the opposite direction to those in Chinese
population [16]. The association reported in Iranians by the cur-
rent study was in the same direction with the original studies in
Chinese populations (Table 2). The present study combined the
results of 14 association studies and indicated that PLCE1
rs2274223 is associated with increased risk of ESCC. Meta-
regression suggests that a proportion of heterogeneity may be
attributed to the ethnicity. However, at-least under allelic and

Fig. 6 The Begg’s funnel plot (a) and the sensitivity analysis (b) of
association between PLCE1 rs2274223 and ESCC risk under
homozygote model. In funnel plot, vertical black line and the dotted

line represent pooled fixed and random effect estimates. For sensitivity
analysis, each line represents the pooled OR and its corresponding 95%
CI estimated by omitting one study at a time

Table 5 Stratified analysis and
meta-regression to evaluate the
effect of ethnicity (PLCE1
rs2274223)

PLCE1 rs2274223 Stratified Analysis Meta-regression

Genetic model Moderator Pooled OR [95%CI] I2 a Phet
a residual I2 b P c

Allelic Asians 1.369 [1.245–1.505] 60.2% 0.007 56.45% 0.000
Non-Asians 1.045 [0.930–1.175] 39.5% 0.174

Homozygote Asians 1.868 [1.498–2.328] 48.8% 0.040 39.10% 0.000
Non-Asians 1.106 [0.862–1.420] 0.0% 0.546

Heterozygote Asians 1.373 [1.292–1.459] 2.5% 0.416 25.72% 0.000
Non-Asians 1.001 [0.744–1.346] 56.7% 0.074

Dominant Asians 1.427 [1.295–1.573] 42.3% 0.075 47.32% 0.000
Non-Asians 0.999 [0.749–1.331] 58.2% 0.066

Recessive Asians 1.668 [1.481–1.878] 37.1% 0.111 21.06% 0.000
Non-Asians 1.048 [0.836–1.313] 0.0% 0.826

a Represent heterogeneity within each subgroup
b Represent heterogeneity among subgroups
cPvalue of the omnibus test of moderators representing differences among subgroups
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dominant genetic models, there was statistically significant
between-study heterogeneity that could not be explained by the
study level moderators. In stratified analysis, the association was
only significant in Asian populations (Table 5). Quality controls
of the meta-analysis (including sensitivity analyses and publica-
tion bias evaluations) suggested the reliability of our results.
However, it should be noted that the number of studies in non-
Asian populations were limited in the meta-analysis and this, in
turn, may influence the statistical power of the subgroup analysis
and the publication bias assessment. Significant heterogeneity
was observed under all genetic models and, therefore, the ran-
dom effect model was used to estimate pooled ORs.

PLCE1 is a member of the phospoholipase C family of
proteins that interacts with the proto-oncogene ras among oth-
er proteins [40]. Animal and experimental studies suggest that
PLCE1 functions as a tumor suppressor in ras-triggered can-
cers like colorectal, lung and skin cancers [41, 42]. In the other
side, PLCE1 has also been linked to oncogenic functions.
Knockout studies have shown that PLCE1-knockout APC
min/+ mice are resistant to intestinal tumor formation through
attenuation of angiogenesis and tumor associated inflamma-
tion [43]. In ESCC, however, the finding that PLCE1 protein
level was significantly higher in tumors than in normal esoph-
agus tissues suggests an oncogenic role for this gene [44, 45].
Increased level of PLCE1 was correlated with advanced
tumor-node-metastasis stages and lymph node metastasis
[45] and with increased expression of NF-κB-related proteins
[46]. Its oncogenic function has further been supported by an
RNAi approach, reporting that PLCE1 silencing in EC cell
line resulted in increased apoptosis and cell cycle arrest
through upregulation of caspase-3 and downregulation of cy-
clin D [44]. Moreover, Knockdown of PLCE1 in EC cell line
markedly increased p53 expression and apoptosis [47]. It has
been shown that rs2274223, which is a nonsynonymous var-
iant, may increase mRNA and protein levels of PLCE1 [48].
The present study combined the.

C20orf54 rs13042395-T allele has been shown to be asso-
ciated with a lowered risk of ESCC by a GWAS in a Chinese
cohort [14]. However, the association of this SNP with ESCC
is controversial as some studies failed to reproduce it in
Chinese [15, 29] or Caucasians [16]. The current study did
not identify a significant association between this SNP and
ESCC, suggesting that it may not contribute to risk of ESCC
in Iranians. Meta-analysis of eight studies also revealed no
significant association (Table 4). However, it should be noted
that the non-significant result of this meta-analysis will not roll
out the possibility that discovering the true effect of this SNP
may need a large sample size, as including the results of
genome-wide studies may suggest only a subtle effect in alle-
lic model [49].

Runt-re la ted transcr ipt ion factor 1 (RUNX1 )
rs2014300 has also been identified as risk of ESCC
modulator in Chinese population [7]. It has been shown

that the G allele increases the risk for ESCC [7]. This
association has, recently, been confirmed through a joint
analysis of three GWASs in Chinese population [13].
The association has been reported in South African
Mixed Ancestry population in an opposite direction to
those in the original GWASs, but not in South African
Blacks [17]. RUNX1 belongs to runt-related transcription
factor (RUNX) family and is thought to be involved in
the development of normal hematopoiesis [provided by
RefSeq]. In ESCC, it has been shown that LincRNA-
uc002yug.2 promotes tumor progression through regu-
lating alternative splicing of RUNX1 [50]. In conclu-
sion, we provided the first evidence for the association
of PLCE1 rs2274223 and RUNX1 rs2014300 with risk
of ESCC in an Iranian cohort.
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