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Abstract
Microelectromechanical system (MEMS)-based microneedles are an innovative way of drug delivery that increases the per-
meability of the skin. It generates microscopic pores inside the skin that leads to the passive diffusion of drugs for dermal 
microcirculation to take place. This phenomenon helps toward efficient drug penetration. MEMS microneedles are small-sized 
needles usually in the micron to millimeter range, normally having a length to width of about 150–550 µm and 50–300 µm. 
respectively. Their tip diameter varies from 1 to 80 µm that can pierce through the epidermis layer directly to dermal tissues 
devoid of any pain. In this paper, a broad overview of solid microneedles for biomedical applications has been presented. 
The objective of this review is to collect the state of art main features related to solid microneedles. Particularly, the chal-
lenges related to solid microneedles, such as materials and methods used in the fabrication of microneedles, design and their 
performance, testing, safety concerns, commercialization issues, and applications, have been discussed. Microneedles can 
be characterized conferring to their fabrication procedure, structure, materials, general shape and size, the shape of the tip, 
microneedle array thickness, and applications. This comprehensive review on solid microneedles may provide significant 
useful information for scientists or researchers working on the design and development of solid microneedles for biomedi-
cal applications.
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Introduction

Microneedles are considered useful drug delivery devices 
because they provide painless and efficient drug deliv-
ery [1]. Microneedles can be used either way as a stand-
alone system or as integrated with other devices forming 
the complicated microfluidic systems [2–4]. Even though 
the idea of microneedles was suggested in the 1970s, it 
wasn’t established experimentally till the 1990s once the 

microelectronics industry delivered the required tools for 
microfabrication. The first studies of transdermal drug deliv-
ery were reported in 1998 [5]. After that, the development 
and use of microneedles for drug delivery and other phar-
maceutical applications have increased rapidly.

Different materials like stainless steel, silicon, titanium, 
and polymers have been used so far to fabricate micronee-
dles [6, 7]. Some of the microneedles are made with drugs, 
which means they have a needle shape but are delivered 
directly into the body and penetrate the skin easily. The 
microneedles are made in different sizes, shapes, and func-
tions, but all are used as a substitute to former delivery 
methods like the conventional hypodermal needle or addi-
tional vaccination apparatuses [8–10]. Microneedle arrays 
or microneedles can be used as a separate device along 
with a measure of drug extraction, biological detection, or 
delivery system. Microneedles, due to their efficiency, can 
be integrated with biosensors, micropumps, microfluidic 
chips, and microelectronic devices. Microneedles have many 
advantages as they have improved the comfort of patients. 
Microneedles are harmless to be used in humans. Lately, 
microneedle technology has been proposed for increasing 
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skin penetrability and particularly increase the transdermal 
delivery for macromolecules.

Correspondingly, several researchers have presented 
microneedles suitable for many biomedical applications, 
and they have become a broadly studied technique in this 
era for biomedicine [10–12]. But it still needs to have a brief 
overview of the latest apprises on the development of dif-
ferent microneedles for biomedical applications as these 
needles have limited obtainability for marketable use and 
remain at the study level. Few earlier reviews have been 
reported on microneedles. These different reviews provide 
brief information on microneedles and their applications. 
Donnelly et al. [13] presented a review article that provides 
facts about various MN types, fabrication approaches, 
and, prominently, inquiries of the medical safety of MN. 
Mahmood et al. [14] presented a broad review that focused 
on current and prospect progresses for microneedle technol-
ogy containing the up-to-date microneedle design, tests, and 
schemes in microneedle development besides possible safety 
features collected from complete literature review relating 
to microneedle studies toward a date. Ahmed et al. [15] pre-
sented a brief review that summarizes the current substan-
tiation for the custom of microneedle arrays as biosensors 
aimed at constant monitoring of glucose content of the inter-
stitial fluid, concentrating on insertion mechanics, character-
istics of microchannels, and protection profile. Florina et al. 
[16] reported a very substantial review in which delivery 
device, the central delivery approaches using the micronee-
dles array, materials that are commonly used for fabrication 
procedure, geometrical, and profile considerations in addi-
tion to the present preclinical and clinical requests of the 
microneedle array. Quinn et al. [17] reported a fundamental 
and preliminary review that explains how microneedle arrays 
can upsurge the sum of compounds agreeable to transdermal 
delivery through piercing the skin’s defensive barrier, the 
vein corneum, as well as constructing a path for drug infu-
sion to the dermal nerve below. Kevin Ita [10] presented a 
review on hydrogel-forming microneedles, and special con-
sideration is compensated to hydrogel-forming microneedles 
as they are new microneedles that do not comprise drugs 
however absorb interstitial fluid to custom constant conduits 
among dermal microcirculation as well as an involved patch-
form reservoir. Numerous microneedles accepted through 
regulatory experts for experimental use are also studied. 
Chen et al. [18] presented a review on the perspective, as 
well as the experiments of applying microneedles, to provide 
nucleic acids aimed at gene therapy. It was also suggested 
that a grouping of microneedles and additional gene deliv-
ery methods may provide a path for the improved delivery 
method for gene rehabilitation. Marwah et al. [19] presented 
an introductory review that explains that new vigorous drug 
transport equipment is involved in increasing the transder-
mal infusion via the actual drug delivery method. Thakur 

et al. [20] presented a short overview of a variety of tests that 
are frequently encountered to attain well-organized optical 
drug levels inside fixed tissues of the eye. It also defines 
the difficulties met by means of conservative hypodermal 
needle-based optical vaccinations for frontal and subsequent 
section drug delivery. It argues research approved in the 
field of microneedles, up to date. Guojun Ma and Chengwei 
Wu et al. [21] presented a comprehensive review in which 
studies were introduced on the mechanical problems with 
respect to microneedles. All the above-discussed reviews 
present the facts and information about microneedles only 
and do not discuss any of its types solely. Here, the authors 
have given a complete review on solid microneedles that 
covers any recent development of solid microneedles in the 
field of medicine or drug delivery. Thus, it is the most com-
prehensive and simplified review that covers the up-to-date 
information of solid microneedles concerning the design and 
development, structure, parameters used for its performance, 
fabrication methods, materials used for fabrication, safety 
issues, and challenges, as well as applications.

Solid microneedles have been so far the most common and 
simplest method of microneedle devices because they are 
used for the maximum of the early work of microneedle 
delivery of drugs or vaccines [22]. Solid microneedles have 
no distribution or flow passages by themselves for drugs and 
are thus used for pretreatment of skin to generate transitory 
channels of micron sizes through stratum corneum over 
mechanically distorting epidermis preceding to drug supervi-
sion [23]. Then, drugs were inserted or applied in the form 
of square patches directly to the skin area penetrated by 
microneedles [24]. Wang et al. [25] reported a method in 
which a nanometer-scoped zinc-oxide pyramidal rod array 
was constructed to form a device in which tip, as well as a 
base diameter of 50 × 50-µm-long rods, were 60 nm and 
150 nm, correspondingly [26]. Li et al. [26] reported a super 
short microneedle and studied how they can act as a safe and 
effective substitute in transdermal drug delivery of hydro-
philic molecules. It was also studied that after these super 
short solid microneedles have been injected into a patient, no 
infection, e.g., Staphylococcus aureus, occurs, and the patient 
remains safe. Aoyagi et al. [27] proposed a new fabrication 
method for solid microneedle arrays using numerous tip 
angles prepared of a biodegradable polymer such as PLA. 
Their experimentation was confirmed by the simulation of 
finite element analysis. Coulman et al. [28] reported solid 
microneedles having a pyramidal shape and pointed/frustum 
tip to apprehend the performance of nanoparticle prepara-
tions inside the biological surroundings and their interface 
with the skin layers resulting in the disruption of the skin 
through an innovative delivery device, e.g., solid microneedle 
arrays. Oh et al. [29] proposed the study which recommends 
that a biocompatible PC solid microneedle might be an 
appropriate device for transdermal drug delivery scheme of 
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hydrophilic molecules through the potential applications 
toward macromolecules, e.g., proteins as well as peptides. 
Ding et al. [30] fabricated solid microneedle arrays having 
custom transitory conduits and improve the transportation of 
vaccine molecules transversely through the skin barrier and 
without any kind of pain. It was also examined in mice how 
the immune reactions are after applying TCI by means of two 
typical antigens, diphtheria-toxoid and respiratory tract infec-
tion vaccines. Han et al. [31] presented a new method for 
fabrication aimed at groove-inserted solid microneedle arrays 
of a biocompatible polymer as well as the immunization fea-
tures to ovalbumin transported into mice through the solid 
microneedle arrays via the skin, and the results proved that it 
was a compatible way of drug delivery by keeping in mind 
the dimensions and shapes of microneedle arrays. Chandra 
Sekhar Kolli and Ajay K. Banga [22] demonstrated maltose 
solid microneedles characterized and exposed to construct 
microchannels in the skin that were also categorized and pre-
sented to increase the transdermal drug delivery of NH. Jin 
et al. [32] proposed a unique fabrication approach for an eco-
nomical microneedle patch prepared by biocompatible poly-
mer, besides efficient confirmations for fabricated solid 
microneedle patches over animal models, and no side effects 
were found such as infection or allergic reactions on the 
application of solid microneedle patches. Kim et al. [33] pro-
posed the investigational factors and mechanical pathways 
through which deactivated infection vaccine can lose action, 
besides develop as well as measures upgraded solid 
microneedle coating preparations that defend the antigen 
from inactivity. Afterwards, coating microneedles have used 
a typical vaccine preparation, the constancy of respiratory 
tract infection vaccine was condensed to just 2%, as calcu-
lated by hemagglutination activity. Park et al. [34] reported 
polymer solid microneedle rollers having a conical shape and 
discussed that compared to injecting microneedles on a 
smooth patch, the consecutive inclusion of solid micronee-
dles on a roller row by row require less inclusion strength in 
the full thickness of swinish skin. Generally, polymer solid 
microneedle rollers, made from simulated polymer films, 
provide an unpretentious way to upsurge skin penetrability 
for drug delivery purposes. Gomaa et al. [35] investigated the 
issue that by compelling transepidermal water loss depths of 
dermatome human skin models succeeding the inclusion of 
solid polymer microneedles. Inclusions triggered an initial 
severe drop in barricade function tracked by a slow imperfect 
recovery – an example constant with microneedle generation 
of microchannels which consequently contract, owing to the 
skin’s elasticity. Donnelly et al. [36] reported the very first 
kind of polymeric microneedles that have been engaged for 
delivering a perfect lipophilic dye, Nile red, into the 
expunged pigskin. Prominently, the one-step delivery 
approach is used for the limited delivery of exceedingly 
hydrophobic agents that overwhelm several disadvantages of 

existing delivery approaches. Romgens et al. [37] proposed 
a study that presented that sharp solid microneedles are 
important to insert microneedles in a well-organized manner 
to a preferred depth. Zhang et al. [38] studied the permeation 
as well as the delivery of poly(lactic-co-glycolic acid) 
(PLGA) nanoparticles in human skin cured with solid 
microneedles. Fluorescent PLGA nanoparticles were 
arranged to show the transdermal transference procedure of 
nanoparticles. The studied results proposed that solid 
microneedles could increase the intradermal distribution of 
the PLGA nanoparticles. Julia et al. [39] studied the effect of 
solid microneedles on the transdermal delivery of particular 
antiepileptic drugs, and it was tested on pigskin to demon-
strate the consequence of solid microneedle rollers. Hoang 
et al. [40] studied the effect of solid microneedles on trans-
dermal delivery of amantadine hydrochloride as well as 
pramipexole di-hydrochloride through a pig ear skin in vitro 
and statistical analysis was also conceded. Mj Uddin et al. 
[41] proposed an innovative inkjet printing technology for 
coating solid microneedle arrays of metal material using 
three anticancer agents including 5-fluorouracil, cisplatin, as 
well as curcumin, for transdermal delivery. Witting et al. [42] 
highlighted precisely the protein balance throughout storage 
and also demonstrated that discriminatory intraepidermal 
installation of proteins or peptides via solid microneedles is 
a practical approach. The solid microneedle array pierces the 
strong barrier of the stratum corneum, causing the active 
molecules to diffuse through the arranged channels. When 
the microneedles array is removed, the drug formulation is 
customarily applied onto the pretreated area of the skin. The 
pores are formed in the skin which helps the variety of mol-
ecules to transport through gaps of closely damaged skin as 
well as reach the epidermis and dermis [43]. Different 
researchers have been working on solid microneedles using 
different materials for their fabrication and making them use-
ful for human skin or other treatments. Solid microneedles 
made of metals are an attractive setup for having painless 
drug delivery. Though, fabrication procedures for metal 
microneedles are complex and require a large setup. An 
accessible building of metallic microneedle arrays by means 
of thermoplastic representation of metallic glasses has been 
reported. Microneedles with tuneable lengths as well as tips 
are created through monitoring the rheology and splintering 
of metallic glasses. And when these solid metallic glass 
microneedles are taken for in vitro insertion tests, they give 
an excellent piercing of porcine skin [44]. The first-time 
usage of TA.XTplus Texture Analyser toward characteriza-
tion of spurt force in pigskin for drug delivery tests has been 
reported. With this force, the pigskin can easily be ruptured 
as demonstrated in their experiments and results [40]. It is 
reported that the sharper-tipped solid silicon microneedles 
having a higher aspect ratio have been fabricated. Tetrameth-
ylammonium hydroxide etching techniques have been 
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improved and used for the fabrication of stretched and 
pointed microneedles. The fabricated solid microneedles are 
considered to be appropriate for applications of drug delivery 
[45]. The safety measures of solid polymer microneedles for 
humans offered at different applications have been proposed. 
Also it was taken into account the diverse application loca-
tions of vaccination, cosmetology, and insulin delivery tan-
gled through microneedles method, reasons persuading user 
receiving of microneedles comprising the length, density, and 
the proportions of microneedle patches by putting on diverse 
microneedle patches on the forearm, forehead, and abdomen 
skins of human participants [46]. It is reported that patch 
pretreatment of solid polymer microneedle improves the pen-
etration of drug particles in the skin [46]. The solid micronee-
dles are also made up of biodegradable polymers and bio-
compatible polymers for transdermal drug delivery. Polymer 
microneedles have the benefits of being easily fabricated, 
cost-efficient, and can be mass-produced, besides precise 
drug release by means of the water solubility and deprivation 
properties of polymers. Polymer microneedles, by using vari-
ous physical and chemical properties of polymers, offer a 
promising method for drug delivery [47]. Solid microneedles 
are used for skin pretreatment as they have increased skin 
permeability. Solid microneedles are used in cosmetic sur-
gery and other skin treatments due to their good skin perme-
ability [48]. An innovative method for manufacturing solid 
polymer microneedles utilizing laser-ablated molds in a shot 
molding procedure has been reported. Research has been suc-
cessfully conducted to create cone-shaped microholes 
through low tip areas in a device steel pattern, utilizing a 
femtosecond laser through a cross-hatching approach. Lastly, 
the achieved mold was made to be used in an injection mold-
ing procedure for replicating the polypropylene microneedles 
[49]. Verbaan et al. [50] described the enhanced piercing 
method of microneedle patches in dermatome human skin by 
an influence enclosure method. A detailed review of solid 
microneedles is presented in Table 1 below.(see Table 2)

Classification of Microneedles

There are four types of microneedles, i.e., solid micronee-
dles, coated microneedles, hollow microneedles, and dis-
solving microneedles. (Fig. 1) Each type has pros and cons 
depending on its delivery methods and their functionalities 
[51]. Each type is explained below concerning its design, 
fabrication techniques, materials used for its fabrication, and 
applications. Solid microneedles deliver drugs to the body 
in two parts; firstly, the microneedle array is applied to the 
patient’s skin to make microscopic bores, which are much 
deeper, to easily penetrate the skin’s outermost layer, and 
secondly, the transdermal patch is used for the application of 
the drug. Solid microneedles are now used by dermatologists 

in skin treatment or collagen stimulation therapy [52]. Hol-
low microneedles are comparable to solid microneedles in 
terms of materials used. They have reservoirs through which 
drug is delivered directly into the body. Meanwhile, the drug 
delivery is reliant on the flow rate of the microneedle; there-
fore, this microneedle array has a possibility of becoming 
clogged through extreme swelling or faulty design. Hollow 
microneedles have the disadvantage of increasing the pos-
sibility of clipping under the pressure of, and consequently 
inadequate to deliver drugs []. Coated microneedles are 
commonly made from metals or polymers just like solid 
microneedles. Instead of being applied from any applica-
tors or patches, the drug is transferred directly to the human 
body through microneedles or microneedle arrays; therefore, 
they have been named coated microneedles [53]. To make 
sure that the required dose of a drug is properly delivered 
to the body, these microneedles are often enclosed in other 
thickening agents or surfactants. Most of the chemicals used 
on coated microneedles are named irritants. When these 
microneedle arrays are applied, and there is a risk of local 
inflammation to the body where applied, then these arrays 
can be removed directly without any harm to the patient 
[54]. In the latest adaptation of microneedle designs, dis-
solvable microneedles have drugs encapsulated in a harmless 
polymer that formerly dissolves inside the skin [2].

Drug Administration on Insertion 
of Microneedles

The drug is inserted into the skin via different types of 
microneedles in the form of a patch that is placed on the 
body of a human, and then the transportation of the drug 
takes place as described below in Fig. 2. Also, when a drug 
is delivered properly, the microneedles are removed without 
giving any pain to the patient, and it is a very effective or 
easy process.

Design and Geometry of Solid Microneedles

To decide the performance and mechanical behavior of 
microneedles, it is very important to understand the design 
and geometry, which includes the shape of microneedles, 
their tip radius, length, aspect ratio, base width, and diam-
eter, etc. So, it is very important to wisely select a cor-
rect material as well as an accurate methodology for the 
fabrication of ideal microneedles that are biocompatible, 
involuntarily strong to penetrate skin layers, proficient in 
loading miscellaneous active drug materials, and measured 
or continued drug delivery [7]. Wang et al. [63] carried an 
exceptional review on the characteristic of diverse polymer 
materials and approaches engaged in fabricating and getting 
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ideal microneedles. The most important feature is that the 
geometry of microneedles simplifies the smooth insertion 
of needles into the skin. This is essential as human skin is 
robust and flexible in nature, and thus it tends to prevent the 
insertion of microneedles or may lead to the breaking of 
microneedles. This is usually seen with microneedles that 
are fabricated with weak materials having rounded tips. For 
that reason, the geometry of microneedles is subtle and criti-
cal for effective drug delivery.

Different shapes of microneedles that were established 
include rectangular with a sharp edge, conical, and pointed, 
etc., with variable widths and lengths. Figure 3 shows the 

design and geometry of solid microneedles. For example, 
Lee et  al. reported solid polymer microneedles having 
pyramidal shapes without good mechanical strength vis-a-
vis the conical molded microneedles by way of the pyrami-
dal ones are related with an advanced cross-sectional area 
at a similar base width [60]. Moreover, Chen et al. reported 
that greater insertion depths were attained using chitosan 
microneedles having a 5-µm-tip radius [64]. Likewise, the 
microneedles having a sharp tip are vivacious for insertion 
because they have a higher potential to pierce with a small 
force, and vice versa is correct for microneedles with large 
diameter tips [65, 66].

Table 2   Classification, advantages, disadvantages, and drug delivery methods

Microneedle 
classification

Materials Advantages Disadvantages Drug-delivery methods References

Solid Silicon
Polysilicon
Silicon dioxide
Silicon nitride
PGA
PDMS
PMMA
Glass
GaAs
Titanium
Ti-alloy
Tungsten
Tungsten-alloy
Stainless steel
Silver
Gold
Copper

Different materials can be 
used to fabricate solid 
microneedles

Solid microneedle break 
under the skin on 
insertion. The surface 
area accessible for drug 
concentration is limited

Generate microchannels 
in the skin where a drug 
is inserted

Ma et al. [55]; Li et al. 
[56]; Ullah et al. [57]

Hollow Higher drug load can be 
inserted

It is required to use strong 
materials for fabrication 
to endure flow pressure

Pressure compelled flow 
through microneedles

Li et al. [58]; Kim et al. 
[6]; He et al. [59]

Dissolving Easy built-up Biodegradable/decompos-
able materials can only 
be used

Dissolves in the skin to 
relieve drug load

Lee et al. [60]; Kolli et al. 
[22]

Coated Used for strong drugs 
demanding low doses

Related with drug loss 
even though manufac-
turing and temperature 
restrictions

Coating drug-load 
releases

Chen et al. [61]; Chen et al. 
[62]

Fig. 1   Microneedle insertion on 
the skin and drug administration
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Forces Used During Penetration

In solid microneedles, pharmaceutical materials are coated 
to deliver the drugs into the patient’s body. In the course of 
penetration, several forces, e.g., bending, lateral, buckling, 
axial, and resistive are usually experienced by micronee-
dles. Therefore, it is very important to have perfectly 
designed microneedles that tolerate all these forces without 
any deflection because these forces can cause breakage of 
microneedles at the time of penetration. The force, which 
at the time of insertion becomes more dominant on the 
microneedle’s tip, is axial [67]. The axial force is compres-
sive, plus it points toward the buckling of microneedles. On 
the insertion of microneedles into the skin, another force 
called resistive force is applied by the skin. Hereafter, to 
penetrate the microneedle, the applied force must be larger 
than the resistive force. Also, uneven skin surface, as well 
as human inaccuracy in the course of needle penetration, 
may cause bending. As a result, it is essential to understand 
the geometry of microneedles and the material’s mechani-
cal properties concerning getting the perfect design of 

microneedles as well as the estimation of failure caused 
by microneedles [65, 68, 69]. The buckling force acted on 
microneedles in skin penetration is given as follows:

[70, 71]where E is Young’s modulus, I is the moment of 
inertia, and L is the microneedle’s length.

The bending force that the microneedle can bear with-
out breakage is given as follows:

[70]where c is the distance from the vertical axis to the outer 
edge of the skin.

The axial force that the microneedle can bear without 
breakage is given as follows:

(1)FBuckling =
�
2EI

L2

(2)FBending =

�yI

cL

(3)FAxial = �yA

Fig. 3   Strength of materi-
als w.r.t tensile strength and 
Young’s modulus

0 2 4 6 8 10 12 14 16

Davis et al. 2004 [153]
Park et al. 2005 [22]

Aggarwal et al. 2004 [154]
Kong et al. 2011 [122]

O'Mahony 2014 [78]
Kanakaraj et al. 2015 [155]

Luangveera et al. 2015 [156]
Rad et al. 2017 [157]

Gi�ard et al. 2010 [158]
Abidin et al. 2020 [159]

Economidou et al. 2021 [160]

Force vs. stress comparison

Stress Force

Fig. 2   a Geometry and design 
of solid microneedle, b tip view, 
and c microneedle array
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[11, 70]where �y represents yield strength of a material or 
tip area.

Also, the resistive force which the skin applied when 
penetration takes place is given as follows:

[70]where Ppierce is the pressure needed to penetrate the 
solid microneedle in to the skin [72–77]. Afterward, the 
skin is penetrated by microneedles; the only force acting on 
microneedles is the frictional force that resulted from the 
tissues’ and needles’ interaction [74, 78].

Materials Used in the Fabrication of Solid 
Microneedles and Their Issues

For the design and fabrication of microneedles, it is very 
important to select appropriate materials for any particular 
application. Materials used for the fabrication of micronee-
dles can be classified into two groups:

•	 Degradable
•	 Nondegradable

Degradable materials include materials like metals, glass, 
silicon, and ceramics, whereas degradable materials consist 
of polysaccharides as well as biodegradable polymers.

So far, scientists have fabricated the following:

•	 silicon microneedles [5, 79, 80]
•	 glass microneedles [23, 81–83]
•	 ceramic microneedles [84, 85]
•	 metal microneedles [86–89]
•	 hydrogel microneedles [90, 91]
•	 polymer microneedles [2, 47, 92–97]
•	 sugar microneedles [98–100] etc.

Numerous researchers have used silicon for the fabrication 
of microneedles but Si is a brittle material and is danger-
ous to health [26, 101–112]. Metal microneedles have the 
adequate mechanical strength to pierce the skin; however, 
they also have the disadvantage of generating probable bio-
logical wastes [2, 9] [113]. Many polymers have a history 
of biocompatibility. They display tremendous mechani-
cal and chemical properties which are appropriate for the 
fabrication of microneedles. Different polymers have been 
reported for the fabrication of microneedles which include 
polyglycolide (PGA), poly(l-lactic acid) (PLLA), polydi-
methylsiloxane (PDMS), polycarbonate (PC), poly(methyl 
methacrylate) (PMMA), etc. The fabrication of microneedles 
using polymeric materials has been reported by numerous 
researchers. However, many polymers are so soft that during 
the insertion process, they cause buckling failure. Several 

(4)FResistive = PpierceA

other materials for the fabrication of microneedles have also 
been reported, e.g., glass, alloy, metal, silver, copper, and 
gold. Glass microneedles having hollow oval tips have been 
fabricated for intradermal delivery utilizing the micropipette 
pulling method, but they can also break easily inside the skin 
on the application of the drug. [70, 80, 93, 114115–117].

Fabrication Techniques: Their Advantages 
and Disadvantages

Different fabrication techniques have been used to fabricate 
microneedles which include the following:

Photolithography [118]

This process is commonly used for the fabrication of poly-
mer microneedles, and this process, unlike other techniques, 
involves simple steps and less time. The tips of microneedles 
fabricated by photolithography are blunt and sharper as com-
pared to others. However, it also has some limits, i.e., expensive 
masks, polymers must be photosensitive, and harsh processing 
conditions, therefore cannot be used in biological models.

Chemical Etching [119]

This fabrication method is highly selected by researchers 
as they are inexpensive and damage-free due to their pure 
chemical nature. But, it also has some disadvantages, i.e., 
reduced process control, temperature sensitivity, reduced 
particle control, and high costs for biochemical disposal.

Deep Reactive Ion Etching [120]

This method is used for the high-volume fabrication of 
microneedles and is commonly known as the Bosch process, 
but it has the disadvantage that it takes a long time because 
each phase lasts for several seconds.

Hot Embossing [121]

The hot embossing technique might assist in the develop-
ment of greatly accurate and extremely effective fabrica-
tion of microneedles. It has the disadvantage of difficulty 
in demolding, substantial enduring thermal stress owing to 
varying coefficients of thermal expansion among the mold 
and polymer materials.

Laser Ablation [122]

In this technique, light pulses are used for giving the promi-
nence of the desired shape of microneedles on a metal plate, 
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thus creating solid-metal microneedle arrays. However, 
owing to their high-intensity pulses of laser, the creation of 
plasma ions, as well as electrons, is not appropriate for the 
fabrication of required designs or structures.

Surface Micromachining [123]

The surface micromachining technique offers a benefit that 
can be used on different materials as compared to substrates 
of a single crystal. This technique is extensively used by 
the researcher as it provides less loss of materials, better 
mechanical properties, and good dimensional control. How-
ever, it is expensive because higher steps of fabrication are 
involved, repetitive processes, and difficulty in implementing 
it for larger structures.

Atomized Spraying Method [124]

This method disables the problems related to limited volume 
for the mass production of dissolving microneedles through 
the required geometry as well as physical characteristics. 
Moreover, the difficulties related to liquid surface tension 
effects, as well as viscosity once filling the microneedle 
molds, can be reduced. However, it has issues of higher air 
emissions and the use of highly compressed air.

Micro‑Molding [125]

In this method, microneedles are made by using molds and 
filled with liquids or chemicals. It has the advantages of 
being comparatively simple and is a cost-effective micronee-
dle production.

Every fabrication method has its benefits and limits as 
described briefly. For silicon microneedle fabrication, lithog-
raphy and deep reactive ion etching methods are commonly 
used. The key phenomenon in the growth of microneedles 
is etching and deposition [126–128]. Laser ablation and hot 
embossing methods are favorable fabrication methods for 
polymeric microneedles. However, electrochemical etching 
is the most effective and is an economic way for fabricat-
ing microneedles of silver, gold, copper, other metals, etc. 
[129–132].

Testing and Evaluation

After the successful fabrication and designing of micronee-
dles till 2005, the researchers switched their interests 
and started exploring the methods for testing fabricated 
microneedles.

For microneedle testing, different skins from animals and 
vegetables besides humans have been used until now:

•	 potato skin [133],
•	 chicken skin [134],
•	 mouse skin [13, 32, 124, 135],
•	 beef liver [92],
•	 cadaver skin [34, 115],
•	 pigskin [136, 137],
•	 chicken leg, and
•	 human skin [29, 138–142] have been used.

Also, microneedles are coated using a solid-state influ-
enza vaccine to increase the efficiency of the vaccine and 
then tested on the skin of mice [143]. A short closely pointed 
microinjection array has been established to understand the 
result of stress rate on the accuracy of permeation into ani-
mal skin [144]. Reference [145] has examined that influ-
enza disease-like elements coated on microneedle arrays 
can produce stimulatory consequences on Langerhans cells 
in the skin of a human. The extremely short microneedle 
has been fabricated by Si wet-etching technology as well as 
tested for transdermal drug delivery into human skin [26]. 
The detachable-tipped microneedles have been presented 
and verified for simple delivery of drugs and vaccines into 
human remains skin [146]. A nominally intrusive structure 
has been established employing a microneedle conductor 
array to transport macromolecular medicines to the subter-
ranean skin nerves and tested on tonsured mouse skin [138]. 
Solid-silicon microneedle patches have been consumed 
using altered lengths and geometry to pierce the human 
epidermis [147, 148]. Microneedle array rollers have been 
established and tried on human and pigskin to rise skin pen-
etrability and for cosmetic surgery [149]. Microneedles have 
also been used for delivering PLGA nanoparticles in the skin 
of humans [38]. Solid-based polymer microneedles have 
been established to examine the transepidermal water loss 
depths of dermatome human skin [35]. The effectiveness of 
transdermal delivery of insulin has been examined by means 
of microneedle rollers on rats which are diabetic [150]. The 
influenza vaccine having viral particles has been studied and 
tested by means of microneedle patches on bone marrow 
cells and lungs of mice [151]. Thus, many researchers have 
tested their fabricated needles to make sure their quality is 
good and they are safe to use for biomedical applications.

Safety Concerns

Solid microneedles are being used for harmless and effective 
drug delivery and for vaccines through generating flexible 
microchannels in the skin [152].

Microneedles are insignificantly invasive drug delivery 
structures that have been considered or deliberated for safety. 
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Safety concerns are primarily associated with any kind of 
infection risk. Other factors to study include user suitability 
as well as environmental issues.

•	 Pain
•	 Bleeding
•	 Skin irritation
•	 Remaining vaccine left in structure and on the surface of 

the skin

On experience using hypodermic needles, the con-
taminated needles can cause the greatest risk of infection. 
Therefore, single-use adequately clean microneedles that 
are sterilized would cause a little risk of infection. Though, 
the skin is continually in connection with environmental 
entities and becomes voluntarily colonized through definite 
microbial species. Any hole in the skin can give entry to 
microorganisms that might cause confined or total infection. 
Microneedle arrays comprising hundreds as well as thou-
sands of microneedles might consequently be problematic. 
Though, the threat of infection is linked to a large number 
of factors including.

•	 the number of breaches as well as their sizes,
•	 the penetration of breaches,
•	 the number of microbes entering the skin as well as their 

nature, and
•	 the discrete vulnerability of the patient.

In clinical practice, it looks improbable that any trivial 
injuries caused by the usage of microneedles would result 
in substantial safety concerns. Certainly, the skin barrier is 
regularly breached in the course of communal experiences of 
slight abrasion, e.g., shaving; nonetheless, infection hardly 
occurs [153, 154].

Even though pain is not a safety concern per capita; 
it, however, has an emotional impact on patient reception 
and safety perception. Initial studies about sharp-tipped 
microneedles revealed that they are considered normal as 
painless in human subjects [51, 155].

Also, the epidermis is lacking vasculature, and the utmost 
shallow capillary bed is situated in the upper dermis near 
the junction of the dermal-epidermal. As a consequence, 
microneedles piercing the skin deeper than nearly 100 µm 
might rupture capillaries. Regardless of this expectation, 
many animal and human studies have not witnessed bleed-
ing after treatment with microneedles [156, 157].

Also, no skin irritation occurs in any of the studies when 
insertion of drug or vaccination is done by using micronee-
dles. However, some more sensitive skins can have some 
redness or tenderness; otherwise, there is no such proof 
found [24, 158].

The insinuations of having vaccine residual left on 
microneedles or on the skin surface rest on the particulars 
of the vaccines and their preparation. In any situation, mini-
malizing the residuals could be useful from a safety and 
conservational standpoint [154].

Jiang et al. [159] studied the existence of microchannels 
or infections after the inclusion of microneedles into the 
rabbit’s cornea through a standard lamp. They identified that 
microchannels vanished in 3 h, and there was no sign of a 
provocative response. Thus, it proposes that microneedles 
can be considered appropriate for drug delivery to the eyes 
for the cure of ocular diseases. Damme et al. administered 
the influenza injection intradermally through microneedles 
as well as intramuscularly via conventional hypodermic nee-
dles. They considered that pain linked with the insertion 
of a needle was considerably less through microneedles. 
After the insertion of the microneedle, ephemeral reac-
tions happening on the skin at the site where microneedles 
were applied were found to be endurable. They determined 
that efficient vaccination could be accomplished utiliz-
ing microneedles as compared to the conservative intra-
muscular distribution of influenza injection. Laurent et al. 
[160] proved a study in which protection, as well as the 
effectiveness of rabies vaccination, were administered via 
microneedles. They also found acceptability with effective 
vaccination via microneedles as compared to conservative 
vaccination. Gill et al. [161] deliberated the consequence of 
microneedle length as well as their number on pain. They 
described that pain increases with the increase in length of 
microneedles, while pain increases slightly when the num-
ber of microneedles increases. Thus, it was concluded that 
skin permeation should have an increase in the number of 
microneedles as compared to microneedle length to consider 
less pain. Bal et al. [162] and Kaushik et al. [51] consid-
ered the protection of microneedles and stated that drugs 
could be transported deprived of any adversarial reactions 
and pain via microneedles. Generally, it is concluded that 
microneedles are secure; nonetheless, few trials remain to be 
confronted for their commercialization and improvement as 
an effective transdermal drug delivery technology.

Applications of Microneedles

Today there are numerous and diverse applications of 
microneedles. In genetic engineering, cell biology, and 
molecular engineering, it is preferred to change a method 
to host peptides, oligonucleotides, proteins, DNA, as well 
as other inquiries into the cells to modify their functions. 
Therefore, solid microneedles can be applied to the cells for 
the distribution of molecules over impervious membranes. It 
has been verified that microfabricated needle patches could 

1474 Journal of Pharmaceutical Innovation  (2022) 17:1464–1483

1 3



be used to transport DNA into plants and mammalian cells, 
persuading cell alteration [12, 163, 164].

Another significant application of microneedle is 
in nominally invasive drug delivery. Due to the slight 
cross-sectional area of normally several-hundred square 
micrometers, any risk of damaging effects can be easily 
reduced. Also, the drug delivery can be restricted to a pre-
cise and confined tissue or area in the human body. Also, 
to study the neural events through some degree of trauma 
to the tissues, solid microneedles have been used. The 
short channel of solid microneedles offers another benefit 
in drug delivery. Microfabrication technology permits the 
needles to have channel lengths easily controllable at a 
microscopic scale. The needles can be premeditated to 
pierce just below the outer layer of skin which is called 
stratum corneum, and it has precise permeability. As the 
endings of nerves occur at the penetration of ~ 100 μm, 
therefore delivery at this position will ease pain, con-
tamination, or wound. Furthermore, since there is a large 
number of capillaries present inside the skin layer, the 
drug will be freely immersed in the body, thus allowing 
quick treatment [165].

Microneedles can likewise be used to extract samples, 
hence finding substantial applications in the health moni-
toring field as well as performing biochemical analysis. 
For example, in patients having diabetes, microneedles 
are the finest way to check their glucose level and to man-
age multiple dosages of insulin. The usage of micronee-
dles can make it practically a painless and considerably 
more pleasant experience for patients.

Microneedles also have applications in the electronics 
field as well as sensors. They have been used in scanning 
tunneling microscopes, Millipede data storage techniques, 
and atomic force microscopes, as probes for superficial 
modification and reporting. Microneedles have been func-
tional in microdialysis where the microneedles are made 
penetrable only to trivial molecular weight combina-
tions. This guards the sensors against advanced molecular 
weight composites, e.g., proteins assisting to maintain 
the operative viability of the medicinal monitors. Further 
applications comprise heads of printer and electrospray 
emitter control valve [66, 166–171].

Products Made with Different Types 
of Microneedles

Prospective of microneedles to change the worldwide 
transdermal market is emphasized in terms of the accom-
plishment rate of microneedle technologies in clinical 
trials getting to the worldwide market. Thus, the arrival 
of commercial microneedle products in the market is 

extremely estimated as they have the potential of repre-
senting the incredible impact on clinical medication in the 
nearby future. The summary of designed products using 
different types of microneedles is given in Table 3.

Commercialization Issues

It has been observed that there are numerous applications 
of solid microneedles, but only a small number of products 
have been marketed until now. For the delivery of drugs 
at both large and small scale, it is necessary to consider 
the efficiency and safety of microneedles while develop-
ing them. When metallic microneedles are inserted into 
the skin, there is a chance of some metallic traces to be 
retained under the skin which afterward causes irritation, 
swelling, erythema, discoloration, or further side effects. 
Repeated insertion of microneedles at the same spot may 
result in the above-mentioned problems. Application of 
microneedles at altered sites each time or deviation in skin 
depth in persons may result in deviation in bioavailability 
that needs to be measured while developing the micronee-
dles. Nowadays, research is more fixated on the expan-
sion of new technologies for the supervision of current 
molecules that are previously confirmed as safe, therefore 
reducing growth time and promising an increased suc-
cess rate. That is why staff in the pharmaceutical industry 
struggle for the successful expansion of microneedles as 
transdermal drug delivery systems [185, 186].

Additionally, biohazardous piercing waste may be left 
behind after practice which needs to destruct carefully. 
Dissolving microneedles on the other hand are usually 
made of polysaccharides, which on insertion completely 
dissolve in the skin, leaving behind no harmful waste. 
Whole dissolution, correct insertion into the skin as well 
as filling of drugs comprehensively at the tip merely are 
the top challenges to be confronted during the develop-
ment of dissolving microneedles. The usage of hollow 
microneedles is an alternative approach that gains the 
interest of researchers owing to its capacity to control a 
larger range of molecules. However, hollow microneedles 
do not hold enough strength, and this is their main issue 
that must be focused on [187, 188].

Other Challenges

There are several challenges related to microfluidic devices 
in the biomedical field which include fabrication issues, 
designing level issues, and packing level issues when 
considering these devices to be used in different practi-
cal applications. The more common and severe issues 
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related to microneedles at fabrication and design levels 
are evading of clogging consequence, appropriate length, 
toughness, strength, piercing tip to evade pain, drug con-
frontation, less cost of fabrication, dependability, and 
biocompatibility. It is needed to adopt appropriate group 
fabrication techniques to decrease the budget for devices. 
The main consideration is the packaging of these micro-
fluidic devices. Packaging should be vigorous and resilient 

to avoid any damage or infection caused by these microflu-
idic devices [10, 189]. Concurrently, the accidental drug 
discharge in storage from the reservoir should be stopped. 
A protective covering may be mandatory to protect such 
kinds of small-sized devices, e.g., sharp-tipped micronee-
dles. Mostly, the microneedles stated in the literature have 
been suggested as stand-alone devices. The integration of 
microneedles is a prodigious challenge that confines the 

Table 3   Summary of products manufactured using different microneedles

Product name Manufacturer name Description of microneedles Commercial applications References

Dermaroller® DermaSpark, Canada Metal-based microneedle 
arrays

Used for acne treatment, 
stretch mark removal,  
reduce hair loss. Capable of 
enhancing drug absorption

Ita et al. [10]

MicroHyala® CosMED Pharmaceutical 
Co. Ltd., Japan

Dissolvable microneedle 
arrays

It comprises hyaluronic acid 
which is released into the 
skin for wrinkle treatment

Hirobe et al. [172]

VaxMat® TheraJect Inc., USA Dissolvable microneedle 
arrays

It is used for providing  
macromolecules, e.g., 
peptides, proteins, and drug 
vaccines

Lhernould et al. [173]

Micro-Trans® Valeritas Inc., USA Microneedle arrays Delivery of drug inside the 
dermis deprived of drug 
size limitations, control, 
structure, or patient’s skin 
appearances

Wilke et al. [110]; Bora 
et al. [174]

DrugMAT® TheraJect Inc., USA Dissolvable microneedle 
arrays

It transports drugs of hundred 
micrograms quickly through 
the stratum corneum in 
epidermal tissues

Caffarel et al. [175];  
Halder et al. [176]

NANOJECT® Debiotech, Switzerland Microneedles patch device Beneficial for intradermal as 
well as hypodermic drug 
delivery also for diagnostics 
of interstitial fluids

Joshi et al. [200]

Soluvia® Becton Dickinson, USA Hollow microneedles arrays It is a pre-fillable  
microinjection scheme for 
precise intradermal drug 
transportation and injections

Donnelly et al. [177]

IDflu®/INTANZA® Sanofi Pasteur, Lyon, France Intradermal microneedle 
vaccinations

Pre-filled with influenza  
shot for vaccination of  
intradermal infection

Bragazzi et al. [178]

MicronJet® NanoPass Technologies, 
Israel

Intradermal microneedle 
booster

Used via any normal syringe 
for painless drug delivery, 
protein, as well as vaccines

Levin et al. [179]

Macroflux® Zosano Pharma Inc., USA Metallic-based microneedle 
arrays

Transportation of peptides as 
well as vaccines

Garland et al. [180]

Microcore® Corium International Inc., 
USA

Dissolvable based peptide 
microneedle arrays

Delivery of small and large 
molecules, e.g., peptides, 
proteins, plus vaccines

Jana et al. [181]

Dermapen® Not reported Microneedle patch-based 
device

Used for the treatment of 
numerous disorders of the 
skin, e.g., acne, stretch 
marks, as well as hair loss, 
and improve drug immersion

Ali et al. [182];  
McCrudden et al. [183]

Micro-structured 
transdermal patch

3 M Corp., USA Hollow microneedle patch It transports liquid  
preparations over a series of 
viscidness

Davis et al. [184]
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usage of these microfluidic devices for biomedical applica-
tions. The final price of these delivery devices should be 
reasonable for the patients [190–192]. Nowadays, the trend 
is changing toward the usage of polymer materials (e.g., 
PDMS, PGA, PMMA) for the fabrication of micronee-
dles to overawe most of the above-referred issues as these 
stated materials are biocompatible, inexpensive, and they 
show exceptional mechanical as well as chemical proper-
ties [193–195].

Discussion

Solid microneedles are therefore considered to be crucial 
components for biomedical systems. Material selection is 
an important concern in biomedical devices. Silicon has 
been extensively used as a material in microfluidic devices; 

however, polymer materials (e.g., PGA, PMMA, PDMS, 
PLLA, PC, and PLA) are exchanging Si owing to biocom-
patibility, ease of fabrication, low cost, as well as excep-
tional structural properties [196–198].

Solid microneedles having sharp tips are considered to 
be more useful for drug delivery/transport. The efficiency of 
drug delivery in recent years has also been explained through 
various researchers by microneedle testing on mice, pigs, 
chickens, and humans. Many researchers have described 
the structure, as well as breakage studies of microneedles, 
through applying force and stress to foresee the failure and 
twisting of microneedles [199]. The graphic illustration of 
force and stress comparison for microneedles is given below 
in Fig. 4.

The material selection is very important for the fabrica-
tion of microneedles, and how much strength they endure 
when applied to human skin or any animal body is also 
important. The strength of materials concerning their 

Fig. 4   Comparison between 
force and stress on microneedle 
insertion
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ultimate tensile strength and Young’s modulus is given in 
the graph below:

The length and diameter of microneedles are also impor-
tant parameters to be studied while developing microneedles 
and how they are useful in the insertion or application of 
microneedles. The graph for length and diameter comparison 
is given in Fig. 5 below.

Conclusion

Microneedles give many different benefits compared to 
the conventional needle/syringe as well as other delivery 
techniques that might also be harmless and effective. For 
instance, the patch-based setup of numerous microneedle 
designs would assist simple vaccine supervision and prob-
ably self-administration by patients. The minor size of 
microneedle structures should also ease storing and prompt 
distribution to dominant locations. Solid microneedles are 
considered to be a striking platform for drug delivery as they 
have a low cost of manufacturing, and they can play a sig-
nificant role in the medicinal response to a virus pandemic. 
Solid microneedles can be easily fabricated and are stronger 
as compared to hollow and dissolving microneedles. Solid 
microneedles using diverse materials, such as glass, met-
als, silicon, and polymers, have been stated for biomedical 
applications; however, silicon has been typically used as a 
substrate among other materials in the fabrication of micro-
fluidic devices. Silicon is brittle and each time involves some 
risks for health care. Biocompatibility is very essential for 
well-being, and the reason trend is shifting toward polymer 
materials. Most polymers, such as PDMS, PGA, PLA, and 
PMMA, are precisely appropriate for biomedical devices 
owing to their upright biocompatibility, low budget, easiness 
of fabrication, and exceptional chemical as well as mechani-
cal properties. According to the given literature review, the 
authors determine that microneedles, their commercializa-
tion, and biomedical applications continue to be growing 
day by day and still need improvements and advancements.
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