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Abstract Microarray, RT-qPCR based arrays and next-
generation-sequencing (NGS) are available high-throughput
methods for miRNA profiling (miRNome). Analytical and
biological performance of these methods were tested in iden-
tification of biologically relevant miRNAs in non-functioning
pituitary adenomas (NFPA). miRNome of 4 normal pituitary
(NP) and 8 NFPA samples was determined by these platforms
and expression of 21 individual miRNAs was measured on 30
(20 NFPA and 10 NP) independent samples. Complex bioin-
formatics was used. 132 and 137 miRNAs were detected by
all three platforms in NP and NFPA, respectively, of which 25
were differentially expressed (fold change > 2). The strongest
correlation was observed between microarray and TaqMan-
array, while the data obtained by NGS were the most discor-
dant despite of various bioinformatics settings. As a technical
validation we measured the expression of 21 selected
miRNAs by individual RT-qPCR and we were able to validate
35.1%, 76.2% and 71.4% of the miRNAs revealed by SOLiD,

TLDA and microarray result, respectively. We performed bi-
ological validation using an extended number of samples (20
NFPAs and 8 NPs). Technical and biological validation
showed high correlation (p < 0.001; R = 0.96). Pathway and
network analysis revealed several common pathways but no
pathway showed the same activation score. Using the 25
platform-independent miRNAs developmental pathways
were the top functional categories relevant for NFPA genesis.
The difference among high-throughput platforms is of great
importance and selection of screening method can influence
experimental results. Validation by another platform is essen-
tial in order to avoid or to minimalize the platform specific
errors.

Keywords miRNA .miRNA profiling . Non-functioning
pituitary adenoma

Introduction

MicroRNAs (miRNAs) are short, noncoding RNA molecules
that posttranscriptionally regulate gene expression through
RNA interference. They target mRNAs at the 3′, 5′ untrans-
lated regions or even the coding sequence [1–4]. It has been
shown that about 30-50% of all protein coding genes are reg-
ulated by miRNAs [5, 6], hence participating in the regulation
of various physiological and pathophysiological cellular pro-
cesses such as proliferation, differentiation, metabolism and
apoptosis.

Pituitary adenomas represent the second most frequent
(15.3%) central nervous system tumors following meningio-
mas [7]. Clinically non-functioning pituitary adenomas
(NFPAs) constitute approximately 30% of all tumor types of
the anterior pituitary [8] and the majority of them are gonad-
otrophic and null cell adenomas [9].
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The role of miRNAs in pituitary adenomas have been eval-
uated extensively and thoroughly reviewed by Sivapragasam
[10] and Li [11]. In the past few years several high-throughput
techniques such as hybridization-based approaches (e.g.
miRNAmicroarrays), reverse transcription PCR based arrays,
or next generation sequencing (NGS) based methods become
available for an initial screening to identify miRNome expres-
sion and to select specific miRNA candidates for further val-
idation. However, detection of miRNAs can be more chal-
lenging than gene transcripts due to their special structure
making difficult the assay and probe designs. Firstly,
miRNAs are short RNA sequences hence it is hard to achieve
high sensitivity assays. It has been proved that a certain mature
miRNA can sometimes comprise a distribution of sizes of
15 − 23 nt (centered around 22 nt.) rather than having a single
length [12] which is called sequence heterogeneity and the
miRNA Bvariants^ are called ‘isomiRs’. Occurrence of
isomiRs has been attributed to posttranscriptional modifica-
tions at 3′ and 5′ ends that seems to affect miRNA stability and
function (especially if it occurs at the 5′ influencing seed re-
gion [12]. Mature miRNAs lack of polyA tail (or other com-
mon sequence) making unavailable application of universal
primers/probes in their expression studies. Additionally, mem-
bers of the same miRNA family can differ only in 1-2 nucle-
otides making the discrimination difficult. Finally, among
miRNA sequences the GC content show significant variance
which results in difference in melting temperatures hence in
multiplex assays it can create miRNA-specific biases [12].

Due to these difficulties it has been well known that
miRNA expression profiles could be different using various
platforms [13, 14]. Therefore our aim was to compare the
results obtained by three high-throughput miRNA screening
methods and by performing technical and biological valida-
tions to identify the differentially expressed miRNAs in NFPA
compared to normal pituitary (NP). The functional relevance
of differentially expressed miRNAs revealed by high-
throughput methods was tested using pathway and network
analysis.

Methods

Samples and RNA Extraction

In high-throughput experiments 8 NFPAs and 4 normal pitu-
itary tissues, in validation phase 20 NFPA and 10 NP speci-
mens were examined. Adenoma tissues were removed by
transsphenoideal surgery at the Hungarian National Institute
of Neurosurgery. All adenoma samples were gathered with the
permission of the Local Committee on Human Research. The
diagnosis of NFPA was based on clinical findings, hormone
levels and immunohistochemistry analysis of the removed
tumor tissue. Routine immunohistochemical examination

included immunostaining for anterior pituitary hormones
(GH, PRL, ACTH, LH, FSH, SF1 and TSH) and staining
for Ki-67 proliferation marker. All routine immunohistochem-
ical studies were performed at the 1st Department of
Pathology and Experimental Cancer Research, Semmelweis
University, Budapest, Hungary as previously described [15,
16]. Normal pituitary samples were obtained by autopsy with-
in 6 h of death from patients with no evidence of any endo-
crine disease (University Clinical Centre, Belgrade, Serbia)
[15]. We performed gene expression measurements in all iso-
lated RNA specimens to measure the expression of genes
encoding anterior hormones and Pit1. This later gene has been
demonstrated that is expressed exclusively in the Rathke’s
pouch and adenohypophysis during the development of pitu-
itary in both chicken and mouse embryos and not in the
neuroectoderm (Proszkowiec-Weglarz et al. 2011). By using
these expressions it could be concluded that all pituitary sam-
ples used as normal contained all five adenohypophophysis
specific cell types (data not shown) [15–18]. Tumor tissue
specimens were immediately frozen in liquid nitrogen after
the adenoma removal, and stored at -80 °C until use. Total
RNA was extracted with miRNeasy Mini Kit (Qiagen Inc.,
Chatsworth, CA). RNA integrity (RIN) and concentration
was measured using Agilent Bioanalyzer 2100 System
(Agilent Tech Inc., Santa Clara, USA), samples having RNA
integrity number (RIN) >7 were included.

Next-Generation Sequencing and Data Analysis

MicroRNA expression of 8 NFPA and 4 NP tissue specimens
were analyzed using SOLiD next-generation-sequencing in
two pools. From total RNA small RNA enrichment was per-
formed with miRNA Isolation Kit (Invitrogen). MicroRNA
libraries were prepared according to the manufacturer’s proto-
col (Small RNA Expression Kit, Applied Biosystems).
Briefly, 100 ng miRNAwas hybridized and ligated overnight
with adapter mix. cDNA was generated by reverse transcrip-
tion from adaptors ligated to ends of the small RNAmolecule.
PCR products were cleaned and selected on agarose gels by
size 105–150 bp. Template bead preparation, emulsion PCR
were performed using the SOLiD V2 sequencing system
(Applied Biosystems). Data analysis was carried out using
Small RNA Analysis tool of CLCBio Genomics Workbench
v5.0 using general settings for quality check and adapter trim-
ming. We accepted reads having 15-23 nt in size as
Bexpressed^. Then we aligned miRNA reads to miRBase ma-
ture miRNA sequences allowing 0 or 1 mismatches. Read
numbers then were normalized for the total reads of each
sample. Fold change was determined in NFPA samples com-
pared to normal ones. The deep sequencing was performed at
the Sequencing Platform, Institute of Biochemistry, Biological
Research Centre of the Hungarian Academy of Sciences,
Szeged, Hungary [19].
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Microarray Experiment and Data Analysis

GeneChip® microRNA Galaxy Array v1 (Affymetrix, CA,
USA), which comprises probe sets for 1015 human mature
miRNAs was used for miRNA expression analysis. 500 ng
pooled total RNA was processed for each group. Poly (A)
tailing reaction and ligation of the biotinylated signal mole-
cule to the target RNA sample was carried out using FlashTag
Biotin HSR RNA Labeling Kit (Affymetrix, PN 703095) fol-
lowing the manufacturer’s instructions. Then, the labeled and
biotinylated RNA and hybridization controls (GeneChip
Eukaryotic Hybridization Control Kit, PN 900454) were hy-
bridized tomiRNA arrays for 16 h at 48 °C. Hybridization and
staining was performed using GeneChip® Hybridization,
Wash, and Stain Kit (PN 702731) and each array was washed
and stained in a GeneChip Fluidics station 450 (Affymetrix)
and scanned by a GeneChip 3000 scanner (Affymetrix) ac-
cording to the manufacturer’s instructions.

Data analysis was performed by Genespring GX 12
Software (Agilent Tech Inc., Santa Clara, CA, USA) using
standard settings. Briefly, raw data was filtered by percentile
(lower cut-off: 20). Fold change filter was set to 2-fold, and
then unpaired t-test was used to identify significant (p < 0.05)
gene expression changes with multiple testing correction
(Benjamini-Hochberg) to control the false discovery rate.

miRNATaqMan Low Density Array and Data Analysis

We used our previously published miRNA expression dataset
obtained using TaqMan Low Density Array (TLDA) Human
MicroRNA Panel v.2 (Applied Biosystems, Foster City, CA)
on 8 NFPA and 4 normal pituitary samples. Procedures are
described in details by Butz [20].

Individual miRNA qPCR and Data Analysis

Expression level of followingmiRs: hsa-miR-128a (Assay ID:
4,395,327), hsa-miR-135a (Assay ID: 4,373,140), hsa-miR-
135b (Assay ID: 4,395,372), hsa-miR-140-5p (Assay ID:
4,373,374), hsa-miR-155 (Assay ID: 4,395,459), hsa-miR-
15a (Assay ID: 4,373,123), hsa-miR-16 (Assay ID:
4,373,121),hsa-miR-17-5p (Assay ID: 4,395,419), hsa-miR-
20a (Assay ID: 4,373,286), hsa-miR-383 (Assay ID:
4,373,018), hsa-miR-422a (Assay ID: 4,395,408), hsa-miR-
424 (Assay ID: 4,373,201), hsa-miR-486-3p (Assay ID:
4,395,204), hsa-miR-503 (Assay ID: 4,373,228), hsa-miR-
516a-3p (Assay ID: 4,373,183), hsa-miR-542-3p (Assay ID:
4,378,101), hsa-miR-543 (Assay ID: 4,395,487), hsa-miR-
582-3p (Assay ID: 4,395,510), hsa-miR-582-5p (Assay ID:
4,395,175), hsa-miR-93 (Assay ID: 4,373,302), hsa-miR-98
(Assay ID: 4,373,009), RNU44 (Assay ID: 4,373,384),
RNU48 (Assay ID: 4,373,383), U6 snRNA (MammU6,
Assay ID: 4,395,470) were determined in pituitary samples

using individual TaqMan MicroRNA Assays (Applied
Biosystems) followed the protocol provided by the supplier
and was described earlier in details by Butz [20]. Expression
level was calculated by ddCt method, and fold changes were
obtained using the formula 2-ddCt [20].

Bioinformatics Analysis

Target prediction for miRNAs differentially expressed be-
tween NFPA and NP tissues was performed using Tarbase
and miRecords databases. Only the experimentally observed
miRNA targets were taken into consideration in order to in-
crease the reliability of results. Then the target lists with the
predicted expression alteration were submitted to Ingenuity
Pathway analysis (http://www.ingenuity.com/ products/ipa).
We also used miRNA-target interaction data obtained from
each platform to build networks that were visualized by
Cytoscape 3.1.0. software as previously described [21, 22].
Briefly, following network structure analysis node’s color
and size were indicated by indegree (number or targeting
miRNA). Correlations were performed using R, p values were
considered to be significant at p < 0.05.

Results

miRNA Expression Profiles and Correlations
Among Platforms

A final database was generated containing all miRNAs detect-
ed by all three platforms aligning miRNAs by sequences
(MiRBase release 21). We included miRNAs expressed at
least in one sample/platform and we filtered out miRNAs
where sequences were not exact matches among the three
platforms due to miRNA annotation differences among plat-
forms. Therefore, in our merged database we compared 166,
718 and 440 miRNAs by SOLiD, microarray and TLDA,
respectively in NP and 180, 718 and 440 miRNAs in NFPA
samples, respectively. Among which 132 (in NP) and 137 (in
NFPA) were common in all three datasets (Fig. 1a).

After correlating miRNA expression profiles obtained by
the different platforms significant correlations between plat-
forms, with the best correlation (R = 0.75) between microarray
and TLDA and the weakest between SOLiD-Microarray and
SOLiD-TLDA data was observed (Fig. 1b). We performed
cross-correlation of four datasets: TLDA-NP (normal pitui-
tary), TLDA-NFPA (non-functioning adenoma), SOLiD-NP
and SOLiD-NFPA. We found that expression values obtained
by the same platform correlated better than expression values
obtained by different platforms for the same samples (e.g
R = 0.82 between TLDA-NP and TLDA-NFPA versus
R = 0.44 between TLDA-NP and SOLiD-NP or R = 0.52
between TLDA-NFPA and SOLiD-NFPA). This phenomenon
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SOLiD vs. TLDA correla�on
TLDA-NP

TLDA-NFPA
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Fig. 1 a Numbers of detected miRNAs by SOLiD, Microarray and
TLDA platforms in normal pituitary (NP) and non-functioning pituitary
adenoma (NFPA) bMultiplex correlation among samples and platforms.
Numbers indicate correlation coefficient (R), scales show normalized

expression. Above the diagonal line the scatter plots, below the diagonal
line the correlation coefficients are indicated for each comparison. See the
text for detailed explanation

O. Darvasi et al.172



was observed in all comparison (Microarray vs. TLDA and
Microarray vs. SOLiD as well). Based on this result we can
conclude that platform effect is more significant than the
group (tissue) effect (Fig. 1b).

SOLiD showed the weakest correlation with the other two
platforms. In order to investigate whether these results might
be related to the bioinformatical analysis we evaluated how
the different minimum read numbers influenced the correla-
tion. We determined the correlation coefficients using 3, 5 or
10 reads as a minimum expression cut-off, but changing the
minimum read number cut-off had only a minor influence on
correlation coefficients (Table 1). It also has to be mentioned
that lower correlation was observed in normal tissues com-
pared to NFPA samples (Table 1). Based on these results we
considered a miRNA to be expressed using the cut-off = 5
reads.

In order to find out the reasons for the low correlation
observed between data obtained by SOLiD deep sequencing

and the other two platforms additional bioinformatical analy-
sis were carried out. miRNAs that were detectable by both the
TLDA and microarray platforms but not by SOLiD had ex-
pression values in the lower detection range compared to those
which were detected by SOLiD (Fig. 2). In addition, a signif-
icant number of miRNAs (268 and 264 miRNA in NP and
NFPA, respectively) were excluded from the statistical analy-
sis because the reads mapping these miRNAs were either too
short (<15 nt) or aligned to multiple positions in the miRNA
reference database (Supplemental Table 1). Of these miRNAs
we focused on those 28 miRNAs which were unidentified by
SOLiD but were detected in NP and NFPA by bothmicroarray
and TLDA platforms. (Supplemental Table 2). No difference
in the GC content of these miRNAs versus those detected was
observed (data not shown). However we found some differ-
ences in the number of repeats in sequences: 39% and 31% of
miRNAs contains more 3-6mer short repeats in the undetect-
able sequences compared to detectable ones by SOLiD in NP

Fig. 2 miRNAs that were not
detected by SOLiDNGS but were
identified by both microarray and
TLDA, were in the low detection
range. Columns represent mean
expression, error bars indicating
standard error (SE), *: p < 0.0001

Table 1 Correlation of miRNA
expression profiles between
SOLiD, Microarray and TLDA
platform. See details in the text

Comparison NP NFPA
Correlation (p-value) Correlation (p-value)

Microarray vs TLDA 0.46 (6.09e-08) 0.75 (7.05e-74)

SOLiD (cut off = 3 reads) vs Microarray 0.32 (0.1) 0.61 (4.10e-19)

SOLiD (cut off = 5 reads) vs Microarray 0.33 (0.33) 0.65 (3.23e-21)

SOLiD (cut off = 10 reads) vs Microarray 0.35 (2.12e-05) 0.60 (3.27e-15)

SOLiD (cut off = 3 reads) vs TLDA 0.44 (2.92e-08) 0.52 (1.48e-11)

SOLiD (cut off = 5 reads) vs TLDA 0.42 (3.72e-07) 0.52 (3.18e-14)

SOLiD (cut off = 10 reads) vs TLDA 0.42 (3.72e-07) 0.52 (2.97e-10)
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and NFPA, respectively (Supplemental Table 3). Regarding
unbalanced nucleotide composition adenine or thymine at
the first position in these miRNAs (21 out of 28 undetected
miRNAs had A or T as the first base possibly influencing
adapter ligation) may also be responsible for their failure
through SOLiD system.

Despite of low correlations, expression of 85 miRNAs
changed in the same direction in all three high throughput
methods (Supplementary Table 4). Of these, 25 miRNAs (12
downregulated and 13 upregulated in NFPA vs. NP) were
identified whose expression significantly differed (>2 fold)
in the same direction between NFPA andNP samples and their

Table 2 Expression of 25
platform independent miRNAs in
non-functional pituitary adeno-
mas vs. normal pituitary

miRNA_name MIMAT Seq SOLiD
log2FC

TLDA
log2FC

ARRAY
log2FC

mir-134 MIMAT0000447 TGTGACTGGTTGAC
CAGAGGGG

-2 −3.38 −3.04

mir-137 MIMAT0000429 TTATTGCTTAAGAA
TACGCGTAG

3.11 2.68 5.79

mir-149 MIMAT0000450 TCTGGCTCCGTGTC
TTCACTCCC

3.14 2.46 1.75

mir-182 MIMAT0000259 TTTGGCAATGGTAG
AACTCACACT

1.67 2.71 1.04

mir-183 MIMAT0000261 TATGGCACTGGTAG
AATTCACT

1.44 1.8 1.36

mir-193a MIMAT0004614 TGGGTCTTTGCGGG
CGAGATGA

−1.22 −3.24 −1.27

mir-214 MIMAT0000271 ACAGCAGGCACAGA
CAGGCAGT

−2.32 −2.81 −1.41

mir-301a MIMAT0000688 CAGTGCAATAGTAT
TGTCAAAGC

1.53 1.23 2.97

mir-34a MIMAT0000255 TGGCAGTGTCTTAG
CTGGTTGT

−1.05 −1.04 −1.04

mir-370 MIMAT0000722 GCCTGCTGGGGTGG
AACCTGGT

−7.21 −5.48 −2.86

mir-379 MIMAT0000733 TGGTAGACTATGGA
ACGTAGG

−1.82 −5.03 −2.00

mir-382 MIMAT0000737 GAAGTTGTTCGTGG
TGGATTCG

−1.59 −5.27 −2.47

mir-429 MIMAT0001536 TAATACTGTCTGGT
AAAACCGT

2.37 1.61 3.41

mir-433 MIMAT0001627 ATCATGATGGGCTC
CTCGGTGT

−1.35 −4.71 −3.35

mir-487b MIMAT0003180 AATCGTACAGGGTC
ATCCACTT

−1.58 −4.64 −2.25

mir-497 MIMAT0002820 CAGCAGCACACTGT
GGTTTGT

−3.50 −1.56 −1.99

mir-510 MIMAT0002882 TACTCAGGAGAGTG
GCAATCAC

−1.58 −2.74 −1.83

mir-582 MIMAT0003247 TTACAGTTGTTCAA
CCAGTTACT

4.44 7.32 1.82

mir-628 MIMAT0004809 ATGCTGACATATTT
ACTAGAGG

3.21 1.66 2.23

mir-660 MIMAT0003338 TACCCATTGCATAT
CGGAGTTG

4.21 2.14 1.69

mir-770 MIMAT0003948 TCCAGTACCACGTG
TCAGGGCCA

−2 −4.40 −1.81

mir-885 MIMAT0004947 TCCATTACACTACC
CTGCCTCT

1.77 1.26 1.37

mir-935 MIMAT0004978 CCAGTTACCGCTTC
CGCTACCGC

6.5 4.22 1.62

mir-95 MIMAT0000094 TTCAACGGGTATTT
ATTGAGCA

1.8 1.39 3.94

mir-96 MIMAT0000095 TTTGGCACTAGCAC
ATTTTTGCT

2.89 1.82 4.16
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expression change occurred in the same direction in all the
three platforms used (Table 2, Supplementary Figure 1).

Technical and Biological Validation

To reveal the impact of the differences in miRNAs profiles
obtained by the different platforms, we validated the expres-
sion of 21 selected miRNAs by individual RT-qPCR using
TaqMan miRNA Assays. These 21 miRNAs were chosen to
cover miRNAswhom expression was concordant among plat-
forms or discordant between SOLID and the other two plat-
forms. Six out of 21 miRNAs (miR-17-5p, miR-20a, miR-
543, miR-582-5p, miR-93 and miR-98) showed the same ex-
pression pattern in all the three high throughput methods, 9
miRNAs (miR-128a, miR-135a, miR-135b, miR-16, miR-
422a, miR-486-3p, miR-516a-3p, miR-542-3p and miR-582-
3p) were not detectable by SOLiD but measured by microar-
ray and TLDA. MiR-135a was not detectable in the microar-
ray experiment. During the technical validation, in the same
samples as were used for high throughput analysis (8 NFPAs
and 4 NPs) we were able to validate 35.1%, 76.2% and 71.4%
of the miRNAs revealed by SOLiD, TLDA and microarray

measurements (Fig. 3a). The technical validation was follow-
ed by biological validation using an extended number of sam-
ples (20 NFPAs and 8 NPs) (Fig. 3b). The expression values
measured in this extended sample size correlated well with the
expression values measured during the technical validation
(p < 0.001; R = 0.96) (Fig. 3b and c).

Pathway and Molecular Network Analysis for miRNAs
Revealed by High Throughput Screening

In order to investigate the biological significance of high-
throughput data we carried out a complex bioinformatical
pathway and network analysis in order to reveal molecular
function, signaling pathways and cellular processes affected
by these miRNAs. We generated the differentially expressed
gene lists from each platform applying a fold change cut-off 2.

Pathways for miRNAs identified by each, high throughput
platform

A target prediction for each miRNA identified during expres-
sion analysis by high throughput methods were performed and

Fig. 3 Validation of selected 21 miRNAs’ expression a Technical
validation shows the miRNA expression determined by individual RT-
qPCR on the same samples as used for SOLiD, Microarray and TLDA
experiment. b Technical vs. biological validation. Biological validation
was performed on an extended number of samples (20 NFPAs and 10

NPs). c Correlation among different platforms (log2fold change) regard-
ing biological validation. Red and green colours represent over- and un-
derexpression in NFPAs compared to NPs, black indicates not identified
miRNAs.
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SOLiD miRNA target network

TLDA miRNA target network

Array miRNA target network

Common miRNAs’ target network

# of targeting 
miRNA Gene Name

8 PTEN
7 CCND1, CDK6
6 VEGFA
5 BCL2,CDKN1A, E2F3, ESR1, TAGLN
4 BCL2L11, CDC25A, E2F1, F2, FOXO1, MAP2K4, VIM, WEE1, ZEB2

3

AICDA, BAX, BMPR2, CBFB, CCNE1, CD47, CDKN1B, FADD, HIPK3, 
HMGA2, IFRD1, IGF1R, IRS1, MCL1, MET, MLLT1, MYB, MYC, PDCD4, 
PIK3R1, PURA, SLC38A1, SYPL1, TIMP3, TP63, TRPS1, TUSC2, ZEB1, 
ZFPM2

# of 
targeting 
miRNA

Gene Name

10 CDK6, PTEN
9 CCND1
7 E2F3, ESR1, VEGFA
6 BCL2, CDKN1A, MCL1, TAGLN, VIM
5 CDC25A, F2, PDCD4, THBS1, TRPS1, TUSC2, WEE1

4 BCL2L11, BMPR2, CTGF, DICER1, E2F1, EGFR, FOXO1, HIPK3, IRS1, 
MAP2K4, MET, MYB,NTRK3, SYPL1, ZEB2

3

AICDA, BDNF, BMI1, C1orf56, CBFB, CFL2, CHEK1, ETS1, FOXP1, 
H3F3A/H3F3B, HDAC4, IFRD1, JAG1, KRT19, LAMC1, MECP2, MLLT1, 
MYLIP, MYO10, NEUROD1, NOTCH2, NR4A2, PLAG1, PNP, PTGS2, PURA, 
RB1, RECK, RTL1, SEPT3, SLC38A1, SLC7A1, SP1, TGFBR2, TIMP3, P53, 
TP63, UHRF1, VSNL1, ZEB1, ZFPM2

# of 
targeting 
miRNA

Gene Name

8 CCND1
7 CDK6, PTEN, VEGFA, BCL2, TRPS1
5 E2F3, FOXO1

4 BAX, CDKN1A, ESR1, F2, FGF16, MAP2K4, NTRK3, PDCD4, SMAD5, TUSC2, 
WEE1

3

BDNF, BMI1, C1orf56, CDC25A, EGFR, ETS1, FOXP1, HMOX1, IFRD1, MCL1, 
MET, MLLT1, MYB, MYC, NOTCH1, NOTCH2, PNP, PRDM1, PTGS2, RTL1, 
RUNX2, SLC38A1, SLC7A1, SMAD3, SMAD4, SYPL1, TAGLN, THBS1, TP63, 
UHRF1, VIM, VSNL1, ZEB2

# of 
targeting 
miRNA

Gene Name

3 CDK6

2 PTEN, CCND1, BCL2, E2F3, TAGLN, VEGFA, FOXO1, IGF1R, MAP2K1, 
MAP2K4, MITF, MYB, NOTCH2, PDCD4, ADCY6, ZFPM2

a

b

c

d
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the results were narrowed for the experimentally validated tar-
gets. Then, these miRNA target lists were subjected to pathway
and network analysis. The pathway called BMolecular
Mechanisms of Cancer^ was the most significant pathway al-
tered by miRNAs revealed by all three platforms. In addition,
other five pathways were common among the miRNAs re-
vealed by high throughput screening (Supplementary
Figure 2A).

We also investigated the activation z-scores of path-
ways. The primary purpose of z-score is to infer the acti-
vation states of predicted pathway. A significantly altered
pathway implies that the genes involved in the pathway
(both activators and inhibitors) are significantly enriched
in the gene set we used. Therefore z-score analysis can
give a more thorough information about the pathway
function and that can explain the difference between the
result of pathway and z-score analysis (Supplementary
Fig. 2a-b). However, no common signaling showing the
same direction (activation or inhibition) by all three plat-
forms was detected (Supplementary Figure 2B).

Network for miRNAs identified by each platform

Using Ingenuity Knowledge Database containing up-to-date
information on molecular interactions we built networks of
miRNAs and their experimentally validated target molecules.
After analyzing network structure, remarkable differences ac-
cording to the most significant miRNAs (defined as miRNAs
with the highest number of targets) were observed. MiR-15a-
5p, miR-98-5p and miR-155-5p were the most influential
miRNAs having the most targets in SOLiD miRNA-target
network, miR-124-3p, miR-1-3p and miR-497-5p in the mi-
croarray network and miR-506-3p, miR-206 and miR-424-5p
in the TLDA network. Good overlap was found among the
miRNA targets; PTEN, CDK6 and CCND1 being the most
commonly influenced molecules by miRNAs in NFPA com-
pared to NP. PTEN was targeted by 8, 10 and 7 miRNAs in
SOLiD,Microarray and TLDAmiRNA-networks. CDK6was
targeted by 7, 10 and 7 miRNAs, while CCND1 was targeted
by 7, 9 and 8 miRNAs in the SOLiD, Microarray and TLDA
networks (Fig. 4a, b and c).

Pathways and molecular networks for common miRNAs
among different high throughput methods

As we mentioned earlier 25 miRNAs were significantly dif-
ferentially expressed in the same direction between NFPA and
normal pituitary samples measured by all three platforms

(Table 2, Supplementary Fig. 1). Investigating the potential
pathways affected by the platform independent miRNAs we
found a very similar result to those revealed by platform de-
pendent miRNAs (Supplementary Figure 3). BDevelopmental
biology ,̂ BWnt Signalling Pathway^ and BTGF-beta
Receptor Signaling Pathway^ were the most significant sig-
naling pathways (Supplementary Figure 3). We performed z-
score analysis as well. In this analysis we presented the z-score
of those pathways where the scores showed the same direction
at least two studies. Interestingly, in case of Bplatform
independent^ miRNA analysis only the BAryl Hydrocarbon
Receptor Signaling^ and BCell Cycle: G1/S Checkpoint
Regulation^ showed significant alteration in z-scores whilst
these two pathways did not have significant z-scores using the
individual studies (Supplementary Fig. 2B).

The network analysis for these miRNAs revealed very sim-
ilar results observed for platform dependent miRNAs. Of the
25 miRNAs miR-497, miR-34a and miR-429 were identified
having the most targets in the network (Fig. 4b). GO analysis
revealed the most important molecular functions and process-
es related to BRNA binding and transcription regulation^,
Bcell cycle^ and BWnt signaling Pathway^ (Supplementary
Figure 4).

Discussion

Various high throughput molecular biological methods in
miRNA profiling are available for many tumor types includ-
ing pituitary. However, miRNA profiling using deep sequenc-
ing has not been performed in non-functioning pituitary tu-
mors. Our study was carried out in order to evaluate how the
high throughput method would influence the results in
miRNA expression studies. We showed that the number of
detected miRNAs were very different among the three plat-
forms used and globally the correlation among these methods
vary significantly. The strongest correlation was found be-
tween microarray and TLDA cards; and correlations between
deep sequencing performed by SOLiD System andmicroarray
or TLDA were weaker. These significant but not remarkably
strong correlations are in line with earlier data. Git et al. have
found similar correlation between NGS read numbers and
microarray hybridization intensity (correlation coefficient
0.66 ± 0.12) [14], while in a study by Wang et al. the inter-
platform reproducibility correlation coefficients varied be-
tween 0.106 ± 0.039 and 0.48 ± 0.096 among LNA microar-
ray, beads arrays and TLDA [23]. It is thoμght that the dis-
agreement arises from nonspecific contributions, varying de-
grees of cross-hybridization of miRNA family members or
reduced discrimination between unprocessed and mature
forms of the miRNAs [23].

To choose the best high throughput screening method
seems essential in identification of differentially expressed

�Fig. 4 Network analysis of miRNA-target interactions of different plat-
forms (a SOLiD; b microarray; c TLDA; d 25 platform independent
miRNAs). Node (molecule) size and colour represent the number of
targeting miRNAs (indegree)
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Table 3 Comparison of different studies. PA: pituitary adenoma (containing GH, PRL, ACTH-secreting and non-functioning adenomas), NP: normal
pituitary, NFPA: non-functioning pituitary adenoma, GO: gonadotrope adenoma, TLDA: TaqMan LowDensity Array, NGS: next generation sequencing

miRNA
name

Chromosome
Map

Mature miRNA
sequence

Bottoni et al. [26]
(microarray)

Liang et al. [27]
(microarray)

Butz et al. [20]
(TLDA)

current study

NGS microarray

Concordant expression

mi-
R-127

14q32.2 CTGA
AGCTCAGAGG
GCTCTGAT

downregulated in
NFPAvs. other types
of PA

downregulated
in NFPA vs.
NP

upregulated in
NFPA vs. NP

downregulated
in NFPA vs.
NP

mi-
R-148a

7p15.2 TCAG
TGCACTACAG
AACTTTGT

downregulated in
NFPAvs. other types
of PA

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-203

14q32.22 GTGA
AATGTTTAGG
ACCACTAG

downregulated in
NFPAvs. other types
of PA

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-24

9q22.32 TGGC
TCAGTTCAGC
AGGAACAG

downregulated in
NFPAvs. other types
of PA

downregulated
in NFPA vs.
NP

mi-
R-136

14q32 ACTC
CATTTGTTTT
GATGATGGA

downregulated in PA
vs. NP

downregulated
in NFPA vs.
NP

mi-
R-137

1p21.3 TTAT
TGCTTAAGAA
TACGCGTAG

upregulated in NFPA
vs. other types of PA

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

mi-
R-149

2q37.3 TCTG
GCTCCGTGTC
TTCACTCCC

upregulated in PA vs.
NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

mi-
R-191

3p21 CAAC
GGAATCCCAA
AAGCAGCTG

upregulated in PA vs.
NP

upregulated in
NFPA vs. NP

mi-
R-31

9p21.3 AGGC
AAGATGCTGG
CATAGCT

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-363

Xq26.2 AATT
GCACGGTATC
CATCTGTA

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-424

Xq26.3 CAGC
AGCAATTCAT
GTTTTGAA

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-450

Xq21.1 TTTT
GCGATGTGTT
CCTAATAT

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-493

14q32.2 TGAA
GGTCTACTGT
GTGCCAGG

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-503

Xq26.3 TAGC
AGCGGGAACA
GTTCTGCAG

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

upregulated in
NFPA vs. NP

downregulated
in NFPA vs.
NP

mi-
R-506

Xq27.3 TAAG
GCACCCTTCT
GAGTAGA

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-508

Xq27.3 TGAT
TGTAGCCTTT
TGGAGTAGA

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-509

Xq27.3 TACT
GCAGACAGTG
GCAATCA

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

mi-
R-513

Xq27.3 TAAA
TTTCACCTTT
CTGAGAAGG

downregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

downregulated
in NFPA vs.
NP

11q13.4
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miRNAs but the method itself may bias the results. Each tech-
nique has pros and cons reviewed by Pritchard [12].
Hybridization-based methods are widely used techniques re-
quiring ng-ug total input RNA hence the sensitivity is limited
and the dynamic range for detection is not that wide compared
to PCR-based approaches. Also, due to the short sequence
length, end region sequence variation (isomiRs) and high con-
servation among miRNA family members it is challenging to
design specific probes that all affect the specificity. PCR based
arrays are also broadly used for determining miRNA expres-
sion profile. It has a very wide detection range but also re-
quires probe design similarly to hybridization methods. A
broadly accepted Bgold standard^ method in miRNA

expression study is a two-step approach using looped
miRNA specific reverse transcription primers and TaqMan
probes for quantification. Next-generation-sequencing based
approaches are becoming more and more popular in various
molecular biological studies. Related to miRNA expression,
compared to microarrays and PCR based methods, deep se-
quencing does not require predesigned probes hence it is able
to identify novel miRNAs and can distinguish isomiRs.
Although some NGS library preparation methods and the se-
quencing technology are not developed for short (<35 bp)
sequences.

Our recent data showed that the inter-platform correlation
was the weakest between NGS and the other two methods.We

Table 3 (continued)

miRNA
name

Chromosome
Map

Mature miRNA
sequence

Bottoni et al. [26]
(microarray)

Liang et al. [27]
(microarray)

Butz et al. [20]
(TLDA)

current study

NGS microarray

mi-
R-139

TCTA
CAGTGCACGT
GTCTCCAGT

upregulated in GO
vs. NP

upregulated in
NFPA vs. NP

mi-
R-182

7q32.2 TTTG
GCAATGGTAG
AACTCACACT

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

mi-
R-373

19q13.42 GAAG
TGCTTCGATT
TTGGGGTGT

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

downregulated
in NFPA vs.
NP

Discordant expression

mi-
R-140

16q22.1 TACC
ACAGGGTAGA
ACCACGG

downregulated in PA
vs. NP

upregulated in
NFPA vs. NP

downregulated
in NFPA vs.
NP

upregulated in
NFPA vs. NP

mi-
R-153

7q36 TTGC
ATAGTCACAA
AAGTGATC

downregulated in PA
vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

mi-
R-96

7q32 TTTG
GCACTAGCAC
ATTTTTGCT

downregulated in PA
vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

mi-
R-124a

8q12.2 TAAG
GCACGCGGTG
AATGCC

downregulated in PA
vs. NP

upregulated in NFA
vs. NP

upregulated in
NFPA vs. NP

mi-
R-144

17q11.2 GGAT
ATCATCATAT
ACTGTAAG

downregulated in PA
vs. NP

upregulated in NFA
vs. NP

mi-
R-181b

1q31.2-q32.1 AACA
TTCATTGCTG
TCGGTGGGT

downregulated in PA
vs. NP

upregulated in
NFPA vs. NP

mi-
R-150

19q13 TCTC
CCAACCCTTG
TACCAGTG

upregulated in PA vs.
NP

dowregulated in
NFPA vs. NP

mi-
R-212

17p13.3 TAAC
AGTCTCCAGT
CACGGCC

upregulated in PA vs.
NP

dowregulated in
NFPA vs. NP

upregulated in
NFPA vs. NP

downregulated
in NFPA vs.
NP

mi-
R-188

Xp11.23 CATC
CCTTGCATGG
TGGAGGG

upregulated in
NFPA vs. NP

dowregulated in
NFPA vs. NP

mi-
R-520b

19q13.42 AAAG
TGCTTCCTTT
TAGAGGG

upregulated in
NFPA and GO vs.
NP

downregulated
in NFPA vs.
NP
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tested whether the bioinformatics settings i.e. the minimum
expression level (min. read number) would affect the results.
Our results showed that changing this cut-off number did not
have a major effect on inter-platform correlation. On the other
hand, the unidentified miRNAs by SOLiD System but detect-
ed by the other two platforms were in the low detection range
suggesting that that this early version of the SOLID System
technology had a less sensitivity compared to PCR or hybrid-
ization based platforms. It has also to be mentioned that these
undetected miRNAs are usually excluded from the statistical
analysis because either of their short lengths or because of not
unique alignment. We also observed that these reads contains
more nucleotide repeats compared to those miRNAs that were
detected by SOLiD and in 75% the first nucleotide of the
Bundetected reads^ were A or T suggesting that the discrep-
ancy may arise from improper adapter ligation. This observa-
tion is in line with others showing that the library preparation
techniques can introduce sequence-bias by amplifying some
miRNAs while reducing others due to the sequence prefer-
ences of the ligation enzymes or to the differences in the sec-
ondary structures of RNAs [24].

According to technical validation we found an acceptable
percentage for all platforms. Although TLDA and individual
TaqMan RT-qPCR are similar methodologically the percent-
age of validation (76.2%) could be expected higher. The dif-
ferences between TLDA and RT-qPCR protocols (pooled re-
verse transcription in TLDA vs. individual RT and qPCR;
preamplification used in TLDA measurement vs. without
preamplification; differences in the reaction volume 1 μl in
TLDA vs. 15 μl in individual RT-qPCR) can influence the
efficiency of both the RT and qPCR leading to this discrepan-
cy that was found between the two approaches. Also, high
variance of the replicates at TLDA system (median: 8.3%;
min-max: 0.3-19.1%) has been also described in literature
[25].

Altogether, the small overlap among different platforms
found by us can explain why it is difficult to compare different
miRNA studies showing very different results. Until now
three miRNA profiling studies have been presented. We
checked the expression of the 21 miRNAs identified with
concordant expression in these three datasets and it was found
that 8 of 21 were common in Bottoni and our previous study,
13 of 21 were common in Liang and our previous publication
but we could not find any common miRNA between the sig-
nificant miRNA lists of Bottoni and Liang studies [26, 27]
(Table 3). It is noteworthy that the adenoma groups were var-
ied among the three studies which may additionally increase
the weak overlap.

Going further in the understanding of the biological role of
miRNAs in NFPA tumorigenesis and keeping in mind the
redundant effects of miRNAs it seems that the whole
miRNome would characterize better one state than only a
limited sets of miRNAs. Therefore, in order to decipher the

biological relevance of miRNAs a pathway and network anal-
ysis were carried out. Network analysis is a relatively novel
tool for analyzing high-throughput data. Comparing it to path-
way analysis it is considered to be less biased because while
pathway analysis basically performs a gene set enrichment
analysis on pre-defined gene sets (groups of molecules be-
longing to certain pathways) network analysis visualize and
analyze single interactions among molecules. Several com-
mon pathways were recognized for individual miRNA lists
but, interestingly, we could not identify a common signaling
pathway showing the same activation score (activation score
indicates the activation state of the pathways based on the
expression level and direction of miRNAs). This finding is a
probable consequence of the poor overlap of differentially
expressed miRNAs in NFPA vs. NPs among the various plat-
forms used. The same result was observed in the network
analysis as well. However, the miRNA HUBs in the networks
were different but there were a remarkable overlap among the
miRNAs targeted gene HUBs. These data may underline
again the redundancy of target prediction and may be related
to the miRNAs’ divergent and convergent function.

After having in hands these disappointing results we fo-
cused on the 25 miRNAs which were significantly differen-
tially expressed between NFPA and normal pituitary samples
measured by all three platforms. The Gene ontology and path-
way analysis showed that these miRNAs are involved in reg-
ulation of developmental processes through targetingWnt and
TGF signaling. Wnt signaling is described to be activated in
both pituitary organogenesis and its mature function [28]. In
pituitary similarly to other tissue types Wnt signaling path-
ways control cell activity and may stimulate cell proliferation
[28]. Indeed, Elston et al. reported thatWnt pathway inhibitors
are strongly down-regulated in pituitary tumors (both non-
functioning and clinically functioning pituitary tumors) com-
pared with normal pituitary controls in all pituitary subtypes
[29]. They suggested that WIF1 may be a tumor suppressor,
specifically in NFPAs, and the Wnt pathway is important in
pituitary tumorigenesis [29]. However, this finding was not
validated by other reports showing no activation of canonical
and non-canonical Wnt pathway activation in pituitary adeno-
ma [30, 31]. Based on these discrepant results further studies
are warranted for clarification of the role of miRNAs targeting
molecules involved in Wnt signaling in pituitary
adenomagenesis.

The second pathway for platform independent miRNAs
was the TGF-β pathway. Several earlier studies, including
ours, reported the possible involvement of this pathway in
pituitary adenomagenesis [20, 32–34]. We showed the down-
regulation of the TGFβ pathway through miRNAs targeting
Smad3 in NFPAs compared to NP, while Zhenye [34] reported
that the activity of TGF-β signaling might be restrained in
NFPAs and this result correlated with the development and
invasion of NFPAs. The Smad3 and Phospho-Smad3 protein
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levels were found to be gradually decreased from normal an-
terior pituitaries, to non-invasive NFPAs and to invasive
NFPAs [34]. All these data may confirm that TGFβ signaling
seems to be important in development of NFPA.

Conclusion

Our study demonstrated that miRNA expression profiling has
several limitations and the platform dependent effects may
cause significant bias. However, it is also true that individual
miRNA expression data obtained from high throughput tech-
niques were replicable in an acceptable percentage by qRT-
PCR suggesting these tools are useful in identification of
miRNAs with potential biological function. On the other hand
the redundancy observed in target prediction (and therefore in
pathway and network analysis) may weaken or mask the dif-
ferences of individual miRNAs showing a better overlap
among pathways than significant miRNA lists obtained
among different platforms. In summary it is highly warranted
to validate the miRNA expression obtained by any high
throughput method using another platform and an extended
sample set.

Pathway and network analysis of platform-independent
miRNAs and their potential targets demonstrated that differ-
entially expressed miRNAs were likely involved in the tumor-
igenesis of NFPA through regulating developmental
pathways.
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