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Abstract
Introduction Roller compaction is commonly used in the
pharmaceutical industry to improve powder flow and compo-
sitional uniformity. The process produces ribbons which are
milled into granules. The ribbon solid fraction (SF) can affect
both the granule size and the tensile strength of downstream
tablets. Roll force, which is directly related to the applied
stress on the powder in the nip region, is typically the most
dominant process parameter controlling the ribbon solid frac-
tion. This work is an extension of a previous study, leveraging
mathematical modeling as part of a Quality by Design devel-
opment strategy (Powder Technology, 2011, 213: 1–13).
Methods In this paper, a semi-empirical unified powder com-
paction model is postulated describing powder solid fraction
evolution as a function of applied stress in three geometries:
the tapped cylinder (uniaxial strain—part of a standard tapped
density measurement), the roller compaction geometry (plane
strain deformation), and tablet compression (uniaxial strain).
A historical database (CRAVE) containing data from many
different formulations was leveraged to evaluate the model.
The internally developed CRAVE database contains all as-
pects of drug product development batch records and was
queried to retrieve tablet compression data along with corre-
sponding roller compaction and tap density measurements for
the same batch. Tablet compaction data and tap density data
were used to calibrate a quadratic relationship between stress

and the reciprocal of porosity. The quadratic relationship was
used to predict the roll stress and corresponding roll force
required to attain the reported ribbon SF.
Results The predicted roll force was found to be consistent
with the actual roll force values recorded across 136 different
formulations in 136 batch records. In addition, significant cor-
relations were found between the first and the second order
constants of the quadratic relationship, suggesting that a single
formulation-dependent fitting parameter may be used to de-
fine the complete SF versus stress relationship. The fitting
parameter could be established by compressing a single tablet
and measuring the powder tapped density.
Conclusion It was concluded that characterization of this pa-
rameter at a small scale can help define the required process
parameters for both roller compactors and tablet presses at a
large scale.
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Introduction

The pharmaceutical industry currently faces significant
challenges. Patent expirations trigger fierce competition
between innovator and generic companies. The conven-
tionally long development cycle and expensive cost to
commercialize a brand-name drug product significantly
limits the production of new medicines. Innovation is
necessary to break down such limitations. The promise
of BBig Data,^ defined here as a collection of structured
data sufficiently large to reveal patterns and trends or
permit analyses or modeling not previously practical,
may provide one such innovation.
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With the emergence of the topic of Big Data into the
mainstream media, the pharmaceutical industry is begin-
ning to leverage existing tools to analyze and mine his-
torical data. The promise of Big Data permeates almost
every aspect of drug product research and development,
from defining disease states to identifying new indica-
tions, from drug discovery to drug development, and
from clinical trial design to drug efficacy and safety
evaluation, etc. The subject of Big Data goes hand in
hand with a renewed focus on mathematical modeling
and simulation within the pharmaceutical industry.
Powder compaction is one area that can benefit from
Big Data-based modeling as it is inherent to nearly all
solid dosage form drug product development and
manufacturing processes. Two common unit operations
involving powder compaction are roller compaction and
tablet compression. As tablet compression serves as the
main approach to transfer powder to a consolidated
compact by mechanical means, roller compaction is
commonly used in the pharmaceutical industry to im-
prove powder flow into the tablet press and composi-
tional uniformity. Although first-principles theories of
pwoder mechanics exist for roller compaction and tablet
compression [1, 2], the majority of drug product devel-
opment activities involving powder compaction rely
heavily on the generation of experimental data.

In a previous publication [3], a first-principles-based
theory was developed to predict powder compaction be-
havior and stress evolution in roller compactors. While
the model was derived and qualitatively verified using a
limited set of published works [4–10, 18] and new ex-
perimental data, verification with a large number of ex-
periments was not practical at the time. Since that time,
the internally developed CRAVE database has been
established at Eli Lilly and Company and has passively
collected all aspects of drug product development batch
record data for 8 years, including 136 different roller
compaction-based formulations and/or products.

In this work, the previous powder compaction model was
expanded to include powder tapped density in a unified solid
fraction (SF) vs stress powder compaction model. The model
was interrogated using data from the CRAVE database.
Specifically, tablet compaction profile data and pre-blend tap
density data were used to define an empirical relationship
between applied stress and the reciprocal of porosity. The
correlation was then used to predict the equivalent stress re-
quired to attain the reported (corresponding) ribbon solid frac-
tion (also queried from the database). The comparison be-
tween the predicted and the observed roll stress and its relation
to the equation reported previously is discussed. In all, >2000
batch records were queried from the CRAVE database. Of
these, 136 were found to contain a full set of experimental
data associated with roller compaction. These data included

measurements of tapped powder SF, ribbon SF, roll stress, and
a tablet compression profile (SF vs stress).

Materials and Experiments

Data Retrieval

Over the past 8 years, an effort has been maintained at
Eli Lilly and Company to systematically and passively
catalog all aspects of drug product development data
into a single large database. The CRAVE database con-
tains the entirety of development batch records, from
raw material attributes to end-product testing data as
well as relevant process parameters and intermediate
product attributes. Such parameters and attributes in-
clude lot numbers, dates, material amounts, equipment
sets, etc.—everything that is recorded in a standard de-
velopment batch record, organized into tables and de-
fined fields within a relational database. For this study,
the CRAVE database was queried to obtain the tablet
compaction profile data, the associated powder tap den-
sity data, and the associated ribbon solid fraction data—
all organized by batch record. In total, more than 2000
batch records were interrogated of which 136 were roll-
er compaction-based and found to also possess complete
data sets. Within the 136 batches, powder tap densities
were measured using a Vankel tap density analyzer.
Ribbons were roller-compacted on either a Fitzpatrick
IR520 roller compactor or a Gerteis MiniPactor.
Tablets were compressed on a wide variety of tablet
presses including a Carver press, a Kikisui virgo 520,
a Fette (models 1090, 1200, and 2090), and a Korsh
(models XL100 and XL200). Batch sizes ranged from
750 to 80 kg. Drug loadings ranged from 0.5 to 77.3%
(based on salt form weights). The materials included 13
different active pharmaceutical compounds. Nearly 30
different excipients or excipient grades were used across
the 136 formulations. Microcrystalline cellulose and
Mannitol (various grades of each) were the most com-
mon diluents. Magnesium stearate (vegetable-sourced)
and sodium stearyl fumarate were commonly employed
lubricants. Most formulations leveraged the cross-linked
carboxymethylcellulose as a disintegrant and colloidal
silicon dioxide as a common glidant. In most cases,
the unit formula varied slightly between the roller-
compacted ribbons and the tablets due to the addition
of extra-granular excipients. However, these differences
were found in a separate analysis to have negligible
impact on the consolidation behavior of the unit
formulas.

The tablet compaction profiles included tablet solid frac-
tions calculated at multiple compression stresses. The tablet
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SF values were determined from tablet weight and thickness
measurements (typically using an average of 10 tablets) as
follows:

SF ¼ m
ρ A t−2tcup

� �þ 2V cup

� � ð1Þ

where m, t, and ρ, denote the tablet mass, thickness, and true
density, respectively, and A, tcup, and Vcup denote the die hole
cross-sectional area, the cup depth, and cup volume, respec-
tively. The latter three values were generally read directly
from the tablet compression tooling drawings. The corre-
sponding tablet compression stress was determined for each
data point as the compression force divided by A.

The powder tap density data were recorded as a part of
routine powder characterization following guidance from
USP chapter <616>. The tapped density was divided by the
blend true density to obtain the tapped solid fraction. Due to
the negligible stresses applied during the tapped density mea-
surement in comparison to tablet compression forces, a nom-
inal value of 0 MPa was used as the corresponding stress for
the tapped powder and for curve-fitting purposes as discussed
below.

The ribbon solid fractions were recorded during the course
of a roller compaction unit operation and were typically mea-
sured on ribbon samples collected from the roller compactor
using a GeoPyc Envelope Density Analyzer. The measured
ribbon density was divided by the true density to determine
the ribbon solid fraction. The corresponding roll stress was
calculated from the measured roll force, radius, and width
based upon the previously reported Eq. (2) [4]:

σEquiv ≈ 9:1
F
Rw

ð2Þ

where F, w, and R denote the measured roll force, width, and
radius, respectively. The proportionality constant 9.1 was
established in the previous publication [4] and provides an
effective peak roll stress, accounting for both the non-linear
pressure distribution across roll surfaces as a function of the
rolling angle, as well as the differences between the plane-
strain compression geometry provided by roller compactors
vs the uniaxial compression geometry provided by tablet
presses. The accuracy of this proportionality constant for the
estimation of effective roll stress is further evaluated in this
work.

Data Analysis

Empirical mathematical fitting was performed separately
for each manufactured batch of tablets in order to ac-
commodate the impact of raw material variability.
Multiple fitting approaches were explored to empirically
relate SF to the applied stress on the tablet data and

powder (tap density) data. The fitting approaches in-
cluded quadratic fitting between solid fraction and
stress, linear fitting between stress and the reciprocal
of porosity, and quadratic fitting between stress and
the reciprocal of porosity. Other data fitting approaches
were also attempted including power law and high-order
polynomial fits. However, these were immediately elim-
inated from further consideration due to their visibly
poor ability to fit the data across such a wide range
of formulations/batch records. Only the tablet compres-
sion and pre-blend tapped SF data were used to con-
struct the correlation for each batch. The distribution of
the correlation coefficients (R2) across the 136 batches
was used to assess the best mathematical fitting
approach.

Once calibrated against tablet data and powder (tap densi-
ty) data, the inverse correlation was used to predict roll stress,
given the reported ribbon solid fraction. The predicted stress
was compared to the experimentally reported roll stress
(Eq. (2)) in an effort to assess the accuracy of the proportion-
ality constant of 9.1. The reported roll stress was the experi-
mental set-point documented in the batch record to generate
the corresponding ribbon solid fraction.

Software and Data Processing

All queries were written in Toad for the SQL Server and were
executed against the SQL Server-based CRAVE database. All
calculations were executed using Matlab 2013a (The
Mathworks, Natick, MA) with multiple Matlab routines writ-
ten in-house to support this work.

Results and Discussion

Analysis of the Empirical Mathematical Fits

The distribution of correlation coefficients for each curve
fitting approach is shown in Fig. 1. As shown, the quadratic
fitting between stress and reciprocal of porosity led to the
highest R2 values. Data outside individual boxes were found
to be common batches where tablet SF did not increase sub-
stantially with increasing applied stress. Given its highest R2

reached, the quadratic fitting approach described as follows
was leveraged in further calculations:

1

ε
¼ αþ β⋅σþ γ⋅σ2 ð3Þ

where σ and ε denote the applied compression stress and
porosity (1−SF) of the powder, ribbon, or tablet. Of the 136
sets of data, nine example curve fits are shown in Fig. 2. The
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Fig. 2 Stress vs 1/porosity plot for nine example batches out of the entire 136 development campaigns and its individual quadratic fitting as per Eq. (3)

Fig. 1 Box distribution plot of
the correlation coefficient after
applying three different fitting
approaches onto 136 batches of
development campaign data
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figure shows compression profiles that were not fit particular-
ly well (top row), were fit reasonably well (middle), and were
fit well (bottom row). The profiles include powder data (cir-
cles at zero stress), ribbon data (stars), and tablet data (circles
at non-zero stress). Circular data points were used to establish
the quadratic fit while stars (ribbons) are shown as an indica-
tion of the predictability of the ribbon SF-stress behavior. The
figure shows that in cases with poor correlation coefficients,
appreciable scatter existed in the tablet data. Further probing
revealed that these data usually related to tablets generated
under varied conditions such as at low speed and high speed,
different tooling, and in some cases on different tablet presses.
While the high scatter resulted in a low correlation coefficient,

the profiles did not suggest an inadequate or incorrect fitting
approach overall. Thus, Eq. (3) was considered to reasonably
represent the complete, unified compaction profiles across
powders, ribbons, and tablets.

After the initial evaluation, Eq. (3) was further simplified
by considering the two following facts. First, since 0MPa was
used as the corresponding stress for the tapped density test, α
(the intercept) should correlate strongly with, and could po-
tentially be replaced by, the reciprocal porosity of the tapped
powder bed (1/εσ = 0). As shown in Fig. 3, the intercept α was
indeed shown to correlate strongly with 1/tapped porosity
(1/εσ = 0). Upon further investigation, the first- (β) and second
(γ)-order coefficients were also found to be linearly correlated

Fig. 3 Scatter plot between the
intercept (α) per quadratic fitting
by Eq. (3) and the reciprocal
porosity of the tapped powder bed
(1/εσ = 0). The data for the nine
example batches shown in Fig. 2
are color-coded according to its
correlation coefficient of the
quadratic fit

Fig. 4 The relation between the second (γ)- and first (β)-order term of the quadratic Eq. (3). The data for the nine example batches shown in Fig. 2 are
color-coded according to its correlation coefficient of the quadratic fit
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as shown in Fig. 4. Thus, the first-order term (β) could be re-
written as a linear function of the second-order (γ) coeffi-
cients. With these observations, Eq. (3) was further simplified
as follows:

1

ε
−

1

εσ¼0
¼ β⋅σþ γ⋅σ2 ð4Þ

1

ε
−

1

εσ¼0
¼ −260⋅γ þ 0:025ð Þ⋅σþ γ⋅σ2 ð5Þ

Based upon this simplification, Eq. (5) has γ as the only
independent variable, which can be determined by the availabil-
ity of 1/εσ = 0 and one pair of stress (σ) and porosity (ε) values
for a single tablet. The equation for γ can be written as follows:

γ ¼

1

ε
−

1

εσ¼0

σ
−0:025

σ−260
ð6Þ

Fig. 5 Stress vs 1/porosity plot for nine example batches out of the entire 136 development campaigns and its individual quadratic fitting as per Eq. (5)

Fig. 6 Correlation plot between measured and predicted roll stress as per Eq. (3) (left) and as per Eq. (5) (right) across the entire 136 development
campaigns. In both plots, the black line represents the fitted line, while the blue line represents the unity line
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The quadratic fitting of the simplified Eq. (5) on the
nine example curve fits in Fig. 2 is shown in Fig. 5.
Comparison of Fig. 2 with Fig. 5 shows that the sim-
plified Eq. (5) captures the SF vs stress response of
these materials reasonably well, given the fact that it
requires only a single fitting parameter. Meantime, it is
worthy to point out that two out of these nine examples
showed a noticeable deviation from the quadratic fit
(Fig. 2f and h vs Fig. 5f and h) in comparison to those
of the original data. Investigation showed such a devia-
tion was caused by the scattered nature of the data
during the fitting between the first- (β) and second
(γ)-order coefficients, as highlighted by the arrows in
Fig. 4b.

Predicted vs Observed Roll Stress

Both Eqs. (3) and (5) were used to interpolate the effective roll
stress, given the ribbon SF. The correlation plot between pre-
dicted and measured roll stress is shown for each equation in
Fig. 6. While significant scatter exists in the data, the slope of
the best fit line is near 1 for both correlations, suggesting that
the coefficient of 9.1 in Eq. (2) is reasonable. The simplifica-
tion from Eq. (3)/Fig. 2 to Eq. (5)/Fig. 5 was not found to
result in any significant negative impact on the prediction of
the roll stress. This is likely because the prediction of roll
stress involved interpolation (as opposed to extrapolation) be-
tween the powder tapped density data and the tablet data. This
interpolated result was moderately insensitive to the quality of
the fit in most cases.

Understanding of the Quadratic Fitting

The quadratic relationships defined in Eqs. (3) and (5) indicate
that the determination of the entire compaction profile could
be reasonably modeled by measuring tapped blend porosity
along with the SF and compression stress for a few tablets.
Thus, pharmaceutical compaction profiles of a new molecule/
new formulation can be predicted for both ribbons and tablets
using very few experimental data points generated at a small
scale in a lab environment. Givenmore andmore common use
of the instrumented tablet press, obtaining these data points
along the porosity-applied stress profiles is expected to be
very affordable. It is recommended to use a few more tablets
and Eq. (3) to define the compaction profile if the intended
purpose is to determine appropriate stress to produce a tablet
with a given SF, while a single tablet along with Eq. (5) is
expected to be sufficient to determine the roll stress for a given
ribbon SF. This is expected to save significant time, labor, and
material when assessing the impact of formulation changes on
the powder consolidation behavior.

Conclusions and Prospective

The analysis provided in this paper illustrates the use of Big
Data to provide two key results. First, data from 136 batch
records encompassing a wide array of formulation composi-
tions and process conditions were used to quantitatively con-
firm the previously published relation between effective roll
stress and roll force, radius, and width (Eq. (2)). Second, an
empirical compaction model (Eq. (3)) is provided capturing
the SF-stress behavior of pharmaceutical powders across a
broad range of compression stresses and across three loading
geometries associated with tapped density testing, roller com-
paction, and tablet compression. Additionally, a simplified
compaction model (Eq. (5)) was provided and requires only
two data points for calibration. Both data points can be mea-
sured quickly and inexpensively at a small scale in a labora-
tory setting. Although the application was demonstrated here
for the case of roller compaction, such a powder compaction
profile is expected to be useful in other areas as well, such as
in the prediction of the force used to compress tablets to a
target solid fraction [11–19].
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