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Abstract
Over the last three decades, we have becomemore dependent on wireless connectivity to access services and applications from
nearly anywhere. The overstated emergence of the all-encompassing fifth generation (5G) of mobile systems begs the question
of the future of the new generation of IEEE 802.11 (Wi-Fi) solutions. However, Wi-Fi has certain advantages compared to
cellular systems in different ways: (i) a fast-paced standardization process; (ii) a diverse, agile, and highly competitive
manufacturer base; and (iii) a broad base of early adopters for both office and house wireless networks. In addition, the rise
of enabling technologies, such as software-defined wireless networks, may allow more robust and reliable Wi-Fi networks to
bridge gaps in Wi-Fi technology to reach several vertical sectors. This review provides a technical analysis of the relationship
between broadband wireless and Wi-Fi technologies. Wi-Fi has taken decisive steps with the evolution of several standards,
and there is already evidence that Wi-Fi may partially (or completely) fulfill 5G’s strict service requirements. Next, we
discussed the Wi-Fi and 5G convergence, which allow more control over user experiences and provide better service. This
review concludes with an analysis of open challenges in the convergence of 5G and Wi-Fi systems. We conclude that Wi-Fi
technology has and will continue to have a decisive role as an access technology in the new ecosystem of wireless networks.
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1 Introduction

The emergence of new communication and information tech-
nologies in the twentieth and twenty-first centuries is marked
by competition. Global vendors and service providers par-
ticipate in collaborative and competitive games with the
goals of dominating markets and imposing certain solu-
tions and products. There are currently different schools
of thought regarding addressing communication problems
(e.g., telecom- and datacom-oriented solutions), and these
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approaches diverge substantially. For example, the telecom
community typically praises reliable and centralized archi-
tectures, while datacom solutions are often only locally
optimal and based on distributed architectures. As a result,
such solutions’ cost, performance, and dependability vary
widely. The future wireless service requirements will impose
a winning approach or pick and choose solutions to match
these approaches’ particular needs.

Initially, exploiting different application contexts, wire-
less local area networks (WLANs) led by Wi-Fi and 5G
networks seem to be on a collision course over wireless
access. Some argue that the success of 5G systemsmaymean
the end of Wi-Fi networks, while others in the past pointed
out that new inexpensive and ubiquitous Wi-Fi-based solu-
tions would delay 5G adoption [1]. In this review, we place
Wi-Fi within the radio technology arena, comparing it to the
fourth and fifth generation of cellular technology, respec-
tively, long-term evolution (LTE) and 5G new radio (5GNR)
solutions. We contrast Wi-Fi against the primary capabilities
of the cellular ecosystem. Such capabilitiesmay be important
when integrated into Wi-Fi to provide 5G-like services.

Due to its ubiquitous use, Wi-Fi is the first choice
among wireless technologies in indoor scenarios. Mobile
data offloading in recent years [2] has already highlighted
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pathways forward. However, Wi-Fi is evolving with new
standards to surpass the traditional role played alongside
mobile broadband networks. We answer the primary ques-
tion thatmotivates us to perform this reviewbydemonstrating
(i) how the new Wi-Fi standards are ready to face the same
scenarios as 5G systems and (ii) how several gaps in Wi-Fi
solutions are being addressed with software-defined wireless
network solutions.

As shown in Fig. 1, the goal of this review is to find sweet
spots to fitWi-Fi in the big 5G puzzle and discuss the integra-
tion and convergence ofWi-Fi in the newwireless ecosystem.
Therefore,we analyze high-throughputWi-Fi standards, as in
[3, 4], and the new generation of Wi-Fi standards that place
Wi-Fi in a privileged position to achieve key performance
indicators similar to 5G systems and meet the demands of
different verticals. Thus, this review goes beyond [5], high-
lighting the coexistence and cooperativework betweenWi-Fi
and the new 5G wireless systems and justifying the impor-
tance of this integration to achieve convergence of access
networks.

Table 1 summarizes the acronyms used in this review.
The remainder of this review and reading sequence is as
follows. First, the new ecosystem of wireless networks is
contextualized in Sect. 2. Then, Sect. 3 analyzes the coex-
istence of Wi-Fi and cellular networks and the evolutionary
process to achieve convergence between these systems. Open
challenges are addressed in Sect. 4, and final remarks are pre-
sented in Sect. 5.

2 New ecosystem of wireless networks

The first digital mobile technology from the early 1990s,
which is referred to as the global system for mobile commu-
nications (GSM),was trapped in the telecom industry circuit-

switching paradigm. By the end of the first decade of the
twenty-first century, the first standard of third-generation net-
works (3G) was introduced, incorporating packet switching
alongside circuit switching. Because of the introduction of
LTE, packet switching has become the dominant paradigm.
This new feature markedly contributed to improving the effi-
cient use of network resources, increasing user access to a
variety of new services well beyond a voice channel provided
by the telecom world.

Popularized in the late 1990s, the IEEE 802.11 standard
came in 1997 as a packet-switching native technology, spec-
ifying the physical layer (PHY) and data link layer operation
for WLAN [6]. The standard began to be commercialized as
Wi-Fi by theWireless Alliance. A new branding strategy was
also used, as shown in Fig. 2 with Wi-Fi 4 to 7, for the dif-
ferent IEEE 802.11 generations described below. Since then,
most Wi-Fi evolutions have focused on increasing transmis-
sion rates. With the introduction of the 802.11n standard (up
to 600 Mbps), 4G and Wi-Fi achieved similar throughputs,
indicating that bothWLANand broadband technologiesmay
compete for a market share beyond their original contexts.

The continuous development of new high-demand ser-
vices, such as ultrahigh-definition video, virtual reality,
critical applications of Industry 4.0, and Internet of Things
(IoT) solutions [7], continued to boost the development of
wireless networks toward a new level. Advanced radio heads
are now required to support such a transmission level and
the flexible and agile networks behind them. This new stage
proposes a network paradigm capable of integrating new and
legacy technologies, offering high-performance network ser-
vices capable of going along with the new business models.
In this context, the concept of future wireless systems arises.

Broadband wireless technologies and Wi-Fi standards
timeline are shown in Fig. 2. This historical context is essen-
tial to provide a time frame for the new generation of Wi-Fi

Fig. 1 New ecosystem of
wireless networks
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Table 1 Summary of acronyms used in this review

Acronym Full name

3GPP 3rd Generation Partnership Project

5G NR 5G new radio standard

AP Wi-Fi access point

ATSSS Access traffic steering, switching, and splitting

BSS Basic Service Set

CDMA2000 Family of 3G mobile technology standards

EDGE Enhanced data rates for GSM evolution

eMBB Enhanced Mobile Broadband

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HSPA High-speed packet access

HSPA+ HSPA evolution

IMT International Mobile Telecommunications

IoT Internet of Things

ITU International Telecommunication Union

KPI Key performance indicator

LAA Licensed-assisted access

LTE Long-term evolution

LTE-A LTE advance

LWA LTE-WLAN Aggregation

LWIP LTE-WLAN Radio Level Integration with IPSec
Tunnel

MAC Medium access control layer

MIMO Multiple-input multiple-output

mMTC Massive machine type communication

mmWave Millimeter wave spectrum

MPTCP Multi-path TCP

MU-MIMO Multiple user MIMO

NFV Network function virtualization

OFDMA Orthogonal frequency division multiple access

PHY Physical layer

QAM Quadrature amplitude modulation

QoE Quality of experience

QoS Quality of services

RAN Radio access technology

RAT Radio access technology

SDN Software-defined networks

SD-Wi-Fi Software-defined Wi-Fi

STA Wi-Fi station

TSN Time-sensitive network

UMTS Universal Mobile Telecommunications System

URLLC Ultra-Reliable Low-Latency Communication

V2X Vehicle-to-everything

V2V Vehicle-to-vehicle

WiMAX Fixed worldwide interoperability for microwave
access

WLAN Wireless local area networks

standards and the primary characteristics of 5G systems that
will be presented throughout the review.

2.1 New 5G networks

With the emergence of new business models and critical
applications in different branches, the International Telecom-
munication Union (ITU) proposed a new generation of
mobile broadband networks. The new 5G networks are
characterized by a rapid response to allow multiple applica-
tions to provide several services simultaneously. The ITU-R
IMT-2020 recommendation introduced the different service
scenarios that the new mobile networks must address. Three
primary serviceswere defined and became the primary objec-
tives to be achieved by the 5G networks: (i) enhanced mobile
broadband (eMBB) for human-centric use cases with high
peak data rates for all users, (ii) ultra-reliable low-latency
communication (URLLC) to address critical applications that
present strict reliability and latency requirements, and (iii)
massive machine type communication (mMTC) to support
solutions with a huge number of connected devices. Due to
the importance of vehicle communications in recent years,
specifically for autonomous vehicle communications, 3GPP
already recognizes vehicles-to-everything communications
(V2X) as one primary service case for 5G networks. The pri-
mary key performance indicators (KPI) for these networks
are shown in Table 2 [8].

The 5G architecture is network-agnostic. The network
core will be shared for all radio access technologies (RATs),
the existing radio interfaces, and the 5G NR interface intro-
duced for 5G networks. This feature makes implementing
rigorous control mechanisms that allow uncoupling the net-
work core from access technologies necessary. Concurrently,
other mechanisms should be implemented to orchestrate the
interworking of these RATs, 5GNR access networks, mobile
access networks such as LTE-A,WLAN, and fixed networks.

With network resource virtualization, multiple network
slices with different characteristics can be implemented to
address different service cases, maximizing the network
performance, QoS, and quality of experience (QoE) [9]. Net-
work slicing allows network operators to implement virtual
logical networks and network functions for different ser-
vices over the same physical infrastructure. Virtualization
also offers the possibility of having a network architecture
with distributed functions that actively contribute to reducing
core and backhaul traffic by placing many services on edge
networks closer to users.

Therefore, the orchestration and management of network
services should allow maximum performance during the
implementation of distributed functions, network slicing, and
resource allocation.With different network domainsworking
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Fig. 2 Timeline of WLAN and
wireless broadband technologies
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under the range of 5G access technologies [10], unified net-
work management is one of the biggest challenges in these
architectures to ensure compatibility and flexibility among
all technologies. The management must provide optimiza-
tion and capacity planning for a slice, granting the necessary
resources according to the service type requested. Other vital
functions that must be fulfilled are managing the slice fault,
interslice orchestration,managing slice security andmonitor-
ing, and analyzing slice resources. All these functionalities
are possible using SDN and NFV as critical enabling tech-
nologies for 5G networks [11].

2.2 New generation ofWi-Fi standards

Currently, as a fundamental part of the evolution and stan-
dardization of Wi-Fi, development is being focused nearly
entirely on technology that can satisfy communication
requirements, such as reliability, latency, and throughput,
which are similar to what 5G networks aim to achieve.
These similarities are primarily due to the Wi-Fi commu-
nity1 strongly believing that the evolution of 5G proceeds
hand-in-handwithWi-Fi as a key element in integratingwire-
less access technologies and unlicensed spectrum bands [1].
Therefore, the sector has begun to discuss the new genera-
tion of Wi-Fi standards, which must comply in one way or
another with the KPIs of 5G networks.

2.2.1 High throughput Wi-Fi

The evolution in terms of the data rate of the newWi-Fi stan-
dards is shown inFig. 3. TheWi-Fi 5 (802.11ac standard) [12]
arises as a direct evolution of Wi-Fi 4 (802.11n standard)
and is the first standard operating below 6 GHz to exceed
the Gbps data rate. Later, Wi-Fi 6 (802.11ax standard), a
high-efficiency standard for Wi-Fi networks, increased data
rates to nearly 9.6 Gbps [13]. TheWi-Fi community strongly
believes that Wi-Fi 6 will be a technology with a strong
presence in the unlicensed spectrum alongside 5G NR, indi-
cating the need to integrate this new standard and 5G network
technologies. The standard aims to achieve high spectral effi-
ciency and high throughput per area in high-density device

1 In the context of this review, the authors define the Wi-Fi community
as the set of societies, companies, and individuals who promote the
development and adoption of Wi-Fi technologies, such as the Wi-Fi
Alliance and Wireless Broadband Alliance.

scenarios, reducing the overlap areas to avoid collisions in
the transmissions of the stations. Wi-Fi 6 directs its efforts
to the search for high transmission rates. However, the stan-
dard implements better spatial reuse to combat and reduce
interference through an efficient user access scheme.

Wi-Fi 6 maintains the pattern of adaptive modulations
used by 802.11 and explores new modulation and cod-
ing schemes (MCS), introducing 1024-QAM modulation to
improve the spectral efficiency of the transmissions. This new
modulation enables a 20% increase in data that can be trans-
mitted per cycle, enabling 40% faster speeds. A scheduling
function for multiuser access was implemented to increase
spectral efficiency through OFDM access (OFDMA) for
uplink and downlink in the frequency domain and MU-
MIMO in the spatial domain [14]. This feature allows routers
to efficiently manage network traffic using smaller channel
slices; thus, more devices can share the same airtime, reduc-
ing latency by up to 75%.Anupdate of the 802.11 ax standard
was announced asWi-Fi 6E, thefirstWi-Fi solution to operate
in the 6 GHz band [3]. The 6 GHz operation is free of legacy
traffic, providing an open frequency band for new applica-
tions and services. Access to highly reliable wider channels
will begin to meet the demand that already exists for more
bandwidth. The operation in this band also demands attention
to the coexistence of Wi-Fi and NR 5G technologies again.

The future Wi-Fi 7, the new standard in development
under the 802.11be amendment, was recently announced
in recent years [15]. This project has been motivated by
developing Wi-Fi networks to support real-time applications
and introducing Wi-Fi time-sensitive networking (TSN) as
part of the research activities for the new 802.11 standards.
Wi-Fi 7 is being built on 802.11ax and will surpass the
PHY layer of previous standards by doubling its bandwidth
to 320 MHz channels. Combined with 4K-QAM modula-
tion, this bandwidth enables each signal to embed more
data. With these new features, incredible data rates can be
obtained, reaching approximately 30 Gbps of maximum
nominal throughput. The OFDMA challenges in terms of
flexibility and latency are improved to meet the real-time
requirements. Another new feature is the support for multi-
link operations, which incorporates synchronization between
links. With multilink operation, Wi-Fi 7 devices can simulta-
neously connect on twobands, enabling faster speeds through
aggregation, or both bands can be used concurrently to share
redundant data for improved reliabilitywith ultralow and pre-
cise latencies. This standard increases the efficiency of using
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Table 2 Parameters considered
key capabilities of IMT-2020 [8]

KPI Description Value

Peak data rate Maximum achievable data rate under 20 Gbps

ideal conditions per user/device

User-experienced data rate Achievable data rate that is available 100 Mbps

ubiquitously across the coverage area

to a mobile user/device

Latency The contribution by the radio network 1 ms

to the time from when the source

sends a packet to when the destination

receives it

Mobility Maximum speed at which a defined 500 km/h

quality of services (QoS) and seamless

transfer between radio nodes

which may belong to different layers

and/or radio access technologies can be

achieved

Connection density Total number of connected and/or 106 devices/km2

accessible devices per unit area

Energy efficiency Energy efficiency refers to the number 100x bit/Joule

of information bits transmitted to/received

from users per unit of energy

consumption of the radio access network

Spectrum efficiency Average data throughput per unit 3x bit/s/Hz

of spectrum resource and per cell

Area traffic capacity Total traffic throughput served per 10 Mbps/m2

geographic area

wireless channel resources, mitigating interference in high-
density scenarios.Multi-AP cooperation is another important
innovation of the 802.11be standard. Thus, the standard
will achieve coordinated scheduling, beamforming, and dis-
tributedMIMO systems between nearby APs, similar to how
the CoordinatedMulti-Point (CoMP) scheme does in cellular
networks. Wi-Fi 7 is ongoing, and many of its features are
being debated.

2.2.2 mmWaveWi-Fi

The most popular Wi-Fi standard operating in the mmWave
band is the 802.11ad standard [16], also known as WiGig,
which resulted from collaborating with the Wireless Giga-
bit Alliance. WiGig is the first Wi-Fi standard to operate in
the mmWave bands and the first to exceed the Gbps max-
imum data rate. The standard is designed to operate at 60
GHz, with broader bandwidths available for transmissions.
The 802.11ay standard was published as a direct evolution
of the 802.11ad and is expected to be the future of Wi-Fi
communications in the mmWave band, reaching 20 Gbps
through multiple independent data flows and greater channel

bandwidth [17]. Additionally, as part of mmWave commu-
nications, China millimeter-wave multiple gigabit wireless
systems were developed and standardized as IEEE 802.11aj
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Fig. 3 Wi-Fi data rate evolution
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[18]. This system is available in some regions of the world,
operating in the 45 GHz frequency band and reaching up to
15 Gbps. The selection of the 45 GHz band is more attractive
than the 60 GHz band, and it is expected to be more efficient
for high transmission rate communications due to the lower
attenuation for signal propagation.

The use of these Wi-Fi standards in the mmWave band
could eliminate shortly wired Ethernet for indoor commu-
nications because the bandwidth at these frequencies is
sufficient to meet such scenarios. However, they are not lim-
ited to this, and some studies suggest using mmWave Wi-Fi
as backhauling technology in 5G systems [19]. Even solu-
tions for long distances, such as access to rural areas, could
be developed in multihop schemes with these standards.

2.2.3 IoT Wi-Fi

The evolution of Wi-Fi standards has also sought to satisfy
the requirements for IoT solutions. An essential feature of
IoT networks is the extensive deployment of sensors in wide
areas; thus, wireless communications technologies that sup-
port these networks must provide coverage for long-range
extensions. The two 802.11 standards designed to meet these
objectives operate in the sub 1 GHz spectrum area, allow-
ing communications with acceptable transfer rates for long
distances and low power consumption for outdoor commu-
nications, as shown in Fig. 4, similar to other 5G emerging
wireless technologies such as LoRaWAN, Sigfox, or NB-IoT
[20]. Also, these standards are used for wireless backhauling
solutions in places of difficult access for mobile operators.

The 802.11af standard defines the functionalities for using
Wi-Fi wireless systems in the television white space [21].
Television white space is a spectrum resource not used at
specific times and spaces, allowing it to be shared between
white space devices (television users) and 802.11af devices.
The 802.11af operates according to the specific spectrum reg-
ulations for each country. The band occupied by the standard
is adjusted in the very high frequency (VHF) and ultra-
high frequency bands. Thus, the white space database is
the primary element that integrates the 802.11af architec-

mmWave

< 6 GHz

Sub 1 GHz
802.11 ah 
900 MHz 

802.11af 
54-698 MHz 

Fig. 4 Long range Wi-Fi standards

tures,which stores the available frequencies and transmission
requirements for a specific geographic location [22].

The other standard based on the sub 1 GHz frequency
bands is IEEE 802.11ah [23]. The standard, also known
as Wi-Fi HaLow, is more focused on IoT scenarios and
machine-to-machine communications to support long-range
wireless networks with a high density of wireless stations.
802.11ah operates in the 900 MHz band, thus building long-
range and low-power wireless sensor networks and other
massive multinode wireless networks [24]. The standard
can implement transmission modes in short bursts of data
packets with low power, offering short operating times for
remote sensors with bandwidth and battery restrictions. The
802.11ba standard is used with low-power wireless systems
that have active stations with a power consumption of less
than 1 mW in IoT environments [25]. A summary of the pri-
mary operating frequencies of the new generation of Wi-Fi
standards is shown in Fig. 5.

2.2.4 Wi-Fi for vehicle networks

Wi-Fi has been part of the planning in the automotive indus-
try for some time. Wireless access in vehicular environments
(WAVE) is defined in the amendment IEEE 802.11p to sup-
port intelligent transportation system (ITS) applications [26].
For several years, the 802.11p standard has been the primary
standard for dedicated short-range communications in vehic-
ular environments to address communications in vehicular ad
hoc networks [27]. The 802.11p can serve communications
for mobile elements that travel at relatively high speeds, such
as vehicle-to-vehicle (V2V) communications. Additionally,
the standard introduces an interesting modification to elim-
inate the need for association and authentication for data
exchange in V2V communications and the communications
between vehicles and roadside stations (V2I). However, the
adoption of Wi-Fi for vehicle communication solutions has
been limited due to the poor scalability of the 802.11p stan-
dard in high-mobility environments.

To meet these challenges, in recent years, work has begun
on the new 802.11bd standard as an 802.11p evolution for
the newgeneration ofV2Xcommunications [28].Alongwith
5GNRV2X, 802.11bd is expected to support more advanced
V2X applications with stricter QoS requirements [29]. The
standard aims to attend communications with mobile nodes
at speeds up to 500km/h, achieves twice the communication
range of 802.11p, and provides vehicle positioning with a
location accuracy of up to 1m. The PHY 802.11bd design is
based on the 802.11ac standard and also reduces subcarrier
spacing to operate on 10 MHz channels. This 2x down-
clock technique was improved by incorporating midambles,
a scheme that is similar to preambles but placed between the
OFDM data symbols to support the decoding of the frame
[30]. To increase reliability, 802.11bd proposes an adaptive
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Fig. 5 Wi-Fi operating
frequency spectrum
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retransmission scheme,where decisions to retransmit a frame
are based on the congestion level, similar to schemes used in
V2X cellular communications. Another important feature is
using dual carrier modulation to transmit the same symbols
twice over sufficiently far-apart subcarriers, improving the
block error rate performance and the communication range
that can be reached. Also, efforts are being made to bring
the operation of the 802.11bd standard to the mmWave band
[28].

2.3 Software-definedWi-Fi

Although efforts tomaintainWi-Fi standards as a competitive
technology have been evident, some gaps remain in several
areas. For example, seamless handover, fast fault recovery
processes, and better mobility management are some areas
that have received the highest attention from the academic
community in recent years. The SDN and NFV technologies
have gone beyond supporting new wireless broadband solu-
tions such as 5G and became a determining factor in the new
Wi-Fi systems [31]. In this context, software-defined Wi-Fi
(SD-Wi-Fi) is a real alternative for creating new solutions
and efficiently managing wireless network resources across
several networks.

New scenarios with critical applications and strict require-
ments are being addressed by SD-Wi-Fi solutions [32]. To
manage user mobility, several solutions base their operation
on virtual AP entities [33, 34]. Such entities instantiated in
the user plane allow more agile migration of AP functions
between physical elements to obtain reliable communica-
tions. More daring SDN/NFV solutions have tried to manage
mobility and create a reliable communication scheme across
several domains: cloud, core network, and Wi-Fi access net-
work [35]. The software-defined orchestration introduces the
possibility of creating slicing mechanisms for Wi-Fi net-
works so that the requirements of different applications in
more complex 5G contexts can be met [36, 37]. Various
services with different data traffic profiles can support SDN-
enabled heterogeneous wireless networks [38], integrating
Wi-Fi, light fidelity (LiFi), and LTE technologies.

The convergence of Wi-Fi with other wireless technolo-
gies is presented as a central point of the RANs diversity

proposed by the 5G networks. A representation of the new
Wi-Fi standards is shown in Fig. 6. Wi-Fi coexists with cur-
rent mobile radio standards and the new 5G radio as wireless
access technologies, acting in indoor and outdoor scenarios
such as backhauling, hotspots, and long-range communica-
tion. In parallel with the improvements in the PHY andMAC
layers introduced in the new standards, a new cross-control
and management layer has emerged that enhances the per-
formance of Wi-Fi networks through SDWN solutions. In
higher layers, the combined use of SDN and NFV allows the
implementation of resource virtualization and network slic-
ing to serve the different applications, where sophisticated
orchestrators manage all controllers.

3 Wi-Fi in the current 4G and 5G ecosystems

From the perspective of this review, 5G networks are under-
stood as a network paradigm rather than a specific isolated
technology. For the success of this new technological com-
mitment and its primary pillars, it is necessary to develop a
new radio interface that solves all the 5G challenges globally
and integrates the various existingwireless technologies with
consolidated acceptance in the market. Within these tech-
nologies, Wi-Fi networks stand out as one of the leading
players that 5G networks integrate.

Figure7 shows a spider chart comparing the primary
communication capabilities between 5G and Wi-Fi systems,
where the new generation of Wi-Fi standards outperforms or
equals the 5G systems. With the standards of high through-
put, which is currently led by Wi-Fi 6, Wi-Fi technology
improves compared to 5G in traffic capacity requirements,
reaching up to 400 Mbps/m2 and in the latency of the radio
interface with the ability to decrease to 1 ms (theoretically
near 120 µs) [39]. Recently, with the announcement of the
future Wi-Fi 7, Wi-Fi will be able to break the barrier of 20
Gbps of peak data rate, reaching a theoretically reaching 30
Gbps as previously mentioned. Wi-Fi communications also
continue to improve network efficiency and mobility, with
mobility being a priority issue to be improved in the 802.11
standards for vehicle use cases at speeds higher than those
supported by the 5G systems. The emergence of the 802.11bd
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standard, still under development, places Wi-Fi on par with
5G systems to serve high-speed nodes near 500km/h.

Analysis shows that Wi-Fi can provide similar perfor-
mance as 5G systems in many cases from the perspective of
several KPIs. This excellent positioning that the Wi-Fi stan-
dards have reached raises a debate on how the relationship
between 3GPP technologies, specifically 5G systems, and
Wi-Fi systems will be in the coming years. Even though it
seems that there will be severe competition, particularly for
the use of the unlicensed spectrum, the opinion of experts
and the actions of responsible organizations have shown an
interest in a harmonious coexistence of both technologies.
Therefore, these technologies will continue to cooperate, as
has happenedwith phenomena such as theoffloadingof cellu-
lar network traffic. Therefore, both technologies are expected
to succeed in this new ecosystem of wireless networks that is
driven by their integration and convergence at different levels
as the desired horizon. The rest of this section presents the
actions and mechanisms developed over the last few years
that justify the evolution in the cooperation, integration, and
convergence of 5G and Wi-Fi.

3.1 Coexistence

According to several worldwide industry leaders, who par-
ticipate in developing and implementing 5G solutions,Wi-Fi
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is recognized as one of the RAT systems that will be inte-
grated with 5G, thus sharing the unlicensed spectrum. Intel
recognizes and classifies Wi-Fi as a critical wireless tech-
nology for 5G networks [40], considering the joint evolution
of Wi-Fi and 5G networks toward a heterogeneous access
network as the primary task for developing such systems.
Samsung’s vision [41] recognizes Multi-RAT as one of the
key enabling technologies for 5G, which will allow the inte-
gration of licensed and unlicensed spectrum bands to achieve
better performance. According to them, this integration will
enable better energy efficiency of the network, greater den-
sity of connections,mobility, and data rates, withWi-Fi being
one of these wireless technologies to be integrated due to its
low deployment cost and the natural preference for mobile
users. For Huawei [42], 5G has among its critical missions to
guarantee the best delivery of any service to any user; thus,
using any spectrum band or RAT is fundamental to achieving
this goal.

Even though these and other manufacturers includeWi-Fi
networks as a critical RAT of the 5G network environment,
many see 5G networks as the end for IEEE 802.11 networks.
However, the Wi-Fi community defends the idea that 5G
does not represent a risk to the survival of the technology.
In addition, as presented earlier, Wi-Fi development work-
groups have worked intensively in recent years to achieve
an evolution of IEEE 802.11 networks. This result has been
demonstrated in the emergence of new standards to continue
guaranteeing a competitive technology in tandem with the
demands that users and new services impose on wireless net-
works.

In this debate, it is essential to understand that the evolu-
tion and development ofWi-Fi is a phenomenon independent
of the evolution of cellular networks. Although the develop-
ment of both technologies can be said to have occurred in
parallel, the fact that different organisms govern these tech-
nologies ratifies the independence of each development. The
new 5G paradigm is a complex system for mobile networks,
developing a new radio access standard and network slicing
mechanisms throughout all physical topology, led by ITU-
IMT-2020 and the 3GPP project. The IEEE 802.11 standards
marketed as Wi-Fi technology were created and developed
by the IEEE 802.11 working group. The Wi-Fi Alliance cer-
tifies the technology, which also tries to integrate the industry
and the manufacturers, which is why Wi-Fi is not an explicit
part of the 5G networks but will surely be one of the primary
competitors as part of radio access technologies.

Wi-Fi development has been evident for wireless tech-
nology specialists, highlighted in its strong acceptance by
its users and cellular operators. The global Wi-Fi market is
projected to grow from 9.4 billion dollars in 2020 to 25.2
billion dollars by 2026, and Wi-Fi traffic, in general, will
represent more than 50% of the total IP traffic [44]. The
growth of Wi-Fi estimated for the coming years according to

a Cisco Internet Report [43] is shown in Fig. 8, with expected
growth from 2018 to 2023 of nearly four times the number of
hotspots. The evolution of unlicensed spectrum technologies
such as Wi-Fi can be identified as accompanied by new busi-
ness stages [45]. The Wi-Fi networks started from a stage of
simple access, where all types of internet use were supported
with tremendous effort. Then, Wi-Fi went through stages of
intelligent access, integrating with other mobile technologies
to better understand users’ needs, and reached an access stage
at the operator level to support various critical applications
with high QoS requirements. Finally, Wi-Fi reached a stage
where access is massive and connects all types of devices and
“things,” fitting into the IoT paradigm, to which 5G networks
will also have to provide support in mMTC [46].

Despite thosewhopush fromone side to another to survive
or impose one technology over the other [4], most special-
ists believe in collaboration between the two technologies,
seeing both technologies as complementary [47, 48]. Wi-Fi
will remain the technology implemented for indoor envi-
ronments, while cellular technologies will prevail more for
outdoor environments. Both technologies will undeniably
continue to coexist, and the best way to coexist is to col-
laborate for a better user experience. Studies [1] have shown
that Wi-Fi offloads 4G data for approximately 25 billion dol-
lars. These data are estimated to triple for 5Gnetworks,which
shows that 5Gwill needWi-Fi evenmore than 4Gdoes today.

3.2 Cooperation: mobile data offload

Mobile data offloading has become a technique that turnsWi-
Fi into a necessary technology in the face of different cellular
wireless technologies [49]. The constant and rapid growth
that mobile data traffic has experienced has caused cellu-
lar operators to look for solutions to the saturation of radio
links and the lowpenetration capacity in indoor environments
presented by cellular signals. A solution to these problems
are the well-known cellular traffic offloading techniques, a
stack of architectures and protocols that have allowedmobile
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operators to establish and control alternative routes for the
cellular network traffic. Offload solutions quickly became
the primary option for operators because the increase in the
number of base stations to solve these cellular network prob-
lems would mean prohibitive costs that would make these
networks inefficient and unproductive. This result is why
Wi-Fi began to increase in capacity, improving its perfor-
mance and the QoS and QoE of the users through alternative
RANs, which could offer the capacity increases that cellular
operators need.

Wi-Fi networks are one of the most popular options
for offloading and perhaps the most used in cellular net-
works worldwide. Several reasons make Wi-Fi technology
an excellent candidate as a solution for offloading cellular
traffic [50]. Wi-Fi networks are currently the most widely
deployed RAN technology, with meager costs, and most
users’ mobile devices have Wi-Fi interfaces. Conversely,
similar to small cell networks and femtocells, Wi-Fi can
provide indoor service with high data rates, offering greater
network capacities and bandwidths. These featuresmakeWi-
Fi the optionoperators choose to address capacity limitations,
spectrum limitations, and poor indoor penetration that RAN
technologies present in cellular networks. Evenwith all these
advantages, Wi-Fi has the strong limitation of not interacting
directly with cellular networks standardized by 3GPP. This
limitation introduces problems related to the authentication
of users, mobility management, and control of the offload
process, all directly influencing the QoS of the services pro-
vided in broadband wireless networks [51]. For its interest,
3GPP addressed these problems with a new architecture for
integrating 3GPP systems and WLAN called interworking
WLAN [52]. However, this solution was deficient in treating
user mobility between the different access networks (3GPP
and IEEE). Thus, an update was published in Release 8 [53],
which improved the accessibility and continuity of users in
the network, and in Release 12 [54], LTE-WLAN radio level
interworking was defined.

The primary beneficiaries of Wi-Fi offloading are the
mobile network operators and the users of the service because
it reduces network congestion while offering a better QoS
for the customers. Additionally, Wi-Fi maximizes the rev-
enue potential and allows lower operational costs forwireless
broadband operators. Also,Wi-Fi offloading and other forms
of cooperation, such as the simultaneous use of 3GPP and
non-3GPP links for more reliable communications or higher
throughput communications, are possible due to the efforts
to integrate both technologies developed to date. As a result,
cellular and Wi-Fi technologies have converged to use and
develop similar features at the radio access and core network
levels, reaching a more efficient design and supporting oper-
ation in large bandwidth.

3.3 Integration and convergence

The capacity of Wi-Fi networks to provide offloading and
upload of data from cellular networks is one of the keys to
integrating technologies. Some years ago, unlicensed spec-
trum technologies became of primary interest to broadband
operators. Thus, the broadband network industry understood
that the coexistence and convergence of heterogeneous net-
works operating in both types of the spectrumare essential for
developing new wireless technologies such as 5G networks
[55]. Those who promote the 5G project are not oblivious to
this issue but have placed the convergence of networks and
spectra in a privileged spot and understand that 5G networks
will not achieve the expected economic and practical bene-
fits without it. The Wi-Fi community was also aware of this
phenomenon when the chairman of the Wireless Broadband
Alliance stated that it was evident that the limits between
licensed and unlicensed spectrum technologies were disap-
pearing, leaving their borders nearly imperceptible [46].

As has already been explained, cellular operators using
Wi-Fi technology have multiplied considerably, even with
the limitations of coverage, spectral efficiency, and reliabil-
ity that Wi-Fi faces. For the spectrum integration proposed
by 5G, solutions have already been developed to coexist
with the current cellular networks and Wi-Fi. The 3GPP
defined and standardized new technologies allowing cellular
networks and Wi-Fi integration. These technologies dynam-
ically share the spectrum and allow operators to benefit from
the additional capacity networks of unlicensed bands such
as Wi-Fi. In Release 13 [56], the licensed-assisted access
(LAA) feature was introduced, adapting LTE to operate in
the unlicensed spectrum [57]. To achieve this goal, access
is made through a secondary carrier component cell assisted
by a primary carrier component operating in the licensed
spectrum and using the LTE carrier aggregation feature.
The solution explicitly allows the operation of LTE in the
5 GHz unlicensed band, providing an interesting Wi-Fi pro-
tection feature. LAA has been designed with a mechanism
that selects a clean channel to dynamically avoid interfer-
ence with Wi-Fi operating in this band. Improvements were
intruded in later releases with enhanced LAA (eLAA), until
it arose in Release 15 [58], further enhanced LAA (FeLAA),
becoming the first 5G standard that adapted LAA and eLAA
[59].

3.3.1 Lessons fromWi-Fi and 4G integration

Several solutions for integrating Wi-Fi access exist in cur-
rent 4G (LTE) systems. Two solutions have been defined
for RAN-level integration for different Wi-Fi deployments.
First, to provide cellular operators with greater control in
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the deployment and use of WLAN, the aggregation of radio
level traffic over LTE-WLAN, formally called LTE-WLAN
aggregation (LWA), was also introduced in 3GPP Release
13 [60]. LTE systems can divide the traffic toward Wi-Fi
infrastructures through a function in the base stations. At
the user equipment level, the traffic of individual systems
can be aggregated and sent to both the base stations and the
WLAN access networks. In these systems, connection con-
trol is maintained on the part of LTE systems because Wi-Fi
systems lack efficientmanagement and control solutions. The
WLAN functionality is integrated with the radio station in
collocated network deployment, which is more suited for
small cell deployments. For noncollocated deployment, the
radio station andWLANaccess are connected through a logi-
cal node calledWLAN termination integrated with theWi-Fi
access controller.

Another technique that is closely related to LAA, also
introduced inRelease 13, is the integration at theLTE-WLAN
radio level with IPSec tunnel (LWIP) [61], where traffic
between the LTE system and the user equipment is trans-
ported in a WLAN through a tunnel transparently. LWIP
provides more efficient load balancing between LTE and
Wi-Fi to benefit from the increased capacity of Wi-Fi. The
primary difference between LWA and LWIP is the layer
where LTE andWi-Fi traffic aggregation is performed. LWA
performs this aggregation function at the packet data con-
vergence level, while LWIP performs it at the IP layer. An
LWIP node is anchored to a radio station operating as amacro
node, and the traffic over the Wi-Fi access is forwarded
through the LWIP node. Unlike LAA, which uses a mod-
ified LTE waveform in the unlicensed spectrum, LWA and
LWIP use a proprietary Wi-Fi waveform, providing deeper
integration with the unlicensed spectrum. Later, enhanced
LWA and enhanced LWIP were introduced to support the
integration of LTE and Wi-Fi radio links that use Wi-Fi
to access the unlicensed spectrum in the 60 GHz band
[62].

3.3.2 Outlook onWi-Fi and 5G convergence

For the integrationofWi-Fi access in 5Gsystems, all previous
experience with mechanisms implemented in 4G networks
is considered. With the new 5G architecture, access is done
neutrally, and the user devices can connect to 5G services
seamlessly across any access. In addition, the access network
has a functional and no structural design, which facilitates
its implementation and operation management. These char-
acteristics allow for improving the deployment of Wi-Fi
integration, solving problems such as the difference inWi-Fi
architectures for integration with 4G and the differences in
requirements for its implementation in user devices.

Release 15 [58] proposes a solution for integrating
untrusted Wi-Fi access with 5G systems. The integration is

done through the non-3GPP interworking function, which
transmits signalization and data between both systems. These
two types of traffic are transported with IPSec tunneling once
the users have completed their authentication and registra-
tion for 5G services over Wi-Fi access. Access selection is
provided by the access network and selection policy entity,
and the user equipment route selection policy is in charge of
traffic selection control across the access networks.

Several aspects to enable Wi-Fi access in 5G systems for
different deployments are addressed in Release 16 [63]. First,
the case of users accessing 5G services through trustedWi-Fi
access is considered. In this scenario, the connection with the
5G core is managed by the trusted non-3GPP gateway func-
tion that can be collocated with the WLAN controller. The
second scenario discussed is for cable modem and wireline-
based accesses. In this case, Wi-Fi-based devices can access
5G services through a residential gateway through the fixed
access gateway function. Finally,Wi-Fi-only devices with no
subscriber identity credentials can be served through Wi-Fi
trusted access to connect to the 5G services. In this case, the
trusted WLAN interworking function (TWIF) is used to per-
form signaling with the user devices and authentication and
registration with encryption.

A control plane is responsible for providing QoS for
users withWi-Fi access. With the trusted non-3GPP gateway
function being used as the decision entity, QoS treatment
can be established for each flow. Also, the access traffic
steering, switching, and splitting (ATSSS) functionality was
incorporated to route traffic across multiple accesses. With
this functionality, the multiaccess protocol data unit concept
is defined, capable of establishing protocol data unit ses-
sions where traffic can be served by 3GPP access, trusted
non-3GPP access, and untrusted non-3GPP access. At the
user plane, there are two routing functionalities for multiple
access: (i) the multipath TCP (MPTCP) functionality, where
ATSSS operates as an MP-TCP proxy between user devices
and the network, and (ii) the ATSSS low-layer functional-
ity, which performs switching, splitting, and steering at the
traffic level in IP flows [65].

The ATSSS conception represents perhaps the complete
result in efforts to converge between 3GPP and non-3GPP
access technologies. Its primary capabilities support vari-
ous access technologies while evidencing an evolution from
coexistence toward convergence in network access, mak-
ing Wi-Fi and broadband networks (4G/5G) work as one.
Thus, the path toward the convergence of access technolo-
gies has markedly improved end users’ experience through
various access options, as shown in Fig. 9. The incorpo-
ration of MPTCP in the user plane as one of the ATSSS
functionalities plays an essential role in the management of
core convergence, with evident improvements in data rates,
link utilization, and session setup latency compared to hybrid
access [66].
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Combining both technologies provides much better results,
offering more uniform coverage with better QoS and QoE.
Figure10 shows the spectrum convergence as the final step
of the more complex integration and convergence process of
technologies. Convergence begins with optimizing the con-
nections to select the best network andmanaging coexistence
to mitigate interference between the licensed and unlicensed
spectrum. This integration becomes stronger through carrier
services with the data offload and interworking processes
discussed above to finally reach spectrum convergence. By
bridging the gap between licensed and unlicensed tech-
nologies, Wi-Fi technology has a decisive role in playing
alongside other small cell technologies to enhance and accel-
erate the deployment of 5G use cases. As a result, faster
communications, greater spectrum efficiency, and seamless
services are obtained. Also, there is no competition between
both technologies, and a common interest between both
technologies is to reach a point of convergence where both
offer better communication performance with a better user
experience. However, some challenges remain despite all
the integration and convergence efforts between Wi-Fi and
5G.

4 Challenges for Wi-Fi and 5G convergence

The challenges of enabling tight integration with 5G systems
are still complex within the heterogeneous environments
of enterprise, residential, and public Wi-Fi. Attempting to
define a strict convergence approach at the RAN level to
support carrier-centric use cases with a high degree of homo-
geneity between architectures is one of the premises of
success for service providers. However, using this approach
for highly controlled environments escapes somewhat when
integrating Wi-Fi as an access technology. In these scenar-
ios, the integration must be much more flexible. Therefore,
efforts of the 3GPP have been focused on defining architec-
tures and exchanging messages for the 5G control plane and
data plane over non-3GPP access via gateway functions. In
addition, new proposals were introduced to improve the Wi-
Fi-5G convergence in Release 17 [67], which was recently
published, that use the resources of both networksmore effec-
tively and provide a better user experience.

4.1 Convergencemanagement

Other issues related to access visibility and network man-
ageability should be addressed. For example, the current
Wi-Fi and cellular access systems manage radio resources
independently of each other [68]. Thus, someWi-Fi function-
alities that manage network resources assume homogeneous
radio environments, making transitions to non-Wi-Fi access
points impossible. Thus, 3GPP has taken a step forward and
already has mechanisms to share some characteristics of
Wi-Fi implementation through cellular systems. However,
to achieve more technical and commercial success in inte-
grating Wi-Fi and 5G networks, it is necessary to create
an interface that allows complete network management and
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control policies between both technologies.With such a solu-
tion, enterprise and residential Wi-Fi networks could request
access to 5G services provided by an operator for certain
Wi-Fi users.

The ability of customers to route traffic through one or sev-
eral access networks is one of the premises of convergence
between Wi-Fi and 5G. This routing task across multiple
accesses cannot fail to guarantee the efficient use of avail-
able resources and connectivity to seamlessly switch traffic
flows between the access networks. Although 3GPP defines
this similarly to ATSSS, further study is required to achieve a
fast reaction time to changes in connection quality for traffic
routing. Aspects such as session continuity [69], traffic rout-
ing under policy control [35], and fast reaction to changes
in connection quality [70] are still being investigated by the
academic community in partnership with the industry.

4.2 Access network selection

Through theWLAN selection policy function, 3GPP defines
policies to select when to route data flows over Wi-Fi access.
However, the rules that govern the selection criteria are lim-
ited only to the load analysis on the access and backhaul
network, ignoring other interesting QoS metrics such as the
estimated throughput per band, themaximumnumber of con-
nected clients, or the supported frequency bands. This limited
analysis conspires with an optimal access network selec-
tion, sometimes affecting customer communication quality
requirements.

To improve the selection of WLAN access, the Wireless
Broadband Alliance proposes to incorporate the aforemen-
tioned missing parameters into the WLAN selection policy
rules. In addition, it is necessary to make the native Wi-Fi
QoS metrics available through measurements at both the AP
and STA levels to be used in access selection tasks at the user
equipment. Concurrently, having IP service level metrics via
measurements in the transport and core networks would also
improve the access selection at the user level.

4.3 RANmeasurements in ATSSS

In the context of ATSSS, load balancing and priority modes
are supported, lacking mechanisms that evaluate access,
considering the conditions of the radio channel. To take
full advantage of 3GPP and non-3GPP access convergence,
RAN-level measurements should be incorporated into the
ATSSS functionalities. Radio-level measurements of access
nodes (5G NR and WLAN AP) can provide beneficial infor-
mation on the conditions and quality of radio links, including
radio link latency statistics.

Thus, 5G systems will perform an optimal distribution of
traffic through various types of access andwould improve the
user experience with more efficient use of radio resources.

The information collected would also improve the opera-
tion of the architecture in general because the 5G core could
compare the information of different accesses to proactively
adjust the distribution of the traffic across 5G and Wi-Fi.
These measurements would support the MPTCP solution
in deciding when to add or remove specific subflows and
estimate path characteristics that evaluate and control con-
gestion.

4.4 Multipath proxy deployment

For the implementation of the ATSSS MPTCP, an applica-
tion proxy called the transport converter [71] is defined. The
primary function of this application is to assist in deploying
MPTCP as an extension of TCP. The proxy assumes that all
network attachments aremanaged by the same administrative
entity, implying that transit through third-party networks is
prohibited. This condition imposes new challenges because,
as we have already discussed, it can be supported by third-
party WLAN access networks within the conception of the
MPTCP proxy for ATSSS.

Improving the architectures and protocols is necessary to
implement these proxiesmoreflexibly. Thus, use cases can be
expanded to applyATSSS formultiple routes. In this context,
software-defined wide area network (SD-WAN) implemen-
tations that integrate multipath solutions could benefit and
allow multiple proxies to be operated by third parties, inde-
pendent of the administrative domain in the 5G core.

4.5 Wi-Fi slicing

As in 5G network solutions, Wi-Fi slicing is a service that
must work automatically and autonomously, interacting with
the network to guarantee the operation of an application.
Because the 5G core network is agnostic to access technolo-
gies, integrating Wi-Fi slicing in a 5G system is possible and
can be used in the entire network [72]. Slicing can enable 5G
network users to receive seamless access to 5G services over
Wi-Fi segments allocated for 5G services and applications.

The ability to associate a Wi-Fi device with a network
slice, move aWi-Fi device from one network slice to another,
isolate traffic between different network slices in the same
network, and define resources for a network slice are some
essential capabilities that enable theWi-Fi access network to
be sliced [73]. The management and orchestration of sliced
Wi-Fi networks is another critical issue. The ability of Wi-Fi
systems to report key performance indicators based on the
combination of the selectedWLAN and the allocated VLAN
(slice) will allowmore efficient systemmanagement per slice
basis. In addition, it is expected that for Wi-Fi networks,
cross-domain orchestration supported by SDN techniques
will enable network slicing across access, transport, and core
domains similar to 5G systems [74].

123



410 Annals of Telecommunications (2024) 79:397–413

4.6 End-to-end QoS

To satisfy the QoS requirements for 5G applications and ser-
vices, the 5G QoS parameters should be mapped to their
Wi-Fi QoS counterparts. Therefore, the 5G QoS flows trans-
ported across WLAN accesses can be differentiated in this
way. To solve this challenge and achieve this QoS differ-
entiation of 5G flows, labeling of the 5G data packets is
performed. Then, the tag is inserted into the IP header using
the differentiated services code point byte as defined in the
DiffServ architecture [75]. Thus, differentiated services can
be mapped for different access categories using the QoS dif-
ferentiation used in WLAN networks, the latter defined by
the 802.11e standard [76]. Another way to perform this QoS
differentiation in WLAN accesses is by identifying and pri-
oritizing the traffic that transports 5G flows. This solution is
engaging in those cases where some routers reset the differ-
entiated services tags before the packets reach the WLAN.

The Wi-Fi community is improving the QoS capabilities
of WLAN networks and thus supports new applications such
as industrial IoT, TSN, and edge computing. These devel-
opment lines aim to provide new tools for network-centric
WLAN QoS management, where QoS policies, rules, and
parameters of all flows can be integrated for end-to-end QoS
management for WLAN.

4.7 Deterministic communications

In URLLC scenarios, applications generate traffic flows
that require bounded low latency while sharing the com-
munication channel with noncritical application flows. To
guarantee the timing behavior of these applications, in addi-
tion to aspects related to reliability and fault recovery, the
802.1 working group has been working on standardizing
time-sensitive networks [77]. TSN is effective over Eth-
ernet networks to guarantee end-to-end worst-case latency
through mechanisms to support scheduled traffic, frame pre-
emption, and traffic filtering and policing. With Industry 4.0
and automation insight scenarios, 5G systems need perfect
couplingwith technologies, including TSN domains. For this
purpose, 3GPP has made marked progress toward integrat-
ing the 5G system with IEEE 802.1 and introduced technical
aspects.

Although Wi-Fi has made many advances in various
aspects of the PHY and MAC layers, such as throughput,
coverage, and spectrum use, Wi-Fi systems do not offer
deterministic conditions in the network to serve critical appli-
cations. Because Wi-Fi is an 802-LAN technology that is
similar to Ethernet, the TSN capabilities are expected to be
mapped seamlessly from Ethernet toWi-Fi without architec-
ture changes or protocol translation gateways. Efforts have
been made to enable the primary TSN protocols in Wi-Fi
solutions [78]. The Wi-Fi 6/6E standard currently supports

some basic TSN features. However, the Wi-Fi 7 standard
will evolve on the way to real low latency communications
[79]. Thus, Wi-Fi could present advantages over wireless
broadband systems because 4G/5G systems are not native
802 technologies; thus, more efforts are required to integrate
these systems. Currently, it is possible to integrate Wi-Fi and
5G networks in the field of TSN solutions using translation
interfaces defined in 3GPP Rel. 16 [80].

4.8 NewWi-Fi business model

Another challengeof interest is the newWi-Fi businessmodel
in the context of 5G systems. Unlike traditional strategic
models focused on competition, the new wireless ecosystem
has made new business models evolve toward an approach
that focuses more strongly on customers. The explosive
growth of Wi-Fi hotspots (see Fig. 8) has forced mobile,
fixed-line, and integrated operators to think about a new and
concrete business strategy. In this scenario, the new busi-
ness model of Wi-Fi solutions does not necessarily have to
offer innovative content but rather demonstrate flexibility in
accessing this content when compared to traditional business
models.

For mobile virtual network operators, the possibility of
usingWi-Fi is presented as a reality to become a more robust
competitor to traditional mobile network operators’ business
model approaches. For example, Wi-Fi calling or voice-over
Wi-Fi is attractive for mobile operators, providing multiple
benefits and boosting indoor coverage. Additionally, Wi-
Fi offloading provides solid opportunities for fixed-mobile
operators to reduce costs. In some cases, Wi-Fi network
investment can be justified in environments with constraints
in providing cellular capacity and coverage. Currently, the
price of user equipment, including chip and modem costs,
continues to be lower even for the latest generation of Wi-Fi
solutions compared to 5G mobile network equipment [4].

Economic cost will also be an important factor that will
define the behavior of users. Even as cellular solutions are
moving toward unlimited data subscriptions, the prevailing
monthly subscriptions on the market today put these solu-
tions at a disadvantage over Wi-Fi, which is predominantly
free with fixed broadband. However, with falling data costs
and exponentially increasing traffic growth, service providers
have looked into new sources of revenue. New charging
models for Wi-Fi are beginning to emerge, where in most
cases, direct Wi-Fi monetization [81] is challenging for ser-
vice providers.Wi-Fi has long been considered a free service,
and some companies have begun applying indirect monetiza-
tion. This new schememay go beyond direct monetization by
attracting new Wi-Fi users and applying strategies of Wi-Fi
offloading. The Wi-Fi first strategy involves cable operators
onloading as much cellular traffic as possible to their Wi-Fi
network, advertising strategies, and sponsored access.
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5 Conclusions

The development of wireless networks has gone through sev-
eral generations, evolving to support different applications
and services. The world of wireless communication tech-
nologies is immersed in implementing 5Gmobile broadband
networks. The 5G systems have the challenge of supporting
a broad spectrum of new applications that demand high-
performance requirements from the networks that support
them. These applications include those that demand high
transmission rates in broadband scenarios, critical applica-
tions with high reliability and low latency requirements for
communication, and managing thousands of communica-
tions in scenarios with a high density of devices.

The new generation ofWi-Fi standards addresses features
to satisfy the same demands as 5G systems for new applica-
tions and services, placing Wi-Fi networks in competition
with new wireless technologies. Thus, using established
standards supported by new technologies such as virtualiza-
tion and SDN can be explored to meet the new application
requirements in the existing network infrastructures. These
characteristics ratifyWi-Fi networks as one of the fundamen-
tal technologies inmobile traffic offloading, currently serving
a considerable part of this traffic, particularly in indoor envi-
ronments. Also, Wi-Fi and 5G convergence offer improved
visibility into Wi-Fi networks, allowing them more control
over user experiences and providing better service. However,
this long road of integration and convergence is far from over,
and Wi-Fi will have to evolve over the next few years to earn
a place beyond 5G (B5G) systems. It may be too soon to
decide, but we believe that Wi-Fi systems will continue to
have a strong presence in new generations of wireless net-
works that are to come.
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