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Abstract
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neu-

rodegenerative diseases, such as prion diseases and Alzheimer’s disease (AD). Like prion diseases, AD has been con-

sidered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it

remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein (PrPC) plays an

important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrPC

contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as

viruses, conduce AD pathogenesis. Microbe infections cause Ab deposition and upregulation of PrPC, which lead to high

affinity binding between Ab oligomers and PrPC. The interaction between PrPC and Ab oligomers in turn activates the Fyn

signaling cascade, resulting in neuron death in the central nervous system (CNS). Thus, silencing PrPC expression may turn

out be an effective treatment for PrPC dependent AD.
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Introduction

Alzheimer’s disease (AD), which was first reported by Dr.

Alois Alzheimer in 1906 (Maurer et al. 1997), is a chronic

neurodegenerative disease and one of the most common forms

of dementia (Lane et al. 2018). In 2015, approximately 29.8

million AD patients were diagnosed worldwide, and it has

been predicted that there will be more than 113 million AD

patients worldwide by 2050 (Jellinger and Attems 2010; Vos

et al. 2016). The incidence of AD is particularly high in the

elderly; approximately 10% of people older than 60 years

shows AD symptoms. In people older than 85 years, the

prevalence is 50% (Gonsalves et al. 2012). Typical features of

AD include short-term memory loss, visual-spatial perception

disorders, and impairment of language and executive function

(Pohanka 2018). The pathological features of AD include

plaques formed by the deposition of amyloid b protein (Ab)

and neurofibrillary tangles formed by hyperphosphorylated

tau protein (Glenner and Wong 1984; Lee et al. 1991; Martin

et al. 2013; Ow and Dunstan 2014).

According to the time of onset, AD is classified as early-

onset AD (EOAD) or late-onset AD (LOAD) (Bateman

et al. 2011). EOAD, in which the age at onset is between

30 and 65 years, accounts for less than 0.1% of all AD

cases (Blennow et al. 2006). LOAD, in which the age at

onset is more than 65 years, is the most common form of

AD. Both EOAD and LOAD can occur in people with a

positive family history of AD; approximately 60% of

patients with EOAD have multiple AD patients in their

family, and 13% of these familial EOAD cases are inher-

ited by autosomal dominant inheritance and affect at least

three generations (Campion et al. 1999; Brickell et al.

2006). EOAD may also occur in LOAD families (Bird
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2008). Only 1% to 5% of AD cases can be simply diag-

nosed genetically, whereas most AD cases are complex and

may involve multiple susceptibility genes and their inter-

actions with environmental factors (Serretti et al. 2005;

Roses 2006; Reitz and Mayeux 2014).

In this review, we briefly reviewed the pathogenesis of

AD with an emphasis on how cellular prion protein (PrPC)

attribute to AD development. More importantly, we pro-

pose the interactions between PrPC and Ab oligomers may

be the underline mechanism for AD caused by other

infectious agents, such as viruses. Finally, we point out

potential studies to corroborate the role this interaction

plays in vivo.

Factors Influencing AD Development

Even after many years of intensive research, the cause of

AD is not completely understood. It is believed that 70% of

risk is genetic and involves multiple genes (Ballard et al.

2011). In addition, other factors such as age and genders

are also involved. Age is one of the most important factors

affecting the pathogenesis of AD (Seshadri et al. 1997;

Hebert et al. 2001). The incidence of AD increases sig-

nificantly with age: 3% of people aged 65–74 years, 17%

of people aged 75–84 years, and 32% of people of 85 years

or older develop AD (Hebert et al. 2013). However, ageing

perse does not cause AD. Gender is another important

factor determining the risk of AD; more women than men

suffer from AD (Mielke et al. 2014). However, as the

average life expectancy of women is longer than that of

men and as age is a big risk factor for AD, it is difficult to

assign the effect only to gender. What confounds the effect

of gender further is the observation that men aged

45–65 years have higher cardiovascular mortality than

women (Chene et al. 2015). Because cardiovascular dis-

ease is a risk factor for AD (Kivipelto et al. 2006), men

older than 65 years who do not have cardiovascular disease

have a healthier cardiovascular condition, which reduces

the risk of developing AD (Chene et al. 2015). In addition,

environmental factors, such as air pollution or aluminum

pollution, or personal habits, such as smoking, greatly

influence the occurrence of AD (Markesbery and Ehmann

1993; McLachlan et al. 1992; Shin et al. 1995; Pratico

et al. 2002; Banks et al. 2006; Zatta et al. 2009; Cataldo

et al. 2010; Bolognin et al. 2011; Moulton and Yang 2012).

Genes Associated with AD

Various genes associated with AD have been identified to

date, including genes encoding amyloid precursor protein

(APP), presenilin-1 (PSEN-1), presenilin-2 (PSEN-2),

CD2AP, apolipoprotein E (ApoE), clusterin (CLU), com-

plement receptor 1 (CR1), prion protein (PRNP), and tumor

necrosis factor (TNF) (Bertram et al. 2007; Carrasquillo

et al. 2010; Corneveaux et al. 2010; Hooli et al. 2012;

Kruger et al. 2012; Lambert et al. 2013; Sproul et al. 2014;

Wang et al. 2016; Bi et al. 2018; Mukherjee et al. 2018;

Rao et al. 2018; El Bitar et al. 2019).

ApoE has three alleles, e2, e3, and e4, which encode

ApoE2, ApoE3, and ApoE4, respectively. Among the three

alleles, e3 is the most common, whereas e2 is the least

common (Mahley and Rall 2000). People with the e4 allele

are more likely to develop AD than those with the e2 or e3

allele (Spinney 2014). It is estimated that people with one

e4 allele are three times more likely to develop AD than

those with two e3 alleles, whereas people with two e4

alleles have a 8–12 times higher risk of developing AD

(Holtzman et al. 2012; Loy et al. 2014). Comparing to

those individuals having mutation in APP, PSEN-1, or

PSEN-2, individuals expressing APOE-e4 have slightly

higher risk of developing AD (Chouraki and Seshadri

2014). Only 1% or less of AD cases are caused by mutation

of APP, PSEN-1, or PSEN-2, which directly causes more

Ab42 production (Bekris et al. 2010), leading to Ab
oligomerization and consequently, neuron death. People

with mutated APP or PSEN-1 will definitely develop AD if

the mutations are AD-prone, whereas approximately 95%

people with mutated PSEN-2 develop AD (Goldman et al.

2011).

Aggregated Proteins Contribute to AD

Like Ab, a-synuclein, tau, and prion protein are aggrega-

tion-prone proteins that are implicated in AD.

a-Synuclein Cross-seeds Tau fibrillization,
Contributing to AD Pathogenesis

a-Synuclein is the major structural component of Lewy

body fibrils, however, it was originally identified in senile

plaques as a non-Ab component from AD brain (Ueda

et al. 1993). a-Synuclein pathology has been reported in

sporadic and familial cases of AD (Yokota et al. 2002;

Willingham et al. 2003). The protein was first identified

from Torpedo californica (Maroteaux et al. 1988). In

humans, a-synuclein is encoded by the SNCA gene local-

ized on chromosome 4. a-Synuclein is a 14.5-kDa protein

and consists of 140 amino acids (Ueda et al. 1993; Xia

et al. 2001). The mRNA of a-synuclein is selectively

spliced to produce three isoforms, a-synuclein-140, a-

synuclein-126, and a-synuclein-112. The most common is

a-synuclein-140, which is the full transcript of the SNCA
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gene; a-synuclein-126 lacks residues 41–54 due to loss of

exon 3; and a-synuclein-112 lacks residues 103–130 due to

deletion of exon 5 (Ueda et al. 1994; Beyer 2006) (Fig. 1).

a-Synuclein is abundant in the brain—it accounts for 1% of

total proteins in the cytoplasm of brain cells (Iwai et al.

1995)—but is less abundant in the heart, muscles, and other

tissues. In the brain, a-synuclein is mainly present at the

tips of nerve cells at the presynaptic terminals (Iwai et al.

1995), where it interacts with phospholipids via its amino

(N)-terminus (Clayton and George 1998; Chandra et al.

2003; Burre et al. 2012). In neurons, approximately 15% of

a-synuclein is bound to the membrane, whereas the

remainder is cytosolic, without a stable structure (McLean

et al. 2000; Lee et al. 2002). Membrane-bound a-synuclein

has amphipathic a-helix structures composed of 11 resi-

dues (XKTKEGVXXXX) (George et al. 1995; Weinreb

et al. 1996; Kim 1997). a-Synuclein can interact with

tubulin (Alim et al. 2002) and shows molecular chaperone

activity to facilitate soluble N-ethylmaleimide-sensitive

fusion protein attachment protein receptor (SNARE)

complex formation (Chandra et al. 2005). Although

cytosolica-synuclein is unstructured and thus soluble,

under pathological conditions a-synuclein can aggregate as

insoluble fibrils, leading to Parkinson’s disease, Lewy body

dementia, and multiple system atrophy, the pathological

feature of Lewy body (Spillantini et al. 1997). Remarkably,

different strains of synthetic a-synuclein fibrils showed

significant differences in efficiency in cross-seeding tau

aggregation in vitro and in vivo (Guo et al. 2013).

Hyperphosphorylated Tau Forms
Neurofibrillary Tangles, Leading to AD

Identified in 1975, tau protein was first thought to be

essential for microtubule assembly (Weingarten et al.

1975; Cleveland et al. 1977). The structure of tau is sta-

bilized when the protein is bound to tubulin. Binding also

hinders its phosphorylation. Human tau is encoded by the

MAPT gene, which is located on chromosome 17q21 and is

composed of 14 exons (Goedert et al. 1988, 1989). In the

adult brain, tau mRNA is selectively spliced to produce six

tau isomers composed of 352, 381, 383, 410, 412, and 441

amino acids, respectively (Buee et al. 2000) (Fig. 2). In

neurons in the central nervous system, tau binds to tubulin

via the positively charged carboxyl (C)-terminus to form

microtubules. Besides promoting tubulin assembly, thus

stabilizing microtubule structure, it also regulates synaptic

synthesis and inter synaptic signal transmission (Iqbal et al.

2005).

Tau has 79 potential phosphorylation sites, and as much

as 31 residues can be phosphorylated in tau protein

(Billingsley and Kincaid 1997). In normal adult human

brain, tau contains two to three phosphate groups per

molecule. However, in AD, tau is 3–4-fold more phos-

phorylated than in control brains, leading to hyperphos-

phorylation containing approximately 8 mol PO4/mol tau

(Kopke et al. 1993). The levels of total and phosphorylated

tau in the cerebrospinal fluid are elevated in AD and cor-

relate with a decrease in neuropsychological functions.

Increased levels of phosphorylated tau protein threonine

(t)181, t231, and total tau in the cerebrospinal fluid can be

used to predict progression of mild cognitive impairment to

AD (Mattsson et al. 2009). The extent of tau phosphory-

lation is regulated by protein kinase and phosphatase such

as protein kinase A (PKA), protein kinase C (PKC),

Ca2?/calmodulin-dependent kinase (CaM kinase) II, pro-

tein phosphatase 1 (PP1) and protein phosphatase 2A

(PP2A) (Matsuo et al. 1994; Billingsley and Kincaid 1997;

Taniguchi et al. 2001; Ballatore et al. 2007). Phosphory-

lated tau can dimerize in vivo, potentially leading to cross-

linking and the formation of pairs of helical filaments.

These pairs of helical filaments can compete with micro-

tubules to bind normal tau and other macromolecular

microtubule-associated proteins, leading to cytoskeletal

abnormalities and axonal transport disorders, causing
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synaptic loss and finally leading to dementia (Alonso et al.

1997). Hyperphosphorylated tau accumulates to form

neurofibrillary tangles, which are an important pathological

feature of AD (Alonso et al. 1997; Martin et al. 2013)

(Fig. 3).

Amyloid Beta Can Form Aggregates
Resulting in Neuron Damage in the Central
Nervous System

The gene encoding APP is located on chromosome 21 in

the human genome. APP is a transmembrane protein that

can be processed via two pathways (Fig. 4). In the non-

amyloid pathway, APP is cleaved by a-secretase between

the 16th and 17th amino acids from the N-terminus to form

soluble sAPPa and a-C-terminal fragments (a-CTFs). The

a-CTF is further degraded by c-secretase to produce P3

and incomplete Ab (Ab17–40 and Ab17–42), which do not

form amyloid deposits (Allinson et al. 2003). In the amy-

loid pathway, APP is cleaved by b-site amyloid precursor

protein-cleaving enzyme 1, a transmembrane aspartyl

protease that cleaves APP in the extracellular region to

produce the N-terminus of Ab, to form sAPPb and b-C-

terminal fragments (b-CTFs). The b-CTF is further cleaved

by c-secretase in the membrane to form the 3-kDa protein

p3 and Ab40 (major component) or Ab42 (minor compo-

nent) (Edbauer et al. 2003; Vassar 2004). Overexpression

of APP in the brain of AD patients leads to the production

of Ab, which is cleaved by b-and c-secretases (Masters

et al. 1985). Ab can exist as monomer, soluble oligomer, or

insoluble fiber. Ab monomer and insoluble Ab fibers do

not significantly change synaptic plasticity. However, sol-

uble Ab oligomers, including Ab dimer and especially, OC

antibody-positive oligomers from AD brain, can effectively

impair synaptic structure and function (Shankar et al. 2008;

Tomic et al. 2009). With ageing, the rate of Ab production

increases, whereas the rate of clearance decreases, resulting

in Ab deposition, which activates protein kinase II to

hyperphosphorylate tau, resulting in tau aggregation and

eventually leading to neurotoxicity and synaptic damage

(Gotz et al. 2001; Jack et al. 2010; Falker et al. 2016).
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Fig. 3 Schematic representation of the process of Tau-induced

neurofibrillary degeneration.
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secretase and c-secretase to produce Ab40 or Ab42.

478 Virologica Sinica

123



PrPC-Bound Ab Oligomers Lead to Loss
of Neuron Plasticity

Although Ab seems to play a central role in AD patho-

genesis, it requires other molecules to cause neurotoxicity.

One of these proteins is PrPC, a GPI-anchored glycoprotein

located in lipid rafts in cell membranes (Yang et al. 2014).

PrPC is highly conserved in mammals (Basler et al. 1986;

Schatzl et al. 1997). The PRNP gene is a single-copy gene

with one exon (Basler et al. 1986) localized on chromo-

some 20p13 in the human genome.

Similarities between AD and Prion Disease

Although criteria for the clinical diagnosis of AD have

been clearly outlined, there is considerable overlap in the

clinicopathological features of AD and prion disease, a rare

neurodegenerative disease, which leads to difficulties in

diagnosis (Watson 1979; Ball 1980; Masters et al. 1981;

Brown et al. 1982; Van Everbroeck et al. 2004; Armstrong

et al. 2005). In one study, more than half of patients who

were diagnosed as having Creutzfeldt–Jakob disease were

fully compliant with the criteria of AD (Tschampa et al.

2001). In addition, some subjects with hereditary prion

diseases show obvious signs of AD (Ghetti et al. 1996;

Zheng et al. 2008). Especially, patients without a family

history of prion diseases can show clinical features similar

to those of other neurodegenerative diseases, such as AD,

in earlier phases (Kovacs et al. 2002). Like AD, most

human prion diseases are sporadic and hereditary; less than

1% is acquired. Hereditary prion diseases with PRNP

mutation account for 10%–15% of all prion diseases

(Prusiner 1998; World Health Organization (WHO) 2003).

Misfolded Ab Behaves as Prion

Besides clinicopathological similarity, Ab and PrPSC

(scrapie prion) share significant similarities at the molec-

ular level. Like PrPSC, Ab can aggregate to form oligo-

mers, which can form insoluble amyloid fibers that form

depositions (Sakono and Zako 2010). A synthetic Ab with

distinct morphology and molecular structure reportedly

possessed self-propagating capability when seeded to grow

fibrils (Petkova et al. 2005). In addition, Ab aggregates are

capable of self-propagation when inoculated into suscep-

tible transgenic mice (Stohr et al. 2012), a character rem-

iniscent of different prion strains (Jones and Surewicz

2005). Studies have also suggested that some cases of

familial AD can be transmitted as prion disease. After

supernatant of superior frontal gyrus or lateral orbital

cortex homogenate from four AD patients or two neuro-

logically normal controls was unilaterally injected into the

right hippocampus and neocortex of 3-month-old male

APP transgenic mice (Tg2576) for 5 months, the cerebral

hemispheres injected with the AD supernatant, but not the

control supernatant, formed a large number of senile pla-

ques and vascular deposits formed by Ab aggregation.

Although Ab deposits were the most concentrated in the

injection area, some deposits appeared in areas far from the

injection site, even along the corpus callosum in the con-

tralateral hemisphere in some mice, indicating that Ab had

spread among and multiplied in cells, again a character

reminiscent of PrPSC (Kane et al. 2000). Similarly, 10% of

brain extracts from AD patients or brain lysates from Ab-

laden APP23 transgenic mice caused robust b-amyloid

deposition in the hippocampus when injected into the

hippocampus of young male APP23 mice (Cook and

Austin 1978; Wisniewski et al. 1984; Kane et al. 2000;

Meyer-Luehmann et al. 2006). More importantly, distinct

Ab strains can produce consistently different amyloid

deposits when inoculated into bigenic mice. It has been

shown that synthetic Ab40 or Ab42 strains, or brain lysates

of ‘‘Arctic’’ or ‘‘Swedish’’ AD, which harbor E693G

mutation or G670T/A671C double mutations, respectively,

produced distinct but reproducible pathological attributes

when inoculated into susceptible mice (Stohr et al. 2014;

Watts et al. 2014; Watts and Prusiner 2018). These results

strongly indicated that Ab oligomers caused a transmis-

sion, but not a seeding effect.

Expression of PrPC is Required for AD
Pathogenesis in Mice and Drosophila

Similarities in biophysical properties between Ab and

PrPSC, together with similarities in clinicopathological

features between AD and prion disease suggest that these

diseases share certain etiological mechanisms implicated in

protein-misfolding diseases (Gajdusek 1994). In a trans-

genic AD mouse model, deletion of PRNP did not alter

APP and Ab expression levels, and astrocyte proliferation

remained unchanged, with no axonal degeneration and

synaptic loss. In contrast, AD transgenic mice with intact

PrPC expression exhibited dysfunction and memory defi-

cits. Transgenic mice lacking PrPC, but containing Ab
plaques showed no dysfunction and memory impairment

(Gimbel et al. 2010). Treatment of aged APPswe/

PSen1DE9 transgenic AD mice with anti-PrPC antibody

restored synaptic density (Chung et al. 2010). In Droso-

phila, PrPC exacerbates AD pathogenesis (Younan et al.

2018). Thus, like prion disease, which requires PrPC to

show neurotoxicity, PrPC is required for AD pathogenesis.

These results suggest that PrPC plays an important role in

mediating learning and memory deficits in the AD model.
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PrPC Binds to Ab

The requirement of PrPC expression in AD pathogenesis in

the mouse and Drosophila models suggests a potential

interaction between PrPC and Ab. To investigate the

mechanism of Ab-mediated neuron toxicity, synthetic

biotin-Ab42 oligomers were used to screen binding partners

on the surface of COS-7 cells expressing cDNAs from an

adult mouse brain library (Lauren et al. 2009). It was found

that PrPC expression was required for binding (Lauren

et al. 2009). Further studies indicated that recombinant

PrPC binds to soluble Ab42 oligomers via two motifs,

which span residues 23–27 and residues 95–110 (Calella

et al. 2010; Chen et al. 2010; Fluharty et al. 2013; Younan

et al. 2013; Ganzinger et al. 2014). However, it does not

bind effectively to Ab monomer and Ab fibrils (Balducci

et al. 2010; Chen et al. 2010). In fact, PrPC inhibits Ab
fiber formation by promoting Ab oligomer stability (You-

nan et al. 2018). Unlike binding between recombinant

small Ab42 oligomers and PrPC, larger Ab42 oligomers

from AD brain lysate bind PrPC efficiently (Dohler et al.

2014; Haas et al. 2014; Kostylev et al. 2015), and this

binding requires lipid raft integrity (Rushworth et al.

2013).

Ab-affects PrPC-related Signaling Pathway

Binding between soluble Ab42 oligomers and PrPC requires

lipid rafts, the platform for cell signaling regulation

(Simons and Toomre 2000; Mollinedo and Gajate 2015),

suggesting that cellular signaling may be activated upon

this binding. In neuron cells expressing PrPC, addition of

Ab oligomers activated synaptic cytoplasmic phospholi-

pase A (2) to translocate into lipid rafts and to form a

complex with PrPC and Ab oligomers, leading to synapse

damage (Bate and Williams 2011). The Src tyrosine kinase

Fyn has been shown to colocalize with PrPC in lipid rafts,

and aggregation of PrPC activates Fyn kinase in some cell

lines (Pantera et al. 2009). When Ab oligomers were added

to PrPC-expressing neurons, they bound PrPC with high

affinity, and activated Fyn (Thomas and Brugge 1997) to

phosphorylate the NR2B subunit of the N-methyl-D-as-

partate receptor, leading to its degradation (Um et al. 2012;

You et al. 2012). Overexpression of Fyn enhanced Ab-

induced toxicity in a transgenic AD mouse model by

inducing hyperphosphorylation of tau or neuronal Ca2?-

dyshomeostasis. Accordingly, when Fyn activity is inhib-

ited, Ab-induced damage can be reduced (Chin et al. 2005;

Larson et al. 2012; De Mario et al. 2015). Another protein

involved in Ab oligomer-PrPC binding is the metabotropic

glutamate receptor, mGluR5, a transmembrane protein in

the postsynaptic density, which links Ab oligomer-PrPC to

Fyn. The addition of Ab oligomers to neurons expressing

PrPC and mGluR5 activates Fyn and calcium signaling to

enhance eEF2 phosphorylation, leading to Arc translation

and dendritic spine loss (Um et al. 2013) (Fig. 5).

PrPC-mediated Ab Oligomer Inhibits Long-term
Potentiation

Maintaining long-term potentiation (LTP) is widely

accepted as one of the major cellular mechanisms that

underlie learning and memory (Cooke and Bliss 2006).

Soluble Ab oligomers can inhibit LTP, leading to con-

traction of dendritic spines from pyramidal cells and

causing spatial memory impairment. Hippocampal slices

from PRNP null mice when tested for synaptic reactivity

did not show Ab oligomer-induced LTP damage (Lauren

et al. 2009). Similarly, when binding between Ab oligo-

mers and PrPC was prevented by anti-PrPC antibodies,

synaptic plasticity was rescued (Lauren et al. 2009).

Remarkably, when administrated intracerebroventricularly,

antibodies directed against the putative Ab-binding site on

PrPC prevented Ab-mediated inhibition of LTP (Barry

et al. 2011). In contrast, a Fab fragment directed against the

PrPC region not involved in Ab binding did not rescue LTP

caused by Ab oligomers (Barry et al. 2011).

Infectious Agents Activate PrPC Expression
Associated with AD

In addition to Ab–PrPC complex, many other factors con-

tribute to AD pathogenesis, among which immune

response and inflammation play critical roles (Sochocka

et al. 2017). Infectious agents activate immune responses

and inflammation; thus, it is not surprising that infectious

agents have been suspected to play a role in AD

(Himmelhoch et al. 1947; Cleobury et al. 1971; Lycke

et al. 1974; Renvoize et al. 1979; Middleton et al. 1980;

Renvoize and Hambling 1984; Wisniewski et al. 1984;

Mirra et al. 1986; Mozar et al. 1987; Dittrich et al. 1989;

Miklossy 1993; Miklossy et al. 1994, 2006; Balin et al.

1998; Price et al. 2001; Sauder et al. 2001; Riviere et al.

2002; Wojtowicz et al. 2002; Kountouras et al. 2006;

Carbone et al. 2014; Schott 2015; McNamara and Murray

2016; Itzhaki 2017; Westman et al. 2017; Dominy et al.

2019). Herpes simplex virus (HSV) has been investigated

extensively in AD (Sequiera et al. 1979; Jamieson et al.

1991, 1992; Itzhaki et al. 1997; Lin et al. 2002; Wozniak

et al. 2005). In a HSV-infected mouse model, Ab deposits

were detected in the brain as a result of increased levels of

b-site amyloid precursor protein-cleaving enzyme 1 in

neuronal and glial cells (Wozniak et al. 2007). Although

HSV-1 can also be detected in normal aged brain, in AD,
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infection by HSV-1 is restricted to particular regions, such

as frontal and temporal cortices and the hippocampus,

which suggests a causal relationship between HSV-1

infection and AD occurrence (Denaro et al. 2003). In

addition, HSV-1 infection causes inflammatory cytokine

IL-6 production, which may worsen AD (Luterman et al.

2000; Oshima et al. 2001). Finally, the presence of anti-

HSV IgM indicates a reactivation of the infection, at which

point the risk of developing AD is doubled (Lovheim et al.

2015). However, as the frequency of APOE e4 is higher in

AD patients with HSV-1 infection (Itzhaki et al. 1997;

Corder et al. 1998), HSV-1 alone is not a risk factor for

AD. Recently, human herpes virus-6A and-7 were found to

be closely related to AD, possibly by regulating APP

metabolism (Readhead et al. 2018). Interestingly, infection

by Helicobacterpylori and human immunodeficiency virus

(HIV) has been shown to upregulate the expression of PrPC

(Muller et al. 1992; Konturek et al. 2005; Dohler et al.

2014), which has been implicated in inflammation

(Pammer et al. 1998; de Almeida et al. 2005; Tsutsui et al.

2008; Hu et al. 2010; Gourdain et al. 2012; Petit et al.

2012; Ding et al. 2013; Liu et al. 2015; Wu et al. 2017).

Thus, PrPC expression induced by infectious agents may

contribute to neuron death by inducing an inflammation

response. In addition, virus infection has been shown to

induce Ab deposition (Wozniak et al. 2007; Readhead

et al. 2018), during which an interaction between Ab oli-

gomers and PrPC is possible. This interaction may initiate a

signaling cascade leading to neuron apoptosis (Um et al.

2013).

Concluding Remarks and Perspectives

Multiple receptors for Ab have been identified, among

which PrPC shows the highest affinity. As PrPC itself is

prone to oligomerization (Priola et al. 1995; Pan et al.

2005; Rambold et al. 2008; Gao et al. 2019), it remains to

be investigated whether Ab oligomers, when formed on the

membrane of a neuron, bind to PrPC monomer or PrPC

dimer first, as this may have implications for the activation

of downstream signaling, thus affecting AD pathogenesis.

Another issue that remains to be investigated is how

posttranslational modification of PrPC affects its interaction

with Ab on a neuron. It is known that most PrPC on the cell

surface has complex-type N-linked glycans, which prevent

its oligomerization (Yi et al. 2018). It is unclear whether

Ab oligomers prefer non-glycosylated or glycosylated

PrPC. Furthermore, cell-surface glycosaminoglycan (GAG)

has been shown to recruit PrPC (Pan et al. 2002; Gao et al.

2016), thus forming a PrPC pool behaving as PrPC oligo-

mers, whereas GAG also binds Ab and is critical for Ab
fibril formation (Castillo et al. 1999). Interestingly, Ab
oligomers and GAG bind to the same motif on PrPC, but

how GAG affects AD pathogenesis via modifying PrPC–

Ab interaction warrants further investigation.

By binding to PrPC, Ab oligomers inhibit LTP, leading

to cognitive decline in AD. Furthermore, the Ab–PrPC

oligomer complex can interact with the mGluR5 receptor,

causing abnormal phosphorylation of eEF2 and resulting in

loss of dendritic spines (Fig. 6).

Aβ oligomer

N
PrP

Fyn

Activation

P
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NR2BP
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Lipid raft (Containing sphingolipids and cholesterol)

Non-lipid raft

A
Post Synaptic Neural Cell

Calcium signaling

Aβ oligomer

N
PrP

mGluR5

Fyn
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eEF2 P eEF2
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Non-lipid raft
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Post Synaptic Neural Cell

Fig. 5 Signaling cascades mediated by the interaction between PrPC

and Ab oligomers. A Binding between PrP and Ab oligomers

activates Fyn, which phosphorylates the NR2B subunit of the N-

methyl-D-aspartate receptor, leading to its degradation. B An alter-

native pathway induced by PrP binding to Ab oligomers, recruiting

mGluR5, activating Fyn and leading to calcium accumulation and

phosphorylation of eEF2, resulting in loss of neuron plasticity. The

correlation between these two pathways remains to be determined.
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Besides binding to PrPC on neuronal cells, Ab oligomers

may also interact with PrPC on glia, which has been shown

to be induced by HIV-1 infection. In the early stage of AD

onset, activated microglia gather around Ab plaques, pro-

ducing neurotoxic molecules, such as NO, ROS, proteases,

adhesion molecules, and pro-inflammatory cytokines

TNF-a, IL-1b, IL-6 (Veerhuis et al. 2003; Trotta et al.

2014). Whether the binding of PrPC to Ab oligomers has

any role in generating neurotoxic molecules remains

incompletely understood. Current data suggest that the

interaction between Ab and PrPC plays an important role in

the pathophysiology of AD and might be a novel thera-

peutic target for of AD.

Ab plaques occur many years before clinical symptoms

can be detected. This suggests that either Ab–PrPC com-

plex requires a long time to form in vivo, or the threshold

for triggering the signaling cascade to initiate AD in vivo is

high. In addition, there is a variety of Ab proteins,

including Ab37, Ab38, Ab40, Ab42, and Ab43, which can be

further processed by aminopeptidase, glutaminyl cyclase or

isomerase, and kinase (Kumar et al. 2011). How those

modifications affect PrPC–Ab oligomer interaction remains

to be investigated.

Since binding between PrPC and Ab oligomers plays an

important role in ageing related AD and may also be

responsible for infectious agents caused AD, understanding

the interaction in vivo is of great importance for AD

treatment.
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