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The role of Epstein-Barr virus infection in the pathogenesis of 
nasopharyngeal carcinoma

Chi Man Tsang, Sai Wah Tsao*
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China

Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. 
EBV episomes are detected in almost all NPC cells. The role of EBV in NPC pathogenesis has long 
been postulated but remains enigmatic. In contrast to infection of B lymphocytes, EBV infection 
does not directly transform nasopharyngeal epithelial cells into proliferative clones with malignant 
potential. EBV infection of normal pharyngeal epithelial cells is predominantly lytic in nature. 
Genetic alterations in premalignant nasopharyngeal epithelium, in combination with inflammatory 
stimulation in the nasopharyngeal mucosa, presumably play essential roles in the establishment 
of a latent EBV infection in infected nasopharyngeal epithelial cells during the early development 
of NPC. Establishment of latent EBV infection in premalignant nasopharyngeal epithelial cells and 
expression of latent viral genes, including the BART transcripts and BART-encoded microRNAs, 
are crucial features of NPC. Expression of EBV genes may drive further malignant transformation 
of premalignant nasopharyngeal epithelial cells into cancer cells. The difficulties involved in the 
establishment of NPC cell lines and the progressive loss of EBV epsiomes in NPC cells propagated 
in culture strongly implicate the contribution of host stromal components to the growth of NPC 
cells in vivo and maintenance of EBV in infected NPC cells. Defining the growth advantages of 
EBV-infected NPC cells in vivo will lead to a better understanding of the contribution of EBV 
infection in NPC pathogenesis, and may lead to the identification of novel therapeutic targets for 
NPC treatment.
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INTRODUCTION

Epstein-Barr virus infection is ubiquitous in 
humans

Epstein-Barr virus (EBV) belongs to the gamma her-
pesvirus family that also includes the Kaposi’s sarco-
ma-associated herpes virus (KSHV), which is more com-
monly associated with immune-deficient diseases. The 

EBV is a highly successful virus infecting the majority of 
the human population (< 90%) worldwide. It is also the 
first human tumor virus identified (Young and Rickinson, 
2004). While infection of EBV is ubiquitous, tumorigen-
esis only occurs in a small fraction of the infected popu-
lation, suggesting that the tumorigenic transformation of 
human cells by EBV involves complex virus-host inter-
actions and other additional co-factors. A compromised 
host immune condition and a chronic inflammatory mi-
croenvironment probably play major roles in mediating 
the pathogenic actions of EBV in human malignancies 
(Rickinson, 2014).

EBV exhibits dual tropism, infecting both B cells and 
epithelial cells (Borza and Hutt-Fletcher, 2002). Latently 
infected memory B cells are believed to be the reservoir 
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of EBV, which undergoes lytic reactivation upon stimu-
lation to produce infectious virus. Human B cells, but not 
epithelial cells, are readily infected by EBV. Infection 
of B cells is mediated by the complement receptor type 
2 (CR2) on the membrane surface. EBV infection in 
infants and young children is generally asymptomatic; 
however, in adults, EBV infection induces infectious 
mononucleosis (glandular fever) involving a proliferation 
of lymphoid tissue. Symptoms include fever, sore throat, 
and fatigue. The lymphoproliferation process is self-lim-
iting in healthy individuals with competent immune 
systems, and will eventually subside. After that, EBV 
establishes a lifelong infection in the body and generally 
remains asymptomatic. However, lymphoproliferation 
will take place if immune function is compromised, as in 
post-transplantation and HIV (human immunodeficiency 
virus) patients. Clearly, the body immune system plays 
a paramount role in checking the proliferation of EBV-
infected cells. The cytotoxic T cells (CTL) are constant-
ly checking and regulating the proliferation of EBV-
infected B cells in the body.

EBV infection and human cancers
The tumorigenic potential of EBV was first observed 

in Burkitt’s lymphoma, a special type of childhood can-
cer common among African children. Co-factors are 
believed to be involved in the pathogenesis of Burkitt’s 
lymphoma (Thorley-Lawson and Allday, 2008). The 
incidence of Burkitt’s lymphoma is closely associated 
with malaria infection, though the exact contribution of 
malaria infection to Burkitt’s lymphoma remains unde-
fined. The chronic inflammation associated with malaria 
infection may promote clonal expansion of EBV-infected 
B cells. Malaria infection may also compromise the host 
immune system through unknown processes and provide 
a permissive environment for EBV-infected B cells to 
evolve into Burkitt’s lymphoma cells (Moormann et al., 
2011). Translocation of c-myc in infected B cells plays a 
key role in the etiology of Burkitt’s lymphoma.

The EBV was identified directly under electron micro-
scopic observation of cell lines established from Burkitt’s 
lymphoma. The ability of EBV to induce proliferation in 
infected B cells was later demonstrated by culturing pe-
ripheral B cells with filtered supernatant harvested from 
Burkitt’s lymphoma cells, where clusters of proliferative 
clones of EBV-infected B cells could be readily demon-
strated (Henle et al., 1967). The ability of EBV to trans-
form and immortalize human B cells strongly implicates 
the tumorigenic potential of the virus.

In addition to Burkitt’s lymphoma, EBV infection was 
later observed in other human malignancies, including 
hematological and lymphatic tumours, such as Hodgkin’s 
disease, T cell lymphoma, and NK cell lymphoma, and 
epithelial cancers, such as nasopharyngeal and gastric 

carcinomas (Young and Rickinson, 2004; Tsao et al., 
2015). In all cases, the nature of EBV infection in infect-
ed cancer cells is predominantly latent.

CLOSE ASSOCIATION OF EBV INFECTION WITH 
NASOPHARYNGEAL CARCINOMA (NPC)

Nasopharyngeal carcinoma (NPC) is unique in its 
close association (100%) with EBV infection. It is a rare 
cancer in Western countries, but a common cancer in the 
ethnic Chinese population living in the southern provinc-
es of China. NPC is closely associated with Cantonese-
speaking populations and is nicknamed “Cantonese can-
cer”. The etiology of NPC is multifactorial, and includes 
genetic predisposition, EBV infection, and diet (Tsao et 
al., 2014). The major histological type of NPC in endem-
ic regions is undifferentiated NPC, which is associated 
with EBV infection. EBV infection could be demon-
strated in almost every NPC cell, distinguishing NPC 
from other squamous carcinomas arising in the head and 
neck regions, which are all EBV-negative. NPC patients 
have elevated serological IgA against the EBV lytic pro-
tein-viral capsid antigen (VCA) and early antigen (EA). 
The detection of IgA against EBV VCA and EBV DNA 
in plasma are important diagnostic tools of NPC, and are 
used extensively in early screening of NPC in high-risk 
populations. Clearly, the status of differentiation has a 
role in persistence of EBV infection in epithelial cancers. 
Recently, the detection of plasma EBV DNA has been 
shown to improve the sensitivity and specificity of the 
diagnosis of NPC (Le et al., 2013). The level of plasma 
EBV DNA also reflects faithfully the tumor burden in 
NPC patients, and is a powerful tool for monitoring the 
disease progression during treatment (To et al., 2003).

Route of EBV entry and infection of B cells and 
human epithelial cells

As previously mentioned, infection of B cells, but not 
epithelial cells, by EBV is a highly efficient process. The 
CR2 receptor, which is present on the surface of B cells 
and facilitates EBV entry, is generally not expressed in 
epithelial cells. Infection of oropharyngeal epithelial 
cells could be achieved via the EBV BMRF2 protein 
and cellular integrin receptors (Tugizov et al., 2003). 
Interestingly, EBV adopted an intricate cell entry mecha-
nism by switching its envelope proteins in order to infect 
B cells and epithelial cells alternatively. The EBV binds 
to CR2 receptor present on B cell surfaces through the 
viral envelope protein, gp350. This interaction is aug-
mented by the binding of another viral envelope protein, 
gp42, to the human leukocyte antigen (HLA) class II 
protein expressed on the B cell surface, which triggers 
the fusion of the EBV envelope to the B cell membrane 
(Chesnokova et al., 2009). This process involves the vi-



Chi Man Tsang et al

www.virosin.org APRIL 2015　VOLUME 30　ISSUE 2　109

ral envelope proteins gB and gHgL. Neither the CR2 and 
HLA class II are expressed on the surface of epithelial 
cells. The EBV entry into epithelial cells involves the 
binding of viral envelope proteins to epithelial surface 
integrins, αvβ6 and αvβ8, which triggers membrane fu-
sion and viral entry. The presence of gp42 in the viral 
envelope actually impedes EBV entry into epithelial 
cells through interaction with the integrin complex. 
Interestingly, EBV virions emerging from B cells that 
have been triggered to undergo lytic infection lack gp42, 
facilitating subsequent EBV binding and entry into epi-
thelial cells. In contrast, virions released from epithelial 
cells are rich in gp42, which facilitates the infection of B 
cells. By switching its envelope proteins, EBV is able to 
shuttle between B cells and epithelial cells, which is cru-
cial for its persistent infection in humans. Recently, the 
neuropilin1 (NRP1) was identified as an entry receptor 
for EBV infection of epithelial cells, and found to inter-
act with the EBV envelope protein gB to promote EBV 
infection of nasopharyngeal epithelial cells (Wang et al., 
2015).

It remains unknown whether primary pharyngeal ep-
ithelial cells or naïve B cells are the first cellular target 
of EBV infection. Latently infected memory B cells 
are believed to be a reservoir of EBV; an estimated 1 in 
106 circulating blood lymphocytes are latently infected 
(Babcock et al., 1998). These latently infected B lym-
phocytes may spontaneously reactivate into lytic cycle. 
The released virions may then infect a few cells in the 
oropharyngeal epithelium. EBV infection of primary 
human epithelial cells is believed to be primarily lytic in 
nature. A low frequency of lytic EBV infection occurring 
in the oropharyngeal epithelium may be responsible for 
the continuous release of infectious viral particles in the 
saliva for transmission (Hadinoto et al., 2009).

Establishment of latent infection in 
nasopharyngeal epithelial cells

Similar route of infection of nasopharyngeal epithelial 
cells may take place in vivo. As EBV infection of normal 
epithelial cells normally results in a lytic infection, estab-
lishment of a latent EBV infection in epithelium may be 
an early step in carcinogenesis. Detection of latent EBV 
infection in normal epithelium is uncommon in healthy 
individuals. Nonetheless, a low percentage (0.005 to 
0.01%) of EBV-infected cells expressing the EBV latent 
gene, LMP1, were present in oropharyngeal epithelium 
explanted to grow in culture (Pegtel et al., 2004). The 
status of latent infection of normal nasopharyngeal epi-
thelium is unknown. The unique histological properties 
of the nasopharyngeal epithelium may support latent 
EBV infection, particularly in dysplastic or precancerous 
conditions. NPC in endemic regions is predominant-
ly undifferentiated or poorly differentiated in nature. 

Inactivation of the p16 tumor suppression gene and over-
expression of cyclin D1 are common events in NPC, and 
can be detected in premalignant and dysplastic nasopha-
ryngeal epithelium (Lo et al., 2004b). Inactivation of p16 
and activation of the cyclin D1 pathway may confer un-
differentiated properties to the nasopharyngeal epitheli-
um to support EBV infection. Using an in vitro model of 
immortalized nasopharyngeal epithelial cells, we showed 
that EBV infection readily induced growth arrest in naso-
pharyngeal epithelial cells. However, inactivation of p16 
and/or activation of cyclin D1/cdk4/6 could override the 
growth arrest induced by EBV infection, and supported 
a stable latent EBV infection in infected nasopharyngeal 
epithelial cells (Tsang et al., 2012). Overexpression of 
cyclin D1 in immortalized nasopharyngeal epithelial 
cells confers resistance to stimulation of differentiation 
induced by serum and calcium (Tsao et al., unpublished 
observation). Similarly, other oncogenic alterations, in-
cluding overexpression of B lymphoma Mo-MLV inser-
tion region 1 homolog (bmi-1), may also support latent 
EBV infection of nasopharyngeal epithelial cells (Yip et 
al., 2013). Moreover, EBV-infected immortalized naso-
pharyngeal epithelial cells remain non-tumorigenic when 
injected subcutaneously in immunosuppressed mice, 
indicating that additional events are required for the 
malignant transformation of EBV-infected immortalized 
nasopharyngeal epithelial cells.

PROFILE OF EBV GENE EXPRESSION DURING 
LATENT INFECTION

Latent infection with EBV is commonly associated 
with the development of human cancers. During latent 
infection, EBV expresses a small number of its genes to 
evade detection by the host immune system. The latent 
gene expression in EBV-infected cells is under epigene-
tic regulation (Tempera and Lieberman, 2014). Several 
types of latent gene expression profiles have been iden-
tified in EBV-infected B cells and human cancer cells 
(Table 1). Type 0 latency is recognized in memory B 
cells, where expression of EBV genes is reduced to only 
EBV-encoded small RNAs (EBERs), with no EBV pro-
teins expressed. The EBV nuclear antigen 1 (EBNA1) is 
only expressed in memory B cells undergoing division 
(Hochberg et al., 2004). Type I latency is characteristic 
of EBV-associated B cell lymphoma, while type II laten-
cy is observed in nasopharyngeal and gastric carcinoma. 
Type III infection represents a full-blown expression of 
latent EBV genes for growth promotion, and is observed 
during the in vitro transformation of B cells into prolifer-
ative lymphoblastoid cell lines (LCL) by EBV. Similarly, 
type III latency is also observed in lymphoproliferative 
disorder in immunocompromised patients. The prolifer-
ative transformation of B cells during EBV infection is 
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not observed in EBV infection of epithelial cells. EBNA2 
and 3C, which are involved in cell cycle progression in 
EBV-transformed LCL cells are not expressed in NPC. 
In contrast, the BamH1 A rightward transcripts (BARTs) 
and their encoded EBV miRNAs are abundantly ex-
pressed in NPC (type II latency) and Burkitt’s lymphoma 
(type I latency). Interestingly, the BamH1 H rightward 
opening reading frame 1 (BHRF1) encoded miRNAs are 
abundantly expressed in LCL cells, a type III latency, but 
not in type I or II latencies. The pathological role of the 
differential expression of EBV-encoded miRNAs in epi-
thelial malignancies has been proposed (Lo et al., 2012).
The expression profiles of EBV genes during different 
latency program are listed below (Table 1).

Contribution of EBV-encoded genes to epithelial 
malignancies

A summary of the functions of EBV genes expressed 
in NPC (type II latency) is reviewed here. Their potential 
contributions to the pathogenesis of epithelial malignan-
cies are discussed below:

Epstein-Barr nuclear antigen 1 (EBNA1). EBNA1 is 
required for the persistence of EBV genomes in latently 
infected cells and is expressed in all EBV-associated 
cancers, including NPC (Yates et al., 1984; Frappier, 
2012). It is involved in the replication of EBV episomes 
in infected cells, and their segregation into daughter 
cells during mitosis. The EBNA1 protein binds to the FR 
element in the oriP (origin of replication) of EBV ep-
isomes, and tether them to host cell chromosomes to en-
sure their even segregation during cell division (Lupton 
and Levine, 1985; Krysan et al., 1989; Lee et al., 1999; 
Nanbo et al., 2007). Inactivation of EBNA1 function 
reduces the copy number of EBV episomes in EBV-
infected B lymphoma cell lines and inhibits their growth 
(Kennedy et al., 2003).

EBNA1 affects multiple cellular pathways, including 
cell proliferation, invasion, survival, and DNA repair. 
Expression of EBNA1 in EBV-negative gastric carcino-
ma cell lines (SCM1 and TMC1) enhances their malig-
nant properties when grown as xenografts in nude mice 
(Cheng et al., 2010). In HONE1 NPC cells, EBNA1 

expression also promotes tumorigenicity and metastases 
in nude mice (Sheu et al., 1996). This is in concordance 
with the effects of EBNA1 to counteract the suppres-
sive action of Nm23-H1 on cellular proliferation and 
migration (Murakami et al., 2005; Kaul et al., 2007). 
Further evidence of EBNA1 to promote metastasis was 
revealed by profiling the nuclear proteome of NPC cells 
in response to EBNA1 overexpression (Cao et al., 2012). 
EBNA1 increases the nuclear levels of the metastasis 
related proteins, including Nm23-H1, stathmin1 and 
maspin. Overexpression of EBNA1 has been reported to 
induce epithelial-mesenchymal transition in NPC cells 
by inhibiting the expression of miR-200a and miR-200b, 
hence upregulating their target genes, the zinc finger 
E-box binding homeobox proteins, ZEB1 and ZEB2 
(Wang et al., 2014). Interestingly, EBNA1 also enhances 
the angiogenic properties of NPC cells by modulating the 
AP-1 transcriptional pathways to enhance the secretion 
of VEGF (O’Neil et al., 2008). EBNA1 has been sug-
gested to contribute to epidermal hyperplasia by inhibit-
ing NF-κB signaling through suppressing the phosphory-
lation of IKK alpha/beta (Valentine et al., 2010). 

Another important role of EBNA1 is to promote cell 
survival with DNA damage. EBNA1-expressing cells 
have decreased levels of p53 in response to DNA dam-
age, and therefore are more likely to survive with DNA 
damage. This may be related to the action of EBNA1 to 
disrupt the promyelocytic leukemia (PML) nuclear bodies 
(Sivachandran et al., 2008), which are nuclear foci con-
taining many cellular proteins involved in cell survival, 
p53 activation and DNA repair (Bernardi and Pandolfi, 
2007; Salomoni et al., 2008). EBNA1 induces loss of 
PML nuclear bodies by binding to the CK2 kinase and 
ubiquitin-specific protease 7 (VSP7). The interaction of 
EBNA1 with USP7 leads to destabilization of p53. USP7 
is known to bind to and stabilize p53 and Mdm2. EBNA1 
outcompetes p53 and Mdm2 binding to USP7, leading 
to their degradation by the ubiquitin/proteasome system 
(Sivachandran et al., 2012). Upregulation of ROS and 
NADPH oxidase levels have been identified in EBNA1-
expressing NPC cells (Cao et al., 2012), suggesting that 
EBNA1 promotes oxidative-stress induced DNA damage, 
but allows the survival of cells with DNA damage by de-
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stabilizing p53 via disruption of its interaction with USP7.

EBV-encoded small RNA 1/2 (EBER1/2). EBV en-
codes two small non-polyadenylated RNAs (EBER1 and 
EBER2), which are 167 and 172 nucleotides long, re-
spectively, and form double-stranded RNA-like structures 
(Lerner et al., 1981; Takada and Nanbo, 2001). They are 
the most abundant viral transcripts in EBV-infected NPC 
and gastric cancer cells, and contribute to oncogenesis 
by promoting cellular growth and modulating innate im-
munity (Takada, 2012). A recent study has indicated that 
EBER may regulate LMP1/LMP2 expression and con-
tribute to the persistence of latent EBV infection in cells 
(Lee et al., 2015). EBERs can induce insulin-like growth 
factor 1 (IGF-1) to stimulate autocrine growth of NPC 
cells (Iwakiri et al., 2005). Induction of IGF-1 is initiated 
by the activation of retinotic acid inducible gene-1 (RIG-
1) and toll-like receptor 3 signaling, leading to the phos-
phorylation of downstream effector molecules, such as 
IRF-3, and the release of IGF-1 (Yoneyama et al., 2004; 
Samanta et al., 2008; Liu and Gu, 2011). EBERs are 
responsible for the immune system activation by EBV, 
resulting in the production of antiviral and anti-pro-
liferative cytokines, such as type 1 interferons (IFNs). 
Interestingly, EBERs can counteract the effects of INFs 
by inhibiting the major downstream events of IFNs and 
PKR signaling (Yamamoto et al., 2000; Nanbo et al., 
2002; Nanbo et al., 2005). EBERs block the phosphory-
lation of the cellular substrate of PKR, eIF-2alpha, which 
signals a translational block of protein synthesis that may 
protect EBV-infected cells from Fas-mediated apoptosis 
induced by IFNs (Nanbo et al., 2005).

Latent membrane protein 1 (LMP1). LMP1 is a trans-
membrane protein displaying numerous oncogenic prop-
erties in EBV-infected cells (Dawson et al., 2012). It is 
one of the earliest proteins identified to transform human 
B cells and rodent fibroblasts (Wang et al., 1985; Kaye et al., 
1993). LMP1 is a potent activator of NF-κB signaling and is 
believed to play an essential role in promoting NPC devel-
opment (Tsao et al., 2002; Dawson et al., 2012). However, 
expression of LMP1 alone could not transform immortal-
ized/premalignant nasopharyngeal epithelial cells in vitro 
(Tsang et al., 2010; Dawson et al., 2012; Tsang et al.,
2012). LMP1 acts as a constitutively activated tumor 
necrosis factor receptor 1, and consists of a cytoplasmic 
N-terminal domain, six transmembrane spinning regions 
and a large cytosolic C-terminal domain (Dawson et al., 
2012). The transmembrane domain has been recently 
reported to activate the cdc42, one of the Rho GTPases 
that signals cytoskeleton rearrangement and invasive 
properties (Liu et al., 2012). The C-terminal domain 
contains three activation regions, CTAR1, CTAR2 and 
CTAR3, which are involved in activation of a panel of 

signaling pathways, including NF-κB, JNK/p-38, PI3K/
AKT, ERK/MAPK and JAK/STAT, to elicit various on-
cogenic functions (Tsao et al., 2002; Li and Chang, 2003; 
Zheng et al., 2007; Morris et al., 2009). LMP1 promotes 
cell survival, proliferation and resistance to apoptosis in 
NPC cells. It upregulates the growth rate of NPC cells by 
enhancing the expression of EGFR, a growth-stimulating 
receptor frequently overexpressed in NPC tissues (Miller 
et al., 1995; Sheen et al., 1999). It also promotes the 
expression of anti-apoptotic proteins, such as survivin 
and Mcl-1, while inactivating pro-apoptotic proteins, 
such as Bad and Foxo3a (Tsao et al., 2002; Morris et al., 
2009; Lo et al., 2010). LMP1-expressing cells exhibit 
impairment of the G2 checkpoint, which leads to unre-
paired chromatid breaks after gamma-ray irradiation, 
and chromosome instability (Deng et al., 2012). LMP1 
also resists the growth suppressive effect of TGF-beta 
by induction of the inhibitor of differentiation 1 (Id-1) 
protein (Lo et al., 2010). In addition, LMP1 contributes 
to chemo-resistance by induction of miR-21 through ac-
tivation of PI3K/AKT/FOXO3 to resist apoptotic stimuli 
(Yang et al., 2013). LMP1 also downregulates p16/ p21 
and upregulates cyclin D1 to bypass the G1/S cell cycle 
checkpoint (Yang et al., 2000; Huang and Huang, 2003; 
Lo et al., 2004a). A recent study reported that LMP1 pro-
motes the binding of both EGFR and STAT3 to the cyclin 
D1 promoter to drive the expression of cyclin D1 in NPC 
cells (Xu et al., 2013). 

Another known function of LMP1 is to enhance the 
invasive and metastatic potential of NPC cells. NPC is 
a highly metastatic cancer (Tao and Chan, 2007). LMP1 
induces epithelial-mesenchyme-transition (EMT) by 
downregulating E-cadherin, and upregulating Twist, 
Snail and Slugs (Fahraeus et al., 1992; Horikawa et 
al., 2007; Horikawa et al., 2011; Dawson et al., 2012). 
LMP1 can transcriptionally induce TNF-alpha-induced 
protein 2 (TNFAIP2), which correlates with metastasis 
and poor survival in NPC patients (Chen et al., 2014). 
Interestingly, LMP1 increases the levels of HIF-1alpha 
in exosomes, which are then delivered to surrounding 
tumor cells for EMT induction and pro-metastatic effects 
(Aga et al., 2014). LMP1 can also induce the secretion 
of matrix metalloproteinases (MMPs) and suppress 
the expression of tissue inhibitor of metalloproteinases 
(TIMPs) to facilitate the degradation of extracellular 
matrix for cellular invasion or metastasis development in 
NPC (Horikawa et al., 2000; Yoshizaki, 2002; Lee et al., 
2007; Chang et al., 2008). C-Met, an important invasive 
promoting protein, could be upregulated by LMP1 and 
has a positive association with cervical lymph node me-
tastasis developed from primary NPC (Horikawa et al., 
2001). LMP1 also regulates the expression of microR-
NAs, such as miRNA 203 and miRNA 10b, to promote 
tumor incidence and metastasis, respectively (Li et al., 
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2010; Yu et al., 2012). Furthermore, LMP1 induces can-
cer stem/progenitor cell-like properties in NPC cells, and 
thereby upregulates their in vitro self-renewal and in vivo 
tumor initiation ability (Kondo et al., 2011). LMP1 also 
enhances the expression of cancer stem cell-like markers, 
such as CD44, by activating the Hedgehog pathway and 
an autocrine activation of the SHH ligand (Port et al., 
2013). The CD44 high cells are more radioresistant than 
the CD44 low cells, which may be due to the suppressed 
DNA damage response and p53-induced apoptosis (Yang 
et al., 2014). Recent publications suggest that LMP1 also 
modulates the cellular metabolism to promote prolifer-
ation and transformation of NPC cells (Lo et al., 2013; 
Xiao et al., 2014). Upregulation of hexokinase 2 and 
inhibition of LKB-AMPK in LMP1-expressing cells are 
shown to be responsible for reprogramming of glycolysis 
and energy metabolism, which contribute to radioresis-
tance. Angiogeneis is another important biological pro-
cess regulated by LMP1. A higher density of microvessels 
can be observed in NPC tumors with high expression of 
LMP1 (Tsuji et al., 2008). This could be attributed to the 
reduced degradation of hypoxia inducible factor alpha 
(HIF-1alpha) and induced expression of VEGF by LMP1.

Latent membrane protein 2 (LMP2). The LMP2 proteins, 
LMP2A and LMP2B, are transcribed from two distinct 
mRNAs encoding 54-kDa and 40-kDa proteins, respec-
tively. LMP2A/B is an integral membrane protein with 
12 transmembrane spanning regions. Their mRNAs 
share the same exons (2 to 9) (Sample et al., 1989; Pang 
et al., 2009; Dawson et al., 2012). While the exon 1 of 
LMP2B (exon 1B) is non-coding, the exon 1 of LMP2A 
(exon 1A) encodes an additional cytosolic N-terminus,
which mediates multiple signaling processes (Sample et al.,
1989; Pang et al., 2009; Dawson et al., 2012). The N-terminal 
domain contains multiple signaling domains, includ-
ing an immunoreceptor tyrosine-based activation motif 
(ITAM) recognized by the Lyn/Syk kinases to transduce 
BCR signaling, and a PY motif that interacts with the 
NEDD4 family of ubiquitin ligases (Ikeda et al., 2000; 
Portis et al., 2002; Ikeda et al., 2003). Other signaling 
pathways downstream of these domains include PI3k/akt, 
RhoA, and MAPK/ERK (Heussinger et al., 2004; Pang 
et al., 2009; Dawson et al., 2012).

Genetic studies have revealed that LMP2A and LMP2B 
are not required for EBV-dependent transformation of B 
cells; however, LMP2A is required for the successful out-
growth of EBV-infected epithelial cells in vitro (Speck 
et al., 1999). LMP2 also induces anchorage-independent 
growth in soft agar and inhibits differentiation through 
activation of PI3 kinase and the Akt kinase (Scholle et 
al., 2000; Fukuda and Longnecker, 2007). In epithelial 
cells, LMP2 can promote β-catenin signaling through 
the activation of Akt and phosphorylation of GSK3 

(Morrison and Raab-Traub, 2005). Activation of β-caten-
in is common in the development of carcinoma through 
genetic mutations, suggesting that activation of this path-
way may mediate the effects of EBV on epithelial cell 
growth. LMP2A was also shown to inhibit cellular dif-
ferentiation and promote cell survival through the PI3K/
Akt-mediated stabilization of ΔNp63 (Fotheringham et 
al., 2010). Other roles of LMP2A-activated PI3K/akt sig-
naling include the counteraction of the growth inhibitory 
and pro-apoptotic effects of TGF-beta1 during epithelial 
carcinogenesis (Fukuda and Longnecker, 2004), and the 
proliferation and protein synthesis in cells via the acti-
vation of mTOR pathway (Moody et al., 2005). LMP2A 
and LMP2B have also been shown to limit the anti-viral 
response against EBV-infected cells by modulating IFN 
signaling (Shah et al., 2009). Response to IFN was down-
regulated in LMP2A or LMP2B-expressing epithelial 
cells due to an increased turnover of IFN receptors (Shah 
et al., 2009). Lastly, similar to LMP1, LMP2A can pro-
mote the invasive/migratory properties of epithelial cells, 
which may relate to the metastatic phenotype of NPC 
(Allen et al., 2005; Pegtel et al., 2005; Lu et al., 2006; 
Kong et al., 2010). Studies have suggested that LMP2A 
and LMP2B modulate the interaction and focal adhesion 
formation with the extracellular matrix (Allen et al., 
2005; Pegtel et al., 2005). Cells overexpressing LMP2A/
B have an increased rate of attachment, spreading and 
migratory movement on the extracellular matrix (Allen 
et al., 2005). This possibly involves the regulation of in-
tegrin-mediated processes. A recent study has shown that 
the ITAM signaling domain of LMP2A can activate the 
Syk tyrosine kinase and Akt to stabilize alphaV-integrin 
and FAK activation (Fotheringham et al., 2012). Another 
study showed that LMP2A expression is positively as-
sociated with integrin alpha6 in NPC biopsies (Pegtel 
et al., 2005). Antibodies blocking the integrins abrogate 
LMP2A-induced invasion (Pegtel et al., 2005). These re-
ports suggest an interaction of LMP2A with integrins to 
govern the migratory, invasiveness and metastasis of the 
epithelial cancers. LMP2A was reported to be localized 
at the tumor invasive front (Kong et al., 2010). It can 
also potentiate cancer stem cell-like properties through 
activation of the Hedgehog signaling pathway (Port et 
al., 2013). Exogenous expression of LMP2A induces 
EMT, stimulates the expression of stem cell markers, and 
enhances the acquisition of side populations in the NPC 
cells (Kong et al., 2010).

BamH1-A fragment rightward reading frame 1 (BARF1). 
The BARF1 is considered a lytic EBV protein and is 
expressed early during lytic infection. However, a high 
level of BARF1 expression could be detected at high lev-
els in NPC (Decaussin et al., 2000). BARF1 is encoded 
in the BamH1-A fragment of EBV and is a homolog of 
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the human colony stimulating factor 1 (CSF-1) receptor 
(Strockbine et al., 1998). The signaling axis of CSF-
1 and the CSF-1 receptor is known to be involved in 
promoting tumorigenicity in various types of epithelial 
cancer, including gastric and breast cancer (Sapi et al., 
1995; Lin et al., 2001). It was also shown to have onco-
genic activity, as evidenced by its malignant transform-
ing property in rodent fibroblasts and inhibitory effects 
on apoptosis by activating bcl-2 (Wei and Ooka, 1989; 
Sheng et al., 2003). Expression of BARF1, in addition 
to the H-Ras and SV40 T antigens, can transform non-
malignant human nasopharyngeal epithelial NP69 cells 
(Jiang et al., 2009). BARF1 is expressed as a latent pro-
tein in NPC and EBV-associated gastric cancer (Decaussin 
et al., 2000; Seto et al., 2005; Takada, 2012). It can be 
detected by RT-PCR and immunohistochemical assays 
in clinical biopsies of NPC and by a BARF1-specific nu-
cleic acid sequence-based amplification assay in gastric 
tumors (Decaussin et al., 2000; zur Hausen et al., 2000). 
BARF1 is expressed in EBV-associated epithelial ma-
lignancies, but not in lymphoid malignancies (Takada, 
2012). Detection of BARF1 mRNA in nasopharyngeal 
brushings has been suggested to be a promising noninva-
sive method for NPC diagnosis (Stevens et al., 2006). 

The role of BARF1 in NPC development has been 
investigated by infecting CNE2 NPC cells with a re-
combinant EBV with BARF1 constitutively expressed 
under the SV40 promoter (Seto et al., 2008). Compared 
to control NPC cells infected with wild-type EBV, 
NPC cells infected with EBV constitutively expressing 
BARF1 have higher growth rates and are more resistant 
to apoptosis in serum-deprived conditions. BARF1 was 
detected in the culture medium, which promoted growth 
of the cancer cells. NPC cells infected with recombinant 
EBV constitutively expressing BARF1 have greater rates 
of tumorigenicity in the nude mice model (Seto et al., 
2008). In EBV-associated gastric cancer, BARF1 enhanced 
the expression of cyclin D1 in vitro (Wiech et al., 2008). 
Analysis of a tissue array consisting of 170 gastric tu-
mors and 11 EBV-associated gastric tumors revealed 
a significant overexpression of cyclin D1 in EBV-
associated tumors but not in EBV-negative tumors 
(Wiech et al., 2008). A recent study showed that over-
expression of BARF1 in gastric cancer cells promotes 
cellular proliferation, likely through the upregulation of 
expression of NF-κB, RelA, cyclin D1, and reduced ex-
pression of cell cycle inhibitor, p21 (Chang et al., 2013).

Bam HI A rightward transcripts (BARTs). The BARTs 
are multi-spliced RNAs transcribed rightwards from the 
BamH1 A region of EBV (Hitt et al., 1989; Smith et al., 
2000; Zhang et al., 2001). The exceptional abundance of 
BART expression in NPC and EBV-associated gastric 
cancer strongly implicates an important role in these can-

cers (Smith et al., 2000; Al-Mozaini et al., 2009). BARTs 
comprise more than 96% of all EBV reads in a recent 
RNA-sequencing analysis of EBV-associated gastric car-
cinoma (Strong et al., 2013). Several ORFs in the spliced 
cDNA transcripts, including RPMS1, A73, BARF0, CST, 
vIL, and BLLF1, have been postulated to have functional 
roles (Kienzle et al., 1999; Al-Mozaini et al., 2009). In 
particular, recombinant RPMS1 and A73 expressed in 
E. coli were found to modulate the Notch and RACK1 
signaling pathways, respectively (Smith et al., 2000; Al-
Mozaini et al., 2009). RPMS1 can act as effective antag-
onist of Notch-IC transcription activation, and therefore 
may suppress the differentiation of epithelial cells (Smith 
et al., 2000). A73 binds with RACK1 and possibly regu-
lates calcium release from intracellular stores by enhancing 
the affinity of IP3 receptor binding for IP3 (Smith et al., 
2000; Al-Mozaini et al., 2009). These reports suggest 
that BARTs may encode for proteins having biochemical 
functions related to oncogenesis. However, evidence for 
the endogenous expression of potential BART-proteins, 
such as RPMS1, A73 and BARFO, in EBV-infected cells 
is lacking (Kienzle et al., 1999; Al-Mozaini et al., 2009). 
Moreover, the BARTs are expressed extensively in the 
nucleus, but not in the cytoplasm, suggesting they are not 
transcribed as mRNAs (Al-Mozaini et al., 2009; Jang et al., 
2011). Nevertheless, the possibility remains that these 
BART-proteins may be expressed under certain condi-
tions to augment the development of cancer (Al-Mozaini 
et al., 2009). Another possibility is that these BARTs may 
act as long non-coding RNAs (lncRNA), which are in-
volved in repressive complexes to regulate cellular gene 
expression (Strong et al., 2013). Interestingly, the expres-
sion patterns or levels of BARTs vary in different infec-
tion states, such as lytic and latent infections (Yamamoto 
and Iwatsuki, 2012). Notably, the expression of BARTs 
is under the regulation of c-myc and C/EBP (Chen et al., 
2005) and possibly NF-κB (HL Chen, personal commu-
nication). This highlights the potential importance of lo-
cal inflammation and the role of inflammatory cytokines 
in affecting the expression of BARTs. All this warrants 
the future investigation of potential functional roles of 
BARTs in contributing to human malignancies, particu-
larly in NPC.

EBV-encoded microRNAs (miRNAs). EBV encodes 
at least 44 miRNAs transcribed from the BHRF1 and 
BART regions (Klinke et al., 2014). miRNAs can reg-
ulate the expression of various proteins by blocking the 
translation of mRNAs or degrading mRNAs (Bartel, 
2009). The expression pattern of miRNAs depends on 
the latency type and cellular context of the EBV-infected 
cells. BHRF1 miRNAs are only expressed in EBV-
infected B cells exhibiting latency type III infection, and 
are shown to mediate B cell transformation by protecting 
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the cells from apoptosis (Amoroso et al., 2011; Vereide 
et al., 2014). BART miRNAs are expressed in all EBV-
infected cells, but the levels are 8 to 13 fold higher in 
epithelial cells than in B cells (Qiu et al., 2011). In NPC 
and gastric cancer samples, most of the BART miRNAs 
are expressed. Although they are processed from the 
same BART transcript, they are expressed at various 
levels due to different biogenesis and cellular processing 
(Zhu et al., 2009; Chen et al., 2010; Lung et al., 2013). 

The functions of BART miRNAs have been evaluated 
in various high-throughput studies. Recent reviews have 
summarized the results from different research groups in 
searching for high-confidence targets of EBV miRNAs 
(Marquitz and Raab-Traub, 2012; Cullen, 2013; Klinke 
et al., 2014). A few key targets of the BART miRNAs 
have been identified and validated for their functions. 
For example, miR-BART3-5p targets the tumor-suppres-
sor gene, DICE1 (Lei et al., 2013). This is in agreement 
with the finding that DICE1 is usually inversely cor-
related with the expression of miR-BART3-5p in NPC. 
The miR-BART2-5p targets the stress-induced immune 
ligand MICB to facilitate the escape from recognition by 
natural killer cells (Nachmani et al., 2009). In addition, 
BART miRNAs can target pro-apoptotic genes and thus 
promote host cell survival (Choy et al., 2008; Marquitz 
et al., 2011). Expression of PUMA-beta is regulated 
by miR-BART5-5p (Choy et al., 2008), and expression 
of Bim is regulated by miR-BART1, 3, 9, 11 and 12 
(Marquitz et al., 2011). A recent study also showed that 
miR-BART9 promotes the invasiveness and metastatic 
ability of NPC cells in vivo through specific targeting of 
E-cadherin, a membrane protein crucial for mesenchy-
mal-like phenotype (Hsu et al., 2014). 

EBV genes can also be targets of EBV miRNAs (Lo et al., 
2007; Barth et al., 2008; Lung et al., 2009). The viral 
DNA polymerase BALF5 is targeted by miR-BART2-
5p (Barth et al., 2008), the EBV latent membrane protein 
1 (LMP1) by miR-BART17-5p, -1-5p or -16 (Lo et al., 
2007), and LMP2A by miR-BART22 (Lung et al., 2009). 
This implicates a role for BART miRNAs in the modula-
tion of EBV gene expression to optimize the functions of 
various EBV proteins in infected cells.

GENETIC ALTERATIONS IN EBV-ASSOCIATED 
EPITHELIAL MALIGNANCIES

EBV infection in NPC was shown to be a clon-
al event and occurs during the early stages of NPC 
(Pathmanathan et al., 1995). Later studies have demon-
strated that genetic alterations in the premalignant naso-
pharyngeal epithelium may precede EBV infection (Lo 
et al., 2004b; Tsang et al., 2012). Genetic alterations in 
the premalignant nasopharyngeal epithelium may confer 
susceptibility to latent EBV infection, which otherwise 

would support lytic EBV infection. 
By comparing changes in EBV-infected and uninfected 

cancers, evidence for the pathogenic mechanism of EBV 
may be revealed. In NPC, this is not possible as most 
cases of undifferentiated NPC are associated with EBV 
infection. However, gastric cancer provides a unique op-
portunity to examine the genomic differences that may 
be related to EBV infection. Recent genomic profiling in 
EBV-associated gastric cancer reveals a distinct signa-
ture of genome wide hypermethylation compared to non-
EBV gastric cancer (TCGA, 2014). Hypermethylation is 
commonly used in the inactivation of tumor suppressor 
genes. It remains to be determined if the increase of 
methylation in EBV-associated gastric cancer is a direct 
result of EBV gene expression or an adaptive response of 
host cells to EBV infection. 

A recent genomic profile of NPC reveals multiple 
pathways present in NPC, and reveals a similar signa-
ture of genomic hypermethylation (Lin et al., 2014). 
Similar to EBV-associated gastric cancer, fewer genetic 
alterations were identified in NPC compared to other 
epithelial cancers. Presumably, EBV infection may play 
an important role in altering cellular pathways to pro-
mote survival of infected NPC cells, which facilitates the 
selection and expansion of tumorigenic clones in vivo. 
These reports support a causal role of EBV infection in 
the development of NPC.

EBV strains and NPC
It is postulated that specific EBV strain may be in-

volved in the development of NPC. Multiple strains of 
EBV can be isolated from the blood and saliva of healthy 
individuals. Interestingly, only one strain of EBV was 
detected in a large cohort of NPC samples (JX Bei, Sun 
Yat Sen Cancer Center, personal communication). The 
presence of a single strain of EBV in NPC is not sur-
prising, given the clonal origin of EBV infection at the 
early stages of NPC development. The NPC-associated 
EBV strains cluster into a distinct family that could be 
separated from EBV strains isolated from patients with 
infectious mononucleosis. In the endemic area of NPC in 
southern China, a specific EBV strain has been proposed 
to be associated with NPC. Recently, an NPC-derived 
EBV strain, M81, was isolated with distinct properties in 
host tropism and other biological properties (Tsai et al., 
2013). The M81 EBV strain has a reverse tropism com-
pared to common EBV strains, exhibiting a reduced abil-
ity to infect B cells but an increased propensity to infect 
epithelial cells. M81 spontaneously enters lytic replication 
upon infection of B cells. It remains to be determined if 
a specific NPC EBV strain with distinct biological prop-
erties may be involved in the pathogenesis of NPC. With 
further research on the genomic and biological properties 
of EBV isolated from NPC, the role of EBV in the devel-



Chi Man Tsang et al

www.virosin.org APRIL 2015　VOLUME 30　ISSUE 2　115

opment of NPC may be better understood.

Contribution of lytic EBV infection in human 
malignancies

The master switch of EBV from latent to lytic infec-
tion is triggered by the expression of BZLF1, which turns 
on a cascade of events that target EBV gene transcription 
to initiate EBV replication, packaging and release of 
infectious virus (Kenney and Mertz, 2014). The BRLF1 
protein is also involved in the switching of EBV infection 
from latent to lytic mode, and may play a more important 
role in the lytic EBV infection of epithelial cells (Reusch 
et al., 2015). The physiological signals triggering lytic 
infection are not clearly defined, but may involve signals 
of differentiation and cellular stress. Lytic EBV infection 
was observed in non-keratinized squamous epithelial 
cells on the lateral side of the tongue epithelium of im-
munocompromised patients (Greenspan et al., 1985). 
Lytic replication of EBV could be demonstrated in the 
upper layers of the stratified squamous epithelium un-
dergoing terminal differentiation, but not at the basal or 
immediate suprabasal layers, where undifferentiated ep-
ithelial cells are located. In a 3-dimensional reconstruct-
ed epithelium model of telomerase-immortalized oral 
keratinocytes cultured at the air-liquid phase, expression 
of lytic EBV genes was observed in the upper layers of 
differentiated epithelium but not in the undifferentiated 
basal layers (Kenney and Mertz, 2014). While latent 
EBV infection is characteristic of human malignancies, 
lytic EBV infection may also be involved. Interestingly, 
EBV defective in the lytic EBV gene, BZLF1, was found 
to have lower tumorigenic ability to transform B cells 
into lymphoma in the humanized mice model (Hong et al., 
2005). A low level of expression of lytic EBV genes is 
often observed in NPC with predominantly latent infec-
tions (Feng et al., 2000). The significance of this low 
level of lytic gene expression is unclear. The late lytic 
genes involved in packaging of EBV for infection are not 
expressed, suggesting that the lytic infection is largely 
abortive in nature. The role of abortive lytic EBV infec-
tion in human malignancies is unclear. The BZLF1 and 
other lytic genes, including BGLF5, have been shown 
to induce DNA instability and may be involved at the 
initiation stage of carcinogenesis of nasopharyngeal epi-
thelium (Sato et al., 2009; Wu et al., 2010). Promotion of 
premalignant nasopharyngeal epithelial cells harboring 
genetic mutations may be dependent on the inflammatory 
environment commonly present at the nasopharyngeal 
mucosa. It remains to be determined if these lytic genes 
invoke a local immune and inflammatory response to 
promote tumor progression in NPC (Rickinson, 2014).

Contribution of host stromal factors to the 
persistence of EBV infection in NPC

Despite the close association of EBV infection ob-
served in NPC, NPC cell lines established in vitro readily 
lose their EBV episomes upon prolonged propagation. 
This would suggest that EBV infection per se has no 
advantage in cell proliferation. Careful monitoring of 
replication of EBV episomes in infected cells suggests 
16% of EBV episome are not replicated during each 
cell cycle (Nanbo et al., 2007). Hence, EBV episomes 
would be lost in cell culture if EBV-infected cells were 
not actively selected either by drugs or cell sorting. In 
contrast to EBV infection of human B cells, which effi-
ciently promotes cell growth and transformation, EBV 
infection of primary nasopharyngeal epithelial cells in-
duces growth arrest, probably due to the cellular stress 
associated with viral infection (Tsang et al., 2012). No 
immediate growth advantage was observed in immortal-
ized nasopharyngeal epithelial cells after infection with 
EBV. The universal presence of EBV in NPC and the 
ability of NPC xenografts to retain their EBV episomes 
after repeated passage (> 25 years) in athymic nude mice 
suggest an advantage for EBV-infected epithelial cells 
grown in vivo. A recent report shows that expression of 
EBV-encoded miRNA was upregulated in EBV-infected 
NPC and gastric cancer cells grown in vivo. Furthermore, 
expression of BARTs enhances the growth and tumorige-
nicity of these cells, supporting a role for BART expres-
sion and BART-miRNA in the growth of EBV-infected 
epithelial cells in vivo (Qiu et al., 2015). Similarly, EBV 
infection and expression of EBV genes may induce in-
flammatory responses, which may enhance angiogenesis 
and growth of cancer cells in vivo. These cytokines may 
also attract migration of inflammatory cells, including 
activated macrophages and T regulatory cells, to support 
the growth of EBV-infected cells. Furthermore, we have 
also observed that stromal fibroblasts isolated from NPC 
synthesize and secrete IL-6 to stimulate EBV-infected 
NPC cells (Tsang et al., 2013; Zhang et al., 2013). EBV-
associated gastric cancer is also associated with inflam-
matory components. A distinguishing feature of EBV-
associated epithelial malignancies is the undifferentiated 
property of infected epithelial cells associated with the 
heavy infiltration of lymphoid elements; hence, the term 
lymphoepithelioma-like carcinoma (LELC) has been 
used to distinguish this group of cancer, which could also 
be observed in lung cancer, tonsillar and cholangiocarci-
noma (Tsao et al., 2015). The stromal factors that support 
growth of NPC cells in vivo are not present in in vitro 
conditions. The postulation is that growth of NPC cells is 
highly dependent on the presence of inflammatory stro-
mal elements in the nasopharyngeal mucosa, which is in 
a state of chronic inflammation. In concordance with this 
hypothesis, EBV-positive NPC cell lines are known to be 
difficult to establish in culture, likely due to the loss of 
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growth promoting cytokines released from stromal cells 
present in NPC in vivo. The delineation and characteriza-
tion of the growth requirement for these stromal elements 
in NPC cell lines would contribute to our understanding 
of the development of NPC and other EBV-infected ma-
lignancies.

CONCLUSION

The role of EBV in the pathogenesis of NPC is still 

unknown. There are selective advantages of EBV in-
fection in NPC in vivo, which may be facilitated by 
inflammatory elements in the mucosa. The understand-
ing of these selective advantages will contribute to our 
understanding of the pathogenic role of EBV infection in 
human malignancies. A close interaction between EBV 
infection, host genetic alterations, defective immune 
recognition and stromal inflammation are believed to be 
intricately involved in the pathogenesis of NPC. Defining 
the contribution of these parameters in the growth of 

Figure 1. The role of EBV infection in the pathogenesis of NPC. The normal nasopharyngeal epithelium is refrac-
tory to EBV infection. Similar to EBV infection of oropharyngeal epithelial cells, EBV infection in the normal naso-
pharyngeal epithelium is presumably lytic in nature. EBV infection induces growth arrest in normal nasopharyngeal 
epithelial cells. Genetic alterations in the premalignant nasopharyngeal epithelium, such as cyclin D1 overexpres-
sion and p16 inactivation, override the growth arrest induced by EBV infection and support latent infection. EBV 
infection and expression of EBV-encoded latent genes, including BART-miRNAs, support the growth and progres-
sion of premalignant nasopharyngeal epithelial cells. Further genetic and epigenetic changes may drive the clonal 
expansion of EBV-infected premalignant cells and their transformation to cancer cells. Stromal inflammation is 
postulated to play a crucial role in modulating EBV gene expression, supporting latent EBV infection and malignant 
transformation of premalignant nasopharyngeal epithelial cells to cancer cells.
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NPC in vivo will provide novel therapeutic targets in the 
prevention and treatment of NPC. A summary of key 
events is included in Figure 1 to illustrate the postulated 
roles of EBV in NPC pathogenesis. 
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