
RESEARCH ARTICLE

Modeling and Optimization of Terbutaline Emitted from a Dry
Powder Inhaler and Influence on Systemic Bioavailability Using
Data Mining Technology

Ahmed Mahmoud Abdelhaleem Ali &
Mohamed Emam A. Abdelrahim

Published online: 9 February 2014
# Springer Science+Business Media New York 2014

Abstract
Purpose Delivery of accurate doses from dry powder inhalers
(DPI) involves many process variables which must be adjust-
ed to ensure patient compliance and optimum therapy. Some
of the process variables include: speed of inhalation (flow
rate), assumed lung volume of patients, number and duration
of inhalations.
Method Data mining technology based on artificial neural
networks and genetic algorithms were used to model the
in vitro inhalation process, predict and optimize bioavailabil-
ity from the inhaled doses.
Results The delivery of terbutaline doses from Bricanyl
Turbuhaler® was modeled and optimized using artificial neu-
ral network modeling and optimization software. Highly sig-
nificant models (p<0.00001) with minimum root mean
squared error and high predictability: R2>81 % and 91 %
for the in vitro and the in vivo models were developed,
respectively. The optimized models demonstrated that an op-
timum emitted dose (>76%) could be obtained if the dose was
withdrawn as two inhalations with inhalation volume 4 L and
flow rate 60 L/min within 4 s. The same independent variables
in addition to % terbutaline emitted were modeled and opti-
mized for % drug excreted in urine. The latter model demon-
strated that optimum bioavailability (79.50 %) could be ob-
tained from Bricanyl Turbuhaler® emitting 80–87.50 % ter-
butaline at a flow rate of 58–60 L/min using two inhalations
irrespective of subject forced expiratory volume in 1 s (FEV1)
or the individual lung capacity.

Conclusion Optimized in vitro/in vivo inhalation processes
using data mining models can offer rapid solutions for dose
variability problems andmaximize the bioavailability of drugs
from DPIs.

Keywords Artificial neural networks .Modeling .

Optimization . Terbutaline . Dry powder inhaler

Introduction

This study addresses the multivariable process of inhalation
using dry powder inhalers. One of the dry powder inhalers, the
Turbuhaler is known to have a high resistance during inhala-
tion [1]. Dose emission from all dry powder inhaler (DPI)
devices, is also dependent on the flow rate [2, 3]. The variation
of the emitted dose is a direct cause of unpredicted clinical
response or side effects. Patients with chronic obstructive
pulmonary disease (COPD) can usually inhale a maximum
of approximately 2 L as inhalation volume. Some other pa-
tients may not be able to inhale in a sufficient power or flow
rate to produce the required pressure drop (4 kPa) necessary to
withdraw the dose from the inhaler [4]. The Turbuhaler is a
multidose reservoir DPI. It was introduced in 1988, designed
to deliver 500 μg per dose of terbutaline sulfate devoid of
carrier, and then it was used for other drugs.

It does not require synchronization of inhalation and actuation
as in metered dose inhalers (MDIs), also, it can deliver large
doses and suitable for drugs which are unstable in solution form,
easy to use and safe to the environment. However, there is
somewhat high variability in the delivered dose. It is the most
frequently prescribed DPI that produces good deposition of drug
in the lungs provided that a sufficient inspiratory flow has been
achieved by the patients (i.e., 60 L min−1). Hence, the particle
size generated depends on the patients’ inspiratory flow rate. It is
not easy to deliver the complete dose due to its high intrinsic
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resistance. Therefore, patients must initially inhale in a strong
way through the Turbuhaler and keep the rate during the inhala-
tion maneuver to ensure de-agglomeration of drug particles and
hence effective drug deposition [5].

Patients with severe airflow obstruction may find it difficult
to use the Turbuhaler as the necessary inspiration flow may not
be supported by the patient’s power of inhalation. Hence,
patients utilizing the Turbuhaler must exert higher inspiratory
effort for achieving the required inspiratory flow (e.g., 60 L/
min) [6]. There is also a direct effect of the inspiratory flow
through the Turbuhaler on the particle size distribution of drugs
contained in it. This factor could deposit some of the particles in
the upper respiratory regions rather than deeply in the lung.
Another factor is that the internal volume of the Turbuhaler is
relatively small compared to high ability to breath and it may
happen that all the powder drawn from the cavity before peak
inspiratory flow has been achieved [7]. There are three key
elements for successful use of inhaler in lung delivery includ-
ing: (1) patient compliance; (2) presence of fine particle distri-
bution and its dependency on inspiratory flow; and (3) the
clinical effect. A comparative study between terbutaline admin-
istered using a Turbuhaler and a halogenated hydrocarbon
assisted inhaler in conjunction with a spacer device
(Nebuhaler®) was performed in 15 COPD patients with regard
to forced expiratory volume in 1 s (FEV1), forced expiratory
capacity (FVC), residual volume (RV), and specific conduc-
tance (s-Gaw). The study proved that similar results were
obtained from both devices [8]. This indicates the importance
of turbuhalers in giving the required therapeutic goals without
creating environmental hazards. Few research papers have ad-
dressedmodeling and optimization of DPI inhalation process or
the device-related variables, patient characteristics and formu-
lation attributes affecting its complex domain.

The fact that increasing the number of fine particles in the
carrier can help improve the aerosolization of the active phar-
maceutical ingredient (API) [9] was confirmed in a study
performed to evaluate the effect of various size fractions of
lactose on the performance of dry powder inhaled (DPI) prod-
ucts using experimental design and multivariate analysis [10].
One study aimed at prediction of particles’ aerodynamic size,
shape, density and their effects on sedimentation rate was used
for improving pulmonary drug delivery from dry powder in-
halers [11]. Other studies addressed modeling of deposition
pattern of aerosolized particles into human lung using mathe-
matical models [12] or artificial neural networks (ANNs) [13].

Most of the modeling experiments focus on the description of
deposition characteristics of inhaled drugs in the respiratory
system. These are employed either by the application of lung
depositionmodels for the determination of the amount and/or the
location of deposited dose or by using computational fluid
dynamics techniques to describe the deposition patterns [14].
Artificial neural networks are considered a powerful tool used
for modeling and optimization for multivariable and complex

domain data [15]. ANNs offer numerous advantages to conven-
tional mathematical and statistical modeling methodologies, in-
cluding their ability to deal with non-linear data and no need for
prior establishment of equations to describe relationship between
input and output variables [16]. In addition, ANNs can be used
for historical data andmodels generated can be updatedwith new
experiments [17]. ANNs also enables special operations such as
“what-if” predictions and optimizations [18]. This technology
was also applied for building predictive models relating in vitro
aerosol characteristics to pulmonary bioavailability of inhaled
salbutamol sulfate [19, 20].

The design of inhalation devices must fulfill different pa-
tient needs. Patients having no airflow obstruction should get
lower doses than those with obstruction, while young children
need different delivery systems from adults. Therefore, the
inhalation device should be evaluated based on its ability to
deliver systematically uniform doses and maximize the in-
haled drug bioavailability [21]. In this research, modeling of
the in vitro performance of Bricanyl Turbuhaler® was ad-
dressed. Apart from the type of DPI device used or the
aerodynamic parameters of the formulation, this study focused
on testing other variables directly related to using the DPI
device for effective inhalation including: artificial lung vol-
ume, airflow rate, inhalation maneuver (slow/fast, one/two
inhalation). The modeling aimed at linking these independent
variables to percentage emitted dose of terbutaline from a
Turbuhaler and to pulmonary bioavailability. Data records
from artificial experiments, human volunteers, and COPD
patients were used for modeling using artificial neural net-
works and neurofuzzy logic based data mining technology.

Materials and Methods

Materials

Commercial terbutaline dry powder inhalers with capacities
500 μg (Bricanyl Turbohaler®, AstraZeneca, UK) were used
in the study with DPI sampling apparatus purchased from
Copley (Copley Scientific Ltd, UK). The HPLC-grade aceto-
nitrile (Fisher Scientific, UK), bamethane hemisulfate (Sigma,
UK), and orthophosphoric acid (The Egyptian Bureau of
import, Cairo, Egypt) were used for the assay study.

In vitro Terbutaline Emitted Dose Studies

The in vitro-emitted doses of terbutaline from Bricanyl
Turbuhaler® with a nominal dose of 500 μg terbutaline sulfate
per puff (AstraZeneca, UK) were evaluated using a DPI sam-
pling apparatus with a critical flow controller model TPK
(Copley Scientific Ltd, UK). Total emitted dose of terbutaline
[22] with volumes of 2 and 4 Lwith flow rates of 10, 20, 30, 40,
50, and 60 L/min were tested. The flow was measured by an
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electronic digital flow meter (MKS Instruments, USA).
Parafilm M laboratory film (Pechiney Plastic Packaging,
USA) was used to seal the apparatus. Inhalation of the dose
was performed on one and two inhalation basis. The duration of
the inhalation process lasted for variable times including: 24,
12, 8, 6, 4.8, and 4 s respectively for 4 L inhalation volume and
12, 6, 4, 3, 2.4, and 2 s respectively for 2 L inhalation volume
(see sample data records in Table 1).

The percentage drug deposited in the plastic dose sampling
apparatus and the final filter was determined using high-
performance liquid chromatography (HPLC) analysis. The
HPLC method used was a Water Spherisorb C18, ODS1
column through which a mobile phase of 5 mM potassium
dihydrogen orthophosphate-acetonitrile (75:25), adjusted to
pH 2.5 with orthophosphoric acid [2]. The mobile phase was
pumped at a rate of 1 ml/min. The spectrofluorometric detec-
tor (RF-551, Shimadzu, Japan) was set at an excitation/
emission of 267/313 nm. Bamethane hemisulfate (Sigma,
UK) was used as the internal standard. The limit of detection
was 10.9 μg/L and the lower limit of quantification was
33.1 μg/L. The total dose emitted as percentage of label claim
was assigned as the output property.

In vivo Absorbed and Excreted Dose Studies

Terbutaline absorbed and excreted in urine for 24 h, was tested
using 12 human COPD patients and 12 healthy volunteers

following inhalation of 1,000 μg terbutaline sulfate doses (2
puffs of 500 μg terbutaline sulfate per puff). The testing
process variables addressed in the in vitro study were included
as input variables (n=6) into the modeling step of the in vivo
study. These included: average percentage forced expiratory
volume in 1 s (% FEV1, 96 % for volunteers, and 46 % for
patients), pulmonary volume (2 and 4 L), flow rates of 30 and
60 L/min, one and two inhalations, duration of inhalation (2,
4, and 8 s) and the percentage in vitro-emitted dose. The
percentage Terbutaline excreted after 24 h was modeled as
the output property (see sample data records in Table 2).

The study was a four-way cross-over on four different days
with 7 days washout period (one inhalation fast flow, one
inhalation slow flow, two inhalations fast flow, two inhala-
tions slow flow), with a total dose of 1,000 μg of terbutaline
sulfate on each occasion. An ethical approval was obtained
from the University of Beni Suef for the health subjects study
and all volunteers gave signed informed consent. Twelve
healthy non-smoking volunteers (six males and six females),
older than 18 years with a mean FEV1>90 % of predicted,
agreed to inhale two doses through two Bricanyl
Turbuhalers® (500μg, AstraZeneca, UK), using slow and fast
inhalation flows. A local hospital research ethics committee
approval was obtained for the patients study. COPD patients,
with FEV1 less than 50 % of predicted at screening, were
asked to take part in this study. If they accepted to take part in
the study, consent was obtained from each patient.

Table 1 In vitro inhalation pro-
cess variables affecting percent-
age terbutaline emitted from dry
powder inhaler (DPI)

Record Dose
(μg)

Artificial lung
volume (L)

Flow rate
(L/min)

No. of
inhalations

Inhalation
time (s)

Percent emitted
dose (%)

1 500 2 60 1 2.0 70.38

2 500 2 60 1 2.0 63.60

3 500 2 60 1 2.0 70.21

4 500 2 60 1 2.0 64.12

5 500 2 60 1 2.0 69.23

6 500 2 60 1 2.0 65.10

7 500 2 60 1 2.0 71.32

8 500 2 60 1 2.0 62.43

9 500 2 60 1 2.0 72.45

10 500 2 60 1 2.0 61.13

11 500 2 50 1 2.4 69.12

12 500 2 50 1 2.4 52.58

13 500 2 50 1 2.4 71.24

14 500 2 50 1 2.4 50.14

15 500 2 50 1 2.4 72.13

16 500 4 60 1 4.0 73.75

17 500 4 60 1 4.0 73.45

18 500 4 60 1 4.0 80.21

19 500 4 60 1 4.0 82.12

20 500 4 60 1 4.0 83.40
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If at any time the patient requested to quit the study then
they were withdrawn together with all their data and their
samples were disposed. For each patient, the FEV1 was mea-
sured on the study day before taking the dose resulting in four
FEV1 for each patient. The healthy subjects and the patients
were trained how to inhale using a slow inhalation flow (30 L/
min) and also a fast inhalation flow (60 L/min) with aid of the
In-Check Dial. They also, received training on how to use the
Turbuhaler. Each subject inhaled two doses from two separate
Bricanyl Turbuhalers® using either a slow or a fast inhalation
flow maneuvers at random order. According to the novel
urinary terbutaline method [23], immediately before each
study dose each subject voided their urine then provided a
urine sample 30 min after the start of the first dose and
cumulatively collected their urine for 24 h. The volumes of
urine samples were measured and assayed for the urinary
terbutaline concentration using an HPLC-fluorescence spec-
trophotometry. Terbutaline was extracted from the urine sam-
ples together with bamethane (Sigma, UK) as internal stan-
dard using solid phase extraction, Isolute HCX 130 mg 10 ml
XL cartridge and Oasis HLB 30 mg cartridge, then injected in
the HPLC system. The method used was an ODS 5 mm (4.6×
250 mm, Zorbax, Phenomenex) C-18 HPLC column with a
4 mm×3 mm (Phenomenex), C-18 (ODS) guard column.
Both were maintained at 30 °C. The mobile phase was
acetonitrile-methanol-tetrahydrofurane-ethyl acetate buffer
5:5:5:5:80 %v/v. The buffer was 40 mM phosphate buffer
and 27.5 mM sodium dodecyl sulfate with pH 6.75 adjusted
using 10 mM KOH. Fluorescence detection set with an
excitation/emission of 267/313 nm. The limit of detection

(LOD) and lower limit of quantification (LLOQ) for terbuta-
line was 24.2 and 73.4 μgL−1, respectively [23].

Model Training and Testing of Process Variables

The in vitro inhalation process variables (artificial lung vol-
ume, flow rate, number of inhalations and duration of inhala-
tion) and the percentage terbutaline emitted (output) resulted
in 240 data records (see Table 1) were used for model training.
Modeling and optimization of the data was carried out using
ANNs-Genetic algorithm package (INForm V3.6,
Intelligensys Ltd., UK) [24]. The software was used as the
predictive model-building and optimization tool [25, 26]. The
multilayer perceptron (MLP) network embedded into the pro-
gram was trained on the data to build up the cause-effect
relationships as well as relative weights and importance be-
tween input variables (inhalation process variables) and output
property (percentage emitted). Some data records (10 %) were
selected for testing the predictability of the model and another
10 % of the records were kept for model validation (both
selected using the Smart selection tool). This smart selection
is similar to random selection; however, it automatically ex-
cludes records which contain values at the minimum or max-
imum of a range to keep them for model training.

The in vivo modeling step was applied using 80 records
containing the inputs: pulmonary volume, inhalation flow
rate, number of inhalations, duration of inhalation, percentage
emitted from the Turbuhaler® and percentage terbutaline ex-
creted as the output (see Table 2). Model training, testing and
validation were performed in the same way as that mentioned

Table 2 In vivo inhalation process variables affecting percentage terbutaline excreted in urine 24 h from dry powder inhalation to human patients and
volunteer groups

Record Subject
FEV1

Pulmonary
vol. (L)

No. of
inhalations

Flow rate
(L/min)

Inhalation
time (s)

Sample duration
(h)

% Terbutaline
emitted

% Terbutaline
excreted

1 46 2 1 60 2 24 70.38 77.50

2 46 2 1 60 2 24 63.6 74.56

3 46 2 1 60 2 24 70.21 78.00

4 46 2 1 60 2 24 64.12 75.68

5 46 2 1 60 2 24 69.23 71.44

6 46 2 1 60 2 24 65.1 76.59

7 46 2 1 60 2 24 71.32 80.33

8 46 2 1 60 2 24 62.43 72.90

9 46 2 1 60 2 24 72.45 84.99

10 46 2 1 60 2 24 61.13 69.92

11 96 4 1 30 8 24 61.63 29.76

12 96 4 1 30 8 24 48.25 19.53

13 96 4 1 30 8 24 51.16 22.04

14 96 4 1 30 8 24 54.83 24.35

15 96 4 1 30 8 24 69.13 38.15
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above for the in vitro model. Predictability of trained models
were evaluated by the correlation coefficient R square (R2)
values computed automatically during training, testing and
validation steps [27] as shown in Tables 3 and 4 respectively.
High R2 values (>78 %) for in vitro model and >90 % for the
in vivo model indicated appropriate predictability of the
trained models [28]. The formula, from which R2 values were
calculated was derived from ANOVA statistics generated by
the modeling software program (see Eq. 1).

R2 ¼ 1−

Xn

i−1
yi−y

�
i

� �2
Xn

i−1
yi−y

−ð Þ2
� 100 ð1Þ

Where (yi) is the individual value of the dependent
variable, (yi*) is the predicted value from the model and

(yi
−) is the mean of the dependent variable. In this

formula the numerator represents the sum of squares
for the error term (SSE) and the denominator represents
the total sum of squares (SST) [29]. The values of R2

describe how much of the variance of the dependent
variable is accounted for in the model. The artificial
neural network structure I(4)–H(11)–O(1) was used for
in vitro model training (linking inputs and the output
property). The structure demonstrated: 4 nodes
representing the input layer, 11 nodes in the hidden
layer, and 1 node in the output layer) was used for
training. The default model training rapid back-
propagation algorithm (RPROP) was used for model
training [30]. The model transfer function (model acti-
vation function) was selected for inputs and outputs as
asymmetric sigmoid/linear. The validation step was

Table 3 Model generated ANOVA Statistics for in vitro percentage terbutaline emitted from Bricanyl Turbuhaler®

Property Source of variation Sum of squares Degrees of freedom Mean sum of squares Computed F ratio p value

Training % terbutaline emitted Model 42,538.40 61.00 697.35 10.86 0.000001

Error 8,539.08 133.00 64.20

Total 51,105.80 194.00

Covariance term Sum of errors

28.30 1.00

Train set R-squared 83.29 %

Test set R-squared 78.19 %

Validation % terbutaline emitted Model 6,499.38 61 106.55 3.37 0.0000631

Error 1,202.85 −38 31.65

Total 6,481.45 23

Covariance term Sum of errors

1220.78 −60.28
Validation R-squared 81.44 %

Table 4 Model generated ANOVA Statistics for 24 h percentage terbutaline excreted in urine

Property Source of variation Sum of squares Degrees of freedom Mean sum of squares Computed F ratio p value

Training % terbutaline excreted Model 27,003.3 49 551.089 15.3571 0.00000047

Error 538.275 15 35.885

Total 27,681.6 64

Covariance term Sum of errors

139.994 −0.626
Train set R-squared 98.06 %

Test set R-squared 99.10 %

Validation % terbutaline excreted Model 3,998.53 49 81.6026 9.42398 0.000001

Error 363.68 −42 8.65904

Total 4,403.84 7

Covariance term Sum of errors

41.6358 −12.339
ValidationR-squared 91.74 %
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carried out using the consult mode of the program and
during which the model predicts the output property
automatically for unseen data based on previously
learned cause-effect relationships. The network structure
used for the in vivo model was automatically described as
I(6)–H(6)–O(1) and the model transfer function was selected as
sigmoid/linear. Other training and testing steps were performed
in the same way as that mentioned earlier for the
in vitro model (% terbutaline emitted). Good models
should result in validation correlation R2 as high as
those obtained during model training and testing. The
accuracy of generated models for in vitro percentage
emitted dose and that generated for percentage terbuta-
line excreted were evaluated using model R2 and the
root mean squared error (RMSE) values calculated for
both training and testing data sets (see Tables 3 and 4).
Further evaluations of the models were performed by
plotting the actual (experimental) values of both prop-
erties (% emitted and percentage excreted) versus their
model predicted counterparts. From the plots, linear
correlation R2 values were also calculated (see Figs. 1,
2, 3, and 4).

Optimization of In Vitro-Emitted Dose and In Vivo Excretion
Models

After developing of the predictive models for each of
percentage terbutaline emitted and excreted, the optimi-
zation step was commenced by setting the desired con-
straints on some process variables and proposing an
optimum range for the output property. The desirability
function was selected as tent (with preset minimum and
maximum for each property) in three separate optimiza-
tion runs in the model optimization window. The spec-
ified minimum and maximum values for the output
property (% emitted and % excreted) were assigned to
three levels. In the first level, the percentage terbutaline
emitted was specified to 65–75 % and the % excreted
to be 75–85 %. In the second level, % emitted was
specified between 70 and 80 % and the in vivo was set
between 80 and 85 %. Finally, in the third level, the
in vitro property was set between 75 and 85 % and %
excreted to be 85–89.5 %. Three model-optimized solu-
tions were generated (see Tables 5 and 6).

Fig. 1 Actual versus model predicted % terbutaline emitted from the
Turbuhaler (training data)

Fig. 2 Actual versus model predicted % terbutaline emitted from the
Turbuhaler (validation data)

Fig. 3 Actual versus model predicted % terbutaline excreted in urine
(training data)

Fig. 4 Actual versus model predicted % terbutaline excreted in urine
(validation data)
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Results and Discussion

Evaluation of Model Training, Testing, and Validation

The model generated for the in vitro experiments, re-
sulted in a good model with high predictability as
evidenced by the model training and testing correlation
coefficient R2 values of 83.29 and 78.19 % respectively
(see Table 3). Predictability of unseen data (validation
records) also demonstrated high R2 (81 %), indicating a
validated model for predicting percentage terbutaline
emitted from dry powder inhalers. The RMSE calculated
for training and testing data from the in vitro model
were found to be 8.01 and 5.62, respectively. The lower
RMSE values of test data than those of training suggest
high predictive ability and trust ability of the model.
The results were also in good agreement with good
predictive models mentioned in the literature with high
R2 values, which represent the ability of the model to
account for variability in the data [27]. This was also clearly
illustrated by high correlation coefficients between actual and
predicted % emitted (see Figs. 1 and 2).

The model generated for in vivo percentage terbutaline
excreted from 80 records (see Table 4) also demonstrated high
predictability power as obtained from model training, testing,
and validation R2 values being 98.06, 99.10, and 91.74 %,
respectively. The RMSE values for training and validation
testing were found to be 5.99 and 2.94, respectively
which also support model trust ability. The above

findings were also found to be comparable to similar
models generated for salbutamol excreted in urine in
30 min post inhalation as a measure for relative lung
bioavailability [19]. In addition to model correlation, R2,
and RMSE values calculated above, the linear regres-
sion coefficients (r2) calculated from actual experimental
training and validation data versus predicted values for
% terbutaline excreted also support model robustness
(see Figs. 3 and 4). Moreover, the calculated p values
(probability for significance) from the F-distribution sta-
tistics for both models (% terbutaline emitted and %
excreted in urine) were very low (p<0.0001), indicating
the significance of the models.

Model Optimization

The developed predictive models for percentage terbu-
taline emitted from Turbuhaler and the percentage ex-
creted after in vivo inhalation were then tested for
optimization of both properties. The optimization stage
resulted in three solutions for in vitro percentage emit-
ted (71–76 %) with optimum values for lung volume
(3–4 L), flow rate (52–59 L/min) and two inhalations
lasting 3.0–4.5 s (see Table 5). Model optimization for
percentage terbutaline excreted in urine within 24 h
(79.50 %) resulted in optimum values for patient FEV1

(46.00–49.50 %), pulmonary volume (2.4–3.9 L), flow
rate through inhaler (58–60 L/min), two number of

Table 5 Model-optimized solutions for percentage terbutaline emitted from Bricanyl Turbuhaler®

Solutions Desirability Inhalation input variables Output property

X1 X2 X3 X4 Y1
Artificial lung volume (L) Flow rate (L/min) Number of inhalations Inhalation time (s) % Emitted

Population 1 1.00 2.85 57.20 1.93 2.98 71.19

Population 2 1.00 3.96 52.60 1.11 4.51 73.73

Population 3 1.00 3.61 59.11 1.77 3.67 75.96

Table 6 Model optimized solutions for percentage terbutaline excreted in urine 24 h following DPI inhalations

Solutions Desirability Inhalation input variables Output property

X1 X2 X3 X4 X5 X6 Y1
Subject FEV1 Pulmonary

volume (L)
Number of inhalations Flow rate (L/min) Inhalation

time (s)
% Emitted % Excreted (24 h)

Population 1 0.999 49.561 3.891 1.359 59.951 3.894 80.095 79.504

Population 2 0.992 46.000 2.386 1.836 58.224 2.458 87.520 79.507

Population 3 0.922 46.000 2.386 1.836 58.224 2.458 87.520 79.507
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inhalations lasting for 2.5–4.0 s and % in vitro-emitted
dose between 80 and 87.50 % (see Table 6).

The relative importance of each input variable on each of
the output properties (% terbutaline emitted and % terbutaline
excreted in urine) was demonstrated by the response surface
plots. Artificial lung volume was found to have a positive
effect on the % terbutaline emitted from the inhaler whilst
increasing the inhalation time (2–24 s) resulted in a decrease
in % emitted (Fig. 5). The number of inhalations (one to two)
was found to have a little effect on the in vitro % emitted from
the Turbuhaler (Fig. 6). The inhalation flow rate of 10–30 L/
min was found to have a negative effect on % emitted, while
from 30 to 60 L/min increased the % emitted (Fig. 7). The
improvement of percentage emitted upon increasing the inha-
lation flow rate was supported by studies previously reported
on the use of dry powder inhalers [31]. From these results, it
becomes clear that using a large lung volume and average
flow rate >30 L/min with relatively fast inhalation maneuver

will inevitably provide the maximum % terbutaline emitted
from a dry powder inhaler (see Table 5).

The response surfaces obtained from the in vivo
model demonstrated that the inhalation flow rate was
found to have the largest positive effect on % excreted
and the maximum influence was demonstrated at 48–
54 L/min (see Fig. 8). The pulmonary volume was
found to have little effect on this property which might
be due to limited scatter of this independent variable in
training data where the maximum and minimum values
were 4 and 2 L, respectively. This finding was recently
supported by other researches evaluating the flow rate
and pulmonary volume [32]. The effect of FEV1 on
percentage terbutaline excreted was found to have minor
effect on % excreted especially in the patient range (46–
66 L) and decreasing effect in the range of healthy
subjects. This finding was supported by other studies
found in the literature reporting that FEV1 is not a

Fig. 5 Response surface plot showing effects of artificial lung volume
and inhalation time on in vitro % terbutaline emitted

Fig. 6 Response surface plot showing effects of flow rate and inhalation
time on in vitro % terbutaline emitted

Fig. 7 Response surface plot showing effects of number of inhalations
and inhalation time on in vitro % terbutaline emitted

Fig. 8 Response surface plot showing effects of flow rate and pulmonary
volume on % terbutaline excreted in urine
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powerful differentiating variable to model pulmonary
delivery [33]. The response surface obtained for the
number of inhalations indicated that two inhalations
are better than one (Fig. 9). The response surface for
% terbutaline emitted and inhalation time indicated that
above 68.5 % emitted terbutaline, the % excreted was
maximized; this finding can be considered as a thresh-
old value for effective DPIs [34]. The inhalation time
had no obvious effect on the percentage terbutaline
excreted (see Fig. 10).

Although major differences exist between volunteers and
COPD patients regarding FEV1 (average values of 46 for
patients and 96 for healthy subjects) and pulmonary volumes
(2 L for patients and 4 L for healthy volunteers), yet the
response surfaces concluded no strong influence of these
two variables on % terbutaline excreted. The effect of FEV1

may also be offset by the two inhalation strategies (slow, fast,
one and two inhalations) which helped in maximizing the
bioavailable fraction regardless of the pulmonary volume or

the individuals FEV1. The percentage drug emitted from the
Turbuhaler, the flow rate, and the number of inhalations was
found to be the prominent variables affecting the drug’s bio-
availability from Bricanyl Turuhaler®. These latter variables
which control the effective usage of Turbuhalers in delivering
the maximum dose were found to be independent of the
individual subjects used in this study. This means that the
same instructions for proper use of Turbuhalers must be given
to all subjects whatever the differences between the lung
capacity or FEV1 between patients. The above results indicate
that the in vivo model supported the use of two inhalations
maneuver with optimum flow rate 50–60 L/min from a
Turbuhaler delivering not less than 68.5 % of the dose to
maximize the pulmonary bioavailability (79.5 %). The opti-
mized model also suggested that individuals with lung capac-
ity 2 or 4 L (whether healthy or with COPD) inhaling accord-
ing to the above mentioned instructions will have similar
pulmonary drug delivery (see Table 6).

Conclusion

The process of inhalation through dry powder inhalers de-
pends mainly on the ability of the patient to inhale in a special
manner in order to inhale a complete dose each time an
administration is due. Therefore, proper training of patients
on using the inhalers is essential. However, numerous process
variables which are device-dependent must be adjusted for
maximizing the bioavailability of inhaled dry powdered
drugs. Modeling of the inhalation process which is known to
be a multivariable and complex domain offers a direct tool for
better control and optimization of the process. The developed
linear models were found to be successful in demon-
strating the importance of using two inhalation modes
and flow rates >50 L/min in maximizing the in vitro %
terbutaline emitted from Bricanyl Turbohaler®. These
optimized variables were also found to be the key
elements for improving the bioavailability of the inhaled
drug if interpreted into instructions for patients and
employed during inhalation.
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