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Abstract
Purpose We present a framework to prioritize strategies for
monoclonal antibody (mAb) second-generation process de-
velopment, or post-approval optimization.
Methods Design of experiments (DoE), in conjunction with
principal component analysis (PCA), were employed to iden-
tify process parameters that had the most impact on down-
stream purification cost of goods. Statistically significant pa-
rameters were identified through a DoE study, while the PCA
characterization was applied as an independent tool to further
elucidate the relative importance of these parameters. A sto-
chastic approach incorporating process uncertainties was used
to illustrate the distribution of downstream cost of goods un-
der different process conditions.
Results This framework offered insights on the relative con-
tribution of each parameter to downstream cost of goods, and
generated frequency distribution of the downstream cost of
goods by incorporating process uncertainty. Such systematic
approach to prioritize development strategies under com-
pressed timelines could be useful for biopharmaceutical com-
panies to achieve a competitive advantage.

Keywords Design of experiment . Principal component
analysis . Monte Carlo . Pharmaceutical . Manufacturing .

Cost of goods

Introduction

Monoclonal antibodies (mAb) have become an increasingly im-
portant class of agents that contribute to several major advances
in pharmacotherapy. Over the past decade, FDA has approved
15 new therapeutic antibody products spanning four major ther-
apeutic areas [1], with 52% in immunology, 36% in oncology,
4% in infectious disease, and 8% in other areas [2]. For antibody
products that are currently in development, more than half
(59%) are in the area of oncology [2]. In the past few years,
FDA granted breakthrough designation and accelerated the ap-
proval of several oncologymAbs such as Keytruda (Merck) and
Opdivo (Bristol-Myers). Indeed, the market for monoclonal an-
tibodies is rapidly expanding, and it represents the industry seg-
ment with the highest growth rate over the last decade [3].

To respond to the increasing market demand for mAbs, bio-
tech and pharmaceutical industry, in collaboration with acade-
mia, have enhanced their strategies to increase bioprocessing
productivity. Owing to the improvement in the cell culture
process, and the advance in expression technology, mAbs prod-
uct titer has increased from below 1 g/L to 1–5 g/L, with some
companies reporting 10–13 g/L for extended culture duration
[4]. The increase in cell culture titer has shifted the manufactur-
ing and economic bottleneck from upstream processing (USP)
to downstream processing (DSP). Sommerfeld and Strube have
shown that as cell culture titer increases from 0.1 to 1 g/L, the
ratio of USP to DSP costs drops from 55:45 to 30:70 [5]. At
higher product titer, larger chromatography columns, mem-
brane areas, buffer consumption, and/or additional chromatog-
raphy or filtration cycles would be required to purify the cell
culture harvest from upstream. Experience in the industry
shows (which is simulated in our case study later in the paper)
that the overall cost per gram of drug substance purified initial-
ly decreases as titer increases; however, the cost plateaus as the
titer increases further. In a higher titer process, the increase in
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downstream cost can potentially negate the gains in titer, or
overall process throughput.

Given the strong competition in the pharmaceutical industry,
the entry of biosimilars into the market, combined with the
recent changes in the US healthcare system, the ultimate suc-
cess for monoclonal antibody process development will be
driven by the ability to produce a high throughput and cost-
effective process [6, 7]. While there have been a number of
efforts trying to increase production capacity by increasing cell
culture titer, the industry has been exploring strategies to reduce
the cost of goods by optimizing downstream processing.
Strategies such as increasing downstream yield, membrane or
resin reuse, chromatography or membrane loading capacity,
and decreasing cycle time and buffer consumption have been
utilized to improve throughput, reduce raw material and con-
sumable usage, shorten processing time, and ultimately achieve
a lower downstream cost of goods. Under compressed drug
development time scales, it is important for companies to effec-
tively prioritize their strategies to accelerate the process devel-
opment effort, thus achieving a competitive advantage.

This paper will specifically focus on reducing the down-
stream cost of goods, which is defined by the downstream cost
per unit of drug substance, through optimizing the purification
process. Building on our prior modeling work in pharmaceu-
tical manufacturing [8–11], we propose a systematic decision-
making framework that (i) utilizes design of experiments
(DoE) in conjunction with principal component analysis
(PCA) to identify and verify downstream process parameters
that impact the downstream cost of goods and (ii) predict the
economic outcome of selected strategies through a stochastic
analysis (Fig. 1).

Method

Monoclonal Antibody Production Process

An example of a typical monoclonal antibody production pro-
cess is depicted in Fig. 2. The process consists of an upstream

process section and a downstream process section. While the
USP includes inoculation, cell culture, and primary recovery,
the DSP consists of protein A chromatography, followed by
two ion exchange steps (flowthrough and bind-and-elute), vi-
rus filtration and ultrafiltration and diafiltration. The down-
stream purification train is designed to capture the antibody,
reduce impurities, such as aggregates, host cell protein, DNA,
leached protein A and adventitious virus, and finally concen-
trate and formulate the product.

Process Simulation Software—SuperPro

A process simulation tool such as SuperPro Designer Version
9.0, Build 9, Special Build 2200 (Intelligen, Scotch Plains, NJ
http://www.intelligen.com/) has the capability of integrating
both process and business modeling functions to facilitate
strategic decision making during process development and
large-scale manufacturing. Some might attempt to model the
cost of goods using excel. However, since changing in one
parameter will cascade the impact on multiple parameters
downstream, SuperPro is more efficient to capture this impact
compared to excel. Input to this tool includes a detailed

Fig. 1 Systematic approach to facilitate decision making during monoclonal antibody process development to reduce cost of goods

Fig. 2 Typical monoclonal antibody manufacturing process
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description of the process steps, and their related costs, such as
capital investment, total spending in infrastructure, labor, and
raw material costs. Figure 3 shows the SuperPro model (more
detailed on parameter values are provided in Appendix
Tables 4 and 5) that we used in this study. The model con-
sists of the major process steps shown in Fig. 2, and the
associated steps, such as sterile filtration, buffer exchange,
and media prep. The parameter values, raw material, and
facility costs used in building this model derived from liter-
ature and process experience. The resulting throughput and

cost models generated can then be utilized to estimate the
final unit cost of drug substance or drug product generated at
manufacturing scale [3].

Design of Experiments

A design of experiments approach was taken to explore
the impact of selected parameters on the downstream
cost of goods. Compared to a One Factor at A Time
(OFAT) approach, which can become very cumbersome

Fig. 3 Monoclonal antibody production process flowsheet
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when there are more parameters (typically >2), DoE is
more efficient in understanding the effect of parameters,
their interactions, and generating a predictive model
with a minimum number of experiments. Table 1 shows
the six parameters studied in our DoE. These parameters
can potentially reduce the downstream cost of goods by
increasing the throughputs (yield) or decrease the con-
sumable cost (loading). The current process ranges are
ranges typically experienced in early phase process de-
velopment, while the optimized range represents the rea-
sonable target ranges after further optimization. This
DoE study encompasses both the current and optimized
ranges and is designed to explore whether the changes
in parameters within these ranges have a statistical sig-
nificant impact on downstream COGs. A central com-
posite design was utilized in this DoE study and a total
of 45 simulations of downstream COGs were performed
for titer set point at 0.5, 2, 4, and 7 g/L.

An R2 value of greater than 95% is required to establish the
validity of the DoE model. A p value of <0.05 is required to
indicate statistical significance.

Principal Component Analysis

To further verify the conclusions derived from the DoE anal-
ysis, the same set of data were processed using principal com-
ponent analysis (PCA) [12]. PCA is a statistical tool that con-
verts a set of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components
(PC). The first PC captures the largest part of variance in the
data, the second PC the next largest, and so on. The result of
PCA is displayed as loading plots, showing contributions
from original variables [12].

Monte Carlo Simulation

Since there are inherent uncertainties in large-scale bioprocess
production, it is important to account for these uncertainties

during process modeling for representative results. The key
sources of technical uncertainties affecting the biomanufacturing
often arise from cell culture titer, chromatography loading,
yields, and process cycle time [13]. Stochastic modeling with
Monte Carlo simulation was utilized in this case study to under-
stand the output distribution of downstream COGs, by incorpo-
rating the effect of uncertainties in process parameters. The de-
tails of our Monte Carlo approach are described below.

Case Study

A simulation case study was set up to compare the different
DSP optimization strategies for high titer (1–7 g/L) process.
Typically, during second-generation process development, or
post-approval process optimization, efforts are devoted to im-
prove cell culture titer and ultimately to increase production
capacity and improve process economic.

In this case study, we first examined the impact of titer on
the overall cost of drug substance through Monte Carlo sim-
ulation. Previous research has suggested that the high purifi-
cation cost can sometimes negate the benefits gained from the
increase in titer and throughput [4]. Hence, to reduce the
downstream purification cost for higher titer process, we first
identified a list of parameters that could have potential impact
on downstream cost of goods and then ranked them based on
previous process knowledge. With this process, we have iden-
tified six parameters to carry forward in our study (Table 1).
These parameters, such as chromatographic yield and loading,
could reduce the downstream COGs by increasing throughput
and reducing the raw material and consumable consumption.
When prioritizing development efforts under compressed
timelines, it is advantageous to select strategies that can max-
imize the reduction of downstream COGs. A design of exper-
iments (DoE) approach was utilized to explore the impact of
selected parameters on downstream COGs and identify statis-
tically significant parameters on COGs. To further confirm
and refine our conclusions from the DoE study, principal com-
ponent analysis (PCA) was used as an alternative method to
understand the contribution of each parameter to the change in
downstream COGs. Finally, for the top parameters selected to
pursue forward, Monte Carlo simulation was performed to
evaluate the frequency distribution of downstream COGs by
incorporating process uncertainties and variability. This sys-
tematic approach help prioritize strategies to reduce down-
stream COGs.

There were several key assumptions made in the DoE and
Monte Carlo simulations:

1. The cost of upstream process is assumed to be indepen-
dent of titer, although the upstream cost can sometimes
vary depend on the feeding strategy and culture duration
at different titers. In this paper, we focus on identifying

Table 1 Parameters and associated ranges for DoE Study

Parameters Current
process range

Optimized
process range

Throughput

Protein A yield (%) 75 ± 5 85 ± 5

IEX I yield (%) 85 ± 5 95 ± 5

IEX II yield (%) 80 ± 5 90 ± 5

Cost

Protein A loading (g mAb/g resin) 30 ± 3 42 ± 3

IEX I loading (g mAb/g resin) 200 ± 10 250 ± 10

IEX II loading (g mAb/g resin) 30 ± 3 50 ± 3
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strategies to reduce the downstream cost, which is unlike-
ly to be impacted by the upstream cost.

2. The number of chromatography cycle is fixed in this case
study, and the facility is assumed to have the flexibility to
adjust the column size depending on the incoming streams.

3. While some companies will continue to manufacture the
second-generation process at the original commercial site,
other might move to a different site due to facility fit, cost,
and other business and strategic reasons. Here, we are
assuming that second-generation process will be
manufactured at a new commercial site, and hence, the
capital cost is relevant in our case.

Monte Carlo Simulation Results at Current Downstream
Operating Conditions

In order to account for the uncertainties inherent in large-scale
biomanufacturing, representative triangle distributions of the
current operating range indicated in Table 1 were assigned to
the six parameters: protein A loading, IEX I loading, IEX II
loading, protein Ayield, IEX I yield, and IEX II yield. The base
value represents the most likely value, bounded by the maxi-
mum and minimum values, which were formed by taking into
account process fluctuations. The triangular distribution was
derived based on data frommanufacturing, pilot, and laboratory
scale. Triangular distribution was also what we typically expe-
rienced across various monoclonal antibody programs and was
used in an antibody cost analysis by Farid et al. [6]. The range
for cell culture titer in this study ranged from 0.5 to 7 g/L, and a
uniform distribution was used to ensure that all titer set points
within the rangewere simulatedwith equal probabilities. A total
of 300 simulations were performed and the simulated cost per
gram of drug substance at different titers is shown in Fig. 4.

Initially as titer increases from 0.5 to 2 g/L, the cost per
gram of drug substance drops from $700 to $200/g/L, or a 3.5-
fold reduction. However, as the titer increases further beyond
2 g/L, the cost per gram of drug substance plateaus—minimal
to no change is observed with the increase in titer. At lower
titers of 0.5–2 g/L, the production cost of antibody is more
dominant and therefore maximizing the throughput by in-
creasing the titer is generally an efficient strategy to decrease
cost of goods [3]. However, at titers greater than 2 g/L, larger
chromatography columns, which translate into larger resin and
buffer consumption, larger membrane areas, or possibly lon-
ger processing timewould be required to accommodate for the
increased amount of antibody coming from upstream.
Although the throughput continues to increase with titer, the
purification cost increases at a much faster rate that it negates
the gains from the increase in throughput. As a result, im-
provement in downstream efficiency, either by increase
throughput, decrease operation cost or a combination of both
could further reduce the downstream COGs.

Design of Experiments to Explore the Impact of Selected
DSP Parameters on Downstream COGs

A central composite response surface was used to explore the
effect of selected chromatographic parameters on downstream
COGs at a titer range of 0.5–7 g/L. For all DoE models gen-
erated, the R-sq. values were greater than 95%, indicating the
validity of the model. Table 2 displays the p values of each
parameter at the selected titer (0.5, 2.0, 4.0, and 7.0 g/L). At
0.5 g/L, all parameters have been shown to be statistically
significant, as they all have p values of less than the alpha
cutoff (0.05). Compared to the IEX I loading, all other param-
eters have more significant effect as they have much lower
p values. At higher titers of 2, 4, and 7 g/L, the IEX I loading is
no longer statistically significant while the other parameters
continue to have p values of <0.0001 and thus statistically
significant. IEX I loading has the least to none statistical sig-
nificance because ion exchange resin is relatively inexpensive

Fig. 4 Impact of titer on the overall cost per gram of drug substance

Table 2 P values from DoE analysis

Parameter P value

Titer

0.5 2.0 4.0 7.0

Protein A yield <0.0001 <0.0001 <0.0001 <0.0001

IEX I yield <0.0001 <0.0001 <0.0001 <0.0001

IEX II yield <0.0001 <0.0001 <0.0001 <0.0001

Protein A loading <0.0001 <0.0001 <0.0001 <0.0001

IEX I loading 0.0303 0.5921 0.4748 0.5131

IEX II loading <0.0001 <0.0001 <0.0001 <0.0001
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compared to protein A resin. In addition, in this case study,
since the step is operated in flowthrough mode, the resin
already has a high resin utilization rate of ∼200 g/L load-
ing, any further increase in IEX I loading would only
result in a marginal impact on downstream COGs.
Although the DoE analysis in this study was able to
screen statistically significant parameters, it did not give
insight into the relative importance of these parameters as
they all have the same p values of <0.0001. Additional
analysis, such as PCA, would be helpful to elucidate the
relative importance of each parameter on reducing down-
stream cost of goods. Since PCA is commonly used to
reduce dimensionality of dataset, the results from the
PCA analysis would enable us to rank the statistically
significant parameters from the DoE study and thus to
identify the top parameters for further optimization.

Principal Component Analysis to Confirm or Refine DoE
Results

In order to verify and further refine the conclusions
derived from the DoE analysis, the DoE data were
processed through PCA. The first principal component
captures ∼30% of the total variance in the downstream
cost of goods. The loading plot (Fig. 5) from the first
principal component confirmed that at all titers analyzed,
the IEX loadings have lower contributions to the down-
stream cost of goods compared to chromatographic yields
or protein A loading. As discussed in previously, IEX
resin in general is less costly; therefore, increasing the
resin utilization is unlikely to have a significant impact
on the downstream COGs.

The loading plot shows that at 0.5 g/L, IEX II yield
has the biggest contribution to the total variance.

Furthermore, the chromatographic yields (ProA yield,
IEX I yield, and IEX II yield) have higher loading
scores, or bigger contribution, compared to chromato-
graphic loading (ProA loading, IEX I loading and IEX
II loading). This trend indeed aligns with what have
been shown in previous literature research that at a
lower titer, especially at <1.0 g/L, the purification cost
is relatively lower [4]; thus, increasing the overall
throughput is a more competitive strategy to reduce
cost.

At higher titers of >2 g/L, protein A loading has the
most influence on the downstream cost of goods; more
importantly, its contribution to the total variance in-
creases as the titer increases. The cost of protein A
resin becomes more significant as titer increases, be-
cause more resin would be needed to purify the incom-
ing stream, given the number of chromatography cycle
is fixed in this study. The cost of this highly expensive
resin is indeed ∼85% of the total consumable cost at
7 g/L titer. Hence, an increase in protein A loading
would increase the resin utilization and therefore de-
crease the total amount of protein A resin consumption.

In addition, the loading plot shows the intra-relationship of
parameters. For instance, as titer increases, the contribu-
tion of chromatographic yields (ProA yields, IEX I and II
yield) decreases, while the contribution of chromato-
graphic loading (ProA loading and IEX II loading)
increases. This implies that the purification cost becomes
more dominant at higher titer. Reduction in resin con-
sumption, especially the protein A resin, is likely to
decrease the downstream COGs significantly. This case
study suggests that both protein A loading and IEX II
yield have the most influence on the downstream cost of
goods. Monte Carlo simulation was utilized to generate
the frequency distribution of downstream COGs by opti-
mizing either the protein A loading or the IEX II yield,
and the results were compared with the average down-
stream COGs generated by deterministic approach.

Monte Carlo Simulation Results at Optimized Process
Conditions

Similar to the Monte Carlo simulation setup in the pre-
vious section, representative triangular distributions indi-
cated in Table 3 were assigned to the six key down-
stream parameters and titer. The fluctuations in these
parameters are typically observed in large-scale
manufacturing. Three hundred simulations were per-
formed, and Fig. 6 shows the downstream COGs fre-
quency distributions for [1] base case, in which all pa-
rameters were set at current process conditions, opti-
mized protein A loading [2], in which the Protein A
loading was operated at target condition, while the otherFig. 5 Loading plot from PCA analysis
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parameters remained constant, and Optimized IEX II
Yield [3], in which the IEX II yield was operated at
target condition, while the other parameters remained
constant. Protein A loading and IEX II yield were
chosen for further study because of their strong contri-
bution to the variance in downstream COGs through the
PCA analysis.

At a lower titer of 0.5 g/L, the frequency distribution
of the downstream COGs is positively skewed at both
optimized conditions, although the mean is slightly low-
er when the IEX II yield is optimized. At 2 g/L, in the
base case, the downstream COGs span from $47.5 to

$70/g, whereas the cost distribution is much narrower
in the optimized cases: with a range of $40–$57.5/g
when the Protein A loading is optimized, and
$42.5–$60/g when the optimized IEX II yield is opti-
mized. In addition, compared to the base case, increase
in IEX II yield reduces the mean downstream COGs by
11%, while a 14% reduction is achieved by increasing
the protein A loading. This observation confirms our
previous conclusion that protein A loading is more sig-
nificant than IEX II yield in terms of their impact on
downstream COGs. As the titer increases to 7 g/L, the
mean downstream COGs is reduced by almost 20% at
the optimized protein A loading condition, while 15%
reduction is achieved at optimized IEX II yield.
Moreover, the Brisk,^ which is measured by the standard
deviation, is lower at the optimized protein A condition
as compared to the base case or to the optimized IEX II
yield condition.

While the more traditional approach to estimate the
average downstream COGs at optimized conditions is
often a deterministic estimation, a stochastic approach
with Monte Carlo simulation can sometimes offer a
more accurate estimation for processes that are inherent-
ly random [9]. Figure 7 shows the cumulative probabil-
ity plots of the downstream COGs for different process
conditions, and the black line indicates the average
downstream COGs obtained by deterministic approach.
At 0.5 g/L, the deterministic estimates are close to the

Fig. 6 Frequency distribution for downstream cost of goods of base case and optimized conditions

Table 3 Parameters and associated ranges for Monte Carlo simulation

Parameters Current
process range

Optimized
process range

Titler (g/L)

Throughput 0.5 + 0.2
2.0 + 0.5
7.0 + 0.5

Protein A yield (%) 75 ± 5

IEX I yield (%) 85 ± 5

IEX II yield (%) 80 ± 5 90 + 5

Cost

Protein A loading
(g mAb/g resin)

30 ± 3 42 + 3

IEX I loading
(g mAb/g resin)

200 ± 10

IEX II loading
(g mAb/g resin)

30 ± 3
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expected mean from the Monte Carlo simulation in all
three conditions. However, as titer increases to 2.0 g/L,
about 70% of the population is below the deterministic
estimate with optimized protein A loading, while 80%
of the population is above the with optimized IEX II
yield. Hence, predicting the downstream COGs using a
deterministic approach can sometimes overestimate or
underestimate the mean, consequently distorting the
ranking of parameters. The comparison between the
two approaches at 7 g/L titer further emphasizes the
limitation of the deterministic approach. The determinis-
tic analysis suggests that optimizing IEX II yield is
more effective, as indicated by lower expected down-
stream COGs, contradicting the conclusion from the
PCA analysis.

Monte Carlos simulation results suggest that the
deterministic approach overestimates the expected
downstream COGs with optimized protein A loading
and significantly underestimating the expected cost at
optimized IEX II yield. These results highlight the
drawback of using a determinist ic approach in
decision making and not accounting for process
uncertainties.

Conclusion

This paper provides a systematic framework to identify
parameters that have the most impact on downstream costs
of goods and ultimately facilitate strategic decision making
during process optimization for monoclonal antibody
production. A design of experiments approach enables a
screening of statistically significant parameters, based on
the p values. Further analyzing the DoE data through prin-
cipal component analysis confirmed the conclusion from
the DoE study and, more importantly, offered insights into
the relative contribution of each parameter to downstream
of goods. Finally, a stochastic simulation was utilized to
generate the frequency distribution of the downstream
cost of goods by incorporating the process uncertainty.
Although there were only six parameters in our study, this
was intended to serve as an example of how we can imple-
ment the DoE-PCA and Monte Carlo simulation framework
to enable decision making during second-generation
process development. In other cases, there might be more
parameters, and this approach can systematically identify
strategies to maximize cost reduction under a compressed
process development timeline.

Fig. 7 Cumulative distribution function of downstream COGs at base case and optimized condition
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Table 5 Typical parameters and setpoints in downstream steps

Parameter Unit Setpoint

Purification (downstream)

Protein A

Column volume L 143

Resin cost $/L 14,000

Resin replacement frequency Cycles 65

Resin binding capacity g/L 28.6

Eluant volume in product stream Bed volume 2

Elution linear velocity cm/min 5

Number of cycles per batch 6

Virus inactivation

Low pH hold time min 60

Filter flux L/m2/min 6.8

Filter area m2 10

IEX I

Column volume L 76

Resin binding capacity g/L 199

Resin cost $/L 2445

Replacement frequency Cycles 40

Number of cycles per batch 1

IEX II

Column volume L 105

Resin binding capacity g/L 31.7

Eluant volume in product stream Bed volume 5

Resin cost $/L 2290

Replacement frequency Cycles 40

Number of cycles per batch 4

Viral filtration

Filter cost per unit $ 1000

Filter flux L/m2/min 0.7

Filter area m2 10

UFDF

Membrane area m2 2.95

Replacement frequency Cycles 30

Number of diavolume Diavolume 6

Concentration factor 5

Filtrate flux L/m2/h 35

Membrane cost $/m2 981

Table 4 Typical parameters and setpoints in upstream steps

Parameter Unit Setpoint

Cell culture (upstream)

N-2 bioreactor

Volume L 200

Medium fill volume L 175

Medium transfer in rate L/h 117

Temp °C 37

N-1 bioreactor

Volume L 1300

Medium transfer in rate L/h 708

Temp °C 37

Production bioreactor

Volume L 20,000

Feed amount L 1200

Feed flow rate L/h 3.6

Temp °C 37

Reaction time day 14

Target concentration g/L Depends on experimental
condition

Monoclonal antibody cost $/mg 3

Primary recovery (upstream)

Centrifugation

Biomass removal % 98

Sedimentation efficiency % 30

Volumetric throughput per unit L/h 1800

Number of cycle per batch 1

Depth filtration

Flux L/m2/min 4.2

Biomass removal % 100

Filter pore size μm 0.2

Filter area m2 10

Unit cost $ 1000

Reuse No

Appendix 1 Appendix 2
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