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Abstract
Two advanced approaches (PA 1, and PA 2) based on a realistic 3D model of video sensor nodes (VSNs) deployed
randomly over a 2D target area are proposed to minimize energy consumption in the network maintaining area coverage and
connectivity. The reduction of the number of active VSNs decreases energy consumption but at the same time reduces the
area coverage and connectivity. These conflicting issues are resolved and an optimal solution is obtained by using an integer
linear programming-based approach (PA 1). But PA 1 is not tractable for large instances as the problem is NP-Hard. Hence,
a heuristic approach (PA 2) based on an advanced genetic algorithm is also proposed in the present work for obtaining a
near-optimal solution. Simulation studies are carried out to compare the performance of PA 1 and PA 2 with the other three
state-of-the-art approaches (APP 5, APP 6, and ET 3). Among the three existing approaches, APP 6/(ET 3) is the best in
energy consumption/(area coverage). It is observed that for the same simulation environment, both PA 1 and PA 2 guarantee
higher network services, by reducing energy consumption by 40.85% and 33.34% respectively compared to the best existing
approach APP 6; and as well as by increasing area coverage by 0.94% than the best existing approach ET 3 for the node
density 150 on the target area of size 75x75 square meter. Between PA 1 and PA 2, PA 2 generates a suboptimal solution
and PA 1 substantiates its superiority by reducing energy consumption by 11.26% than PA 2 without losing area coverage
for the same simulation environment.

Keywords 3D video sensor nodes · 2D target area · Random deployment · AGA · ILP · Energy consumption ·
Area coverage · Connectivity

1 Introduction

A set of video sensor nodes (VSNs) furnished with
miniature video cameras called CMOS [1, 2] cameras
forms a wireless video sensor network (WVSN). Such
sensors possess the function of capturing video and images
and are extensively utilized in various applications like
surveillance work, monitoring in the affected area with
natural disasters, tracking, environment monitoring, etc.
Operational by limited battery power, WVSN exhibits its
challenging attitude in the profile of energy consumption
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as in almost all the cases the battery is not rechargeable,
nor it is replaceable. Such VSNs can exhaust energy rapidly
owing to constant sensing and transmission of video data. It
lowers both monitoring quality and network lifetime.

The WVSN generally operates in an unfriendly environ-
ment, which requires VSNs to be deployed randomly with
high density to ensure the smooth working of the applica-
tion even if a few VSNs fail. But such densely deployed
VSNs generate huge overlapping of coverage in the target
area. The scheduling schemes of [1–9] utilize such overlap-
ping coverage to cover the sensing area/region of a VSN
and to shut such VSNs off for lowering the number of
active VSNs which results in the reduction of energy con-
sumption in the target area, without losing the percentage
of initial area coverage by the VSNs significantly (termed
as coverage constraint). But, the minimization (optimiza-
tion) of the number of active VSNs (or, minimization of
energy consumption by the active VSNs) is not addressed in
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[1–9]. Moreover, the connectivity among VSNs and
between VSN and the base station (BS) (termed as connec-
tivity constraints) are not addressed in [1–9]. The issue of
minimizing the number of active VSNs (or energy consump-
tion in the target area) while satisfying coverage constraint
and also connectivity constraints is addressed by proposing
new approaches (PA 1, PA 2) in this work. Both approaches
use the 3D coverage model of VSNs.

PA 1 uses a single-objective optimization technique
Integer Linear Program (ILP) for a system of linear
constraints, with the objective to minimize the total number
of active 3D VSNs for a particular random distribution
of 3D VSNs. ILP generates the optimal solution but
is intractable for large instances as the problem is NP-
Hard [10]. PA 2, a heuristic approach based on the
Advanced Genetic Algorithm (AGA) [11, 12] solves the
same problem to produce the near-optimal solution, which
runs in polynomial time and provides the solution for a large
problem size.

A single base station (BS) is set up by the side of
the target area both in PA 1 and PA 2 and the location
of the BS in the target area is supplied to all the VSNs
before their deployment. The BS is connected to WVSN via
some VSNs that are inside the communication range of the
BS. Each VSN in both approaches executes the neighbor
discovery phase, registration phase, and duty cycling phase
sequentially in the target area. In the neighbor discovery
phase, each VSN identifies the position and also orientation
of its neighbor VSNs by exchanging messages among
themselves. It then inserts such neighbor information in
a neighbor table both in PA 1 and PA 2. In the phase of
registration, each VSN in both PA 1 and PA 2 transmits its
position and orientation for itself to the BS. The BS inserts
such type of information into a table named a base table
(BT). During the duty cycling phase, the BS in PA 1/(PA 2)
executes a centralized algorithm. The centralized algorithm
is ILP/(AGA) based for PA 1/(PA 2). The BS identifies an
optimal/(near-optimal) number of active VSNs and sends a
sleep message to all the identified VSNs for shutting them
off. Such VSNs then enter sleep mode.

The qualitative and quantitative performance of PA 1 and
PA 2 are studied. The qualitative performance is assessed
considering communication, storage, and computation
overhead. The quantitative performance is studied during
simulation by noting the variation of the number of
active 3D VSNs (Act VSN), total energy consumption
by the set of active VSNs (ET ot ), total residual energy
(ERes), percentage of area coverage by the set of active
VSNs (Per CoV) and network lifetime with the density of
VSNs in the target area. The qualitative and quantitative
performance of PA 1 and PA 2 are compared with the
three existing approaches, APP 5 [14], APP 6 [14], and
ET 3 (upgraded 3D version of [13]). ET 3 is evolved by

replacing 2D VSNs with 3D VSNs. In all the approaches
PA 1, PA 2/(APP 5, APP 6, ET 3) each VSN executes
the neighbor discovery phase, registration phase, and
duty cycling phase/(scheduling phase) sequentially. In the
scheduling phase of (APP 5, APP 6), each VSN has to
undergo two sub-phases — backup set computation and
duty cycling [14]. Each VSN has to undergo two sub-phases
— redundancy judgment and duty cycling in the scheduling
phase of ET 3 [13]. The neighbor discovery phase and the
registration phase are the same for PA 1, PA 2, APP 5,
and APP 6 as the same coverage model (3D coverage
model) of VSN has been used in all the approaches. ET 3
differs from APP 5 and APP 6 in the registration phase
and the scheduling phase while in the neighbor discovery
phase, they are the same. The duty cycling phase/(sub-
phase) of PA 1, PA 2/(APP 5 and APP 6) is handled in
a centralized manner. In ET 3 a hybrid (combination of
distributed and centralized) duty cycling technique based on
grids is adopted.

It has been observed during simulation that the number
of VSNs which are going into sleep mode is optimum
(maximum) in PA 1 and hence, PA 1 performs much better
with respect to energy consumption compared to PA 2,
APP 5, APP 6, and ET 3. Both PA 1 and PA 2 work
with the objective to minimize energy consumption while
considering connectivity and coverage constraints. Both
PA 1 and PA 2 reduce communication overhead compared
to APP 5, APP 6, and ET 3.

The most important contributions of this paper are as
provided below:

• A practical coverage model of VSNs is explained by
adopting 3D VSNs which are projected on a 2D plane
surface.

• Then, the ILP-based optimization technique (PA 1)
has been applied for getting an optimal value of the
objective function which is the number of active 3D
VSNs, i.e., energy consumption subject to connectivity
and coverage constraints. Coverage constraint assumes
the value of area coverage to remain constant after the
deployment of sensor nodes in the target area.

• The heuristic approach (PA 2) based on the optimiza-
tion technique (AGA) is proposed for getting near-
optimal values of the number of active 3D VSNs (or,
energy consumption by all the active VSNs in the tar-
get area), subject to connectivity as well as coverage
constraints.

In this paper, related works are provided in Section 2.
The coverage model, network model, energy consumption
model, and some definitions are discussed in Section 3.
Section 4 explains the proposed work. Section 5 exam-
ines the qualitative performance of PA 1, PA 2, and the
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existing works APP 5, APP 6, and ET 3. Section 6 demon-
strates the simulation experiments, quantitative performance
evaluation, experimental analysis, and summary of observa-
tion. Finally, Section 7 draws the conclusion of the paper
and suggests the future scope followed by references.

2 Related work

A distributed approach of the duty cycling technique
is proposed in [2–9]. Each VSN produces two activity
messages, specifying its active/inactive status, and sends
those two messages to its neighbors. The VSN sends one
activity message to its neighbors when it is a deciding factor
of whether to slip into sleep mode or stay active. It sends
the other activity message to its neighbors after deciding
to stay active or go into sleep mode. A huge message loss
is caused during such transmission and reception, as no
order is maintained. In [1], two duty cycling approaches
(APP 1 and APP 2) are proposed. A mingling of a small
percentage (40%) of static active/inactive VSN (AIVSN)
and a large percentage (60%) of static all-time active
VSN (ATVSN) are deployed in a random manner in the
target area both in APP 1 and APP 2. It is a significant
development over the duty cycling approach as revealed in
[2] and in other approaches [3–9]. Only AIVSNs in APP 1
and APP 2 take part in the duty cycling approach. This
brings down collision among messages and as a result, more
VSNs enter sleep mode. But, both in APP 1 and APP 2
only AIVSNs (40% of total VSNs) are permitted to enter
the sleep mode. Besides, all the approaches consider 2D
modeling of the sensing region/Field of View (FoV) of
VSN. But, the 2D modeling of FoV does not indicate a
realistic model for camera coverage. A novel scheduling
algorithm among sensor nodes is suggested in [13]. The
scheduling algorithm in [13] is based on the redundancy
among Wireless Sensor Nodes (WSNs). It is a hybrid
algorithm (i.e., mingling of centralized and distributed) and
grid-based for shutting off WSNs. But heuristics in [13]
have used the 2D Omnidirectional sensing model of WSNs,
not a practical camera coverage model. Two centralized
approaches (APP 5 and APP 6) having an advanced
duty cycling technique are suggested in [14]. These two
approaches are successful in lowering the number of active
VSNs, and total energy consumption by the active VSNs
more compared to the existing approaches (EX 1, EX 2,
EX 3). EX 1, EX 2 and EX 3 are the upgraded 3D version
of [1], [2] and [13] respectively as revealed in [14].
Consequently, the loss of coverage by the active VSNs is
also more in [14] compared to EX 1, EX 2, and EX 3. But,
the scheduling schemes in [1–9, 13, 14] are able to reduce
the number of active VSNs and in turn energy consumption

at the cost of a reduction in the percentage of coverage.
They fail to produce an optimized (minimized) value of the
number of active VSNs and energy consumption without
losing area coverage. In order to gather images having visual
correlation efficiently, a scheduling framework based on
differential coding has been proposed [15]. This framework
is composed of two components which include Maximum
Lifetime Scheduling and Min-Max Degree Hub Location.
The proposed scheduling scheme based on differential
coding can effectively enhance the energy efficiency of
camera sensors and the network throughput. But, the
problem of Maximum Lifetime Scheduling is an NP-Hard
problem. In [16] two problems have been dealt with. One
problem deals with camera scheduling, i.e., the selection of
a set of cameras among available possibilities for allowing
the required coverage at each instant of time. The second
problem addresses energy allocation, i.e., how the total
available energy is distributed among the camera sensor
nodes. The problem of energy allocation is constructed as
a min-max optimization problem that targets maximizing
the coverage duration for the most critical region of the
target area, where the availability of energy is the minimum.
But the min-max optimization problem is an NP-Hard
problem that can only be solved for the problem of small
size. In [17] a real-time dynamic scheduling algorithm has
been proposed based on priority for wireless multimedia
sensor networks. The scheme in [17] does not possess any
scheduling mechanism at the application level among VSNs
and consequently, all VSNs stay in active mode. In [18] a
scheduling algorithm based on priority has been suggested
to increase the network lifetime. A mixture of static and
movable VSNs has been used in [18]. As some VSNs
are movable, it results in a huge waste of energy. In [19]
an optimal point of partitioning with intelligence between
the central BS and the sensor node has been selected.
Outcomes in [19] suggest that sending zipped images after
segmentation increases the lifetime of the sensor node.
But, there still remains a huge wastage of energy and data
redundancy because all VSNs stay active both in [17, 19]
in the target area. A two-phase algorithm is proposed in
[20]. The Binary Integer Programming-based algorithm is
able to solve the problem of optimal camera placement for
a placement space greater than that of the recent study.
This study helps to solve the problem in three-dimensional
space which is a more realistic scenario. A binary particle
swarm optimization (BPSO)-based algorithm is proposed
in [21] for solving a planned placement problem of a
homogeneous camera sensor network. But both [20, 21]
deal with the deployment of VSNs in a planned way in
the target area. In the post-disaster scenario, the planned
deployment of camera sensors is not possible. Many works
like [22–25] deal with target coverage where sensor nodes
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Table 1 Nomenclature Table

Acronym Description

ε A constant whose value lies between 0 and 0.5

λ Number of VSNs per unit area

�max Maximum number of VSNs in sleep mode

2D Two Dimensional

3D Three Dimensional

A Size of the target area

Act VSN Number of active VSNs at any time instant

Act VSNmin Minimum number of active VSNs needed for

maintaining connectivity

Act VSNopt Optimal (minimum) number of active VSNs

AGA Advanced Genetic Algorithm

AIVSN Active/Inactive Video Sensor Node

AoV Angle of View

ATVSN All-Time Active Video Sensor Node

BPSO Binary Particle Swarm Optimization

BS Base Station

BT Base Table

CBC Coin-or Branch and Cut

CM OV Communication Overhead

CMOS Complementary Metal Oxide Semiconductor

CoV Randpoints Number of random points covered by Act VSN

CP OV Computational Overhead

DCC Duty Cycling, Coverage and Connectivity

decs Decision Variable

ERes Residual Energy

ET ot Total energy consumption by Act VSN

EnergyT ot opt Optimal value of ET ot

Eva Energy consumption by an active VSN

FoV Field of View

GA Genetic Algorithm

GA OPT Procedure for finding out Act VSNopt

gc Generation Count

id Identification

GenMax Number of generations in GA OPT

GPSR Greedy Perimeter Stateless Routing

Per CoV Percentage of area coverage by Act VSN

IIFGA Improved Immune Fuzzy Genetic Algorithm

ILP Integer Linear Program

Init CoV Per CoV by Init Ran

Init Ran Initial random deployment of VSNs

when all VSNs ∈ Act VSN

Lopt A List that stores optimal solution as a set

of values for the status of VSNs

MAC Media Access control

NP-Hard Non-dominated Polynomial Time-Hard

NP Size of Initial population in GA

NSGA-II Non-dominated Sorting Genetic Algorithm-II

nv Distinct random points covered by the FoV

of vth VSN

Table 1 (continued)

Acronym Description

Obj F Objective function to be minimized

Offgc Offspring population

Pcr Crossover probability

Pmv Mutation probability

POPgc A set of initial population in GA OPT

PSO Particle Swarm Optimization

RC Communication range of a VSN

Size D Size of a dead message

Size id Size of the identification of a VSN

Size Lopt Size of the list, Lopt

Size Rec NT Size of a record in the Neighbor Table

ST OV Storage Overhead

Statusv Status of the vth VSN

T N Total number of deployed VSNs

Thcoverage Threshold value of coverage

Tot Param Total number of attributes

in Neighbor Table

Tot Randpoints Total number of random points imagined

on A

VSNs Video Sensor Nodes

WSNs Wireless Sensor Nodes

WVSN Wireless Video Sensor Network

are to cover a few target points instead of the whole
area of the target. But in a post-disaster scenario, the
whole area needs to be monitored. A PSO collaborative
evolution-based sleep scheduling mechanism for WSN is
proposed in [23]. A hierarchical structure prevails between
the ordinary nodes and the backbone nodes [23]. But such
a hierarchical structure is unsuitable in the post-disaster
scenario where the random deployment of sensor nodes
is the only possibility. A PSO-based sleep scheduling
algorithm is proposed in [26]. The method used in [26] is
able to bring down the number of active WSNs and energy
consumption ensuring an adequate percentage of coverage.
An improved immune fuzzy genetic algorithm (IIFGA) is
suggested in [27] to remove redundancy among WSNs
and to select a set of working WSNs without lowering
the quality of the coverage much. Both [26, 27] lower the
number of active WSNs in the target area though they
are unable to produce an optimal (minimum) value of the
number of active WSNs. Besides, the coverage model of 2D
WSNs is used in [22–27]. Being Omnidirectional (circular),
the coverage model of 2DWSN is very simple, but it cannot
be implemented in reality.

Both the approaches (PA 1 and PA 2) which utilize the
3D coverage model of VSN are a more realistic model
of camera coverage than the 2D coverage model of VSN
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as considered in [1–8] and 2D Omnidirectional coverage
model of WSN as considered in [13, 22–27]. Besides,
the proposed approaches (PA 1 and PA 2) provide optimal
and near-optimal values for the number of active VSNs
and energy consumption respectively unlike [1–9, 13, 14,

17]. PA 2 can run in polynomial time unlike [15, 16]. All
the VSNs do not stay active in the target area as present
in [17, 19]. Both the approaches (PA 1 and PA 2) shut
off VSNs to optimize (minimize) the number of active
VSNs and energy consumption in the duty cycling phase

Table 2 Comparative study among proposed works and related works

Method Coverage Coverage FoV Duty- Target Optimization Objectives

Model Model Area Cycling Area Technique

Strategy Used

ET 1 [1] Static 3D Trapezoidal Distributed 2D No, Greedy Reduce ET ot ,

VSN Directional Ensure

coverage

and

Connectivity

ET 11 [1] Static 3D Trapezoidal Distributed 2D No, Greedy Reduce ET ot ,

VSN Directional Ensure

coverage

and

Connectivity

ET 2 [2] Static 3D Trapezoidal Distributed 2D No, Greedy Reduce ET ot ,

VSN Directional Ensure

coverage

and

Connectivity

ET 3 [13] Static 3D Trapezoidal Distributed 2D No, Greedy Reduce ET ot ,

VSN Directional Ensure

coverage

and

Connectivity

APP 5 [14] Static 3D Trapezoidal Distributed 2D No, Greedy Reduce ET ot ,

VSN Directional Ensure

coverage

and

Connectivity

APP 6 [14] Static 3D Trapezoidal Distributed 2D No, Greedy Reduce ET ot ,

VSN Directional Ensure

coverage

and

Connectivity

PA 1 Static 3D Trapezoidal Distributed 2D Single-Objective Minimize ET ot ,

VSN Directional ILP Ensure

coverage

and

Connectivity

PA 2 Static 3D Trapezoidal Distributed 2D Single-Objective Minimize ET ot ,

VSN Directional AGA Ensure

coverage

and

Connectivity
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without losing coverage and hence, the same quantity of
video data is collected with less data redundancy unlike
in [17, 19]. Unlike [18], the usage of static VSNs further
minimizes energy consumption owing to the mobility of
VSNs. The deployment of 3D VSNs in a random manner
in the target area unlike [20, 21] is suitable when it is
difficult for the human being to reach first the target area.
Unlike [22–25], in the present work, the whole area needs
to be monitored and the motivation of the present work is
to minimize the number of 3D active VSNs without losing
initial area coverage which is the percentage of coverage
when all VSNs were active. The approach PA 1/(PA 2) of
the work proposed in this paper is able to minimize the
number of active VSNs under the coverage and connectivity
constraints unlike [26, 27] while PA 1/(PA 2) provides an
optimal/(near-optimal) solution.

The list of acronyms used in this paper is displayed in
Table 1. Proposed works and several very current related
works are summed up in Table 2.

3 Coveragemodel, networkmodel, energy
consumptionmodel and some definitions

3.1 Coveragemodel and networkmodel

PA 1, PA 2, APP 5, APP 6, ET 3 follow the same coverage
and network model as in [14]. Figure 1a (Fig. 3a in [14])

Fig. 2 Randomly deployed 3D VSNs and BS over a 2D plane

shows the 3D directional sensing model of a VSN v.
Figure 1b and c (Fig. 3b and c in [14] respectively) show
the FoV of the VSN v when it is projected on the target
area, which is a 2D plane surface. When a large number
of 3D VSNs are deployed to monitor a 2D target area,
their trapezoidal sensing regions over the target area overlap
with each other as shown in Fig. 2. Additionally, the BS
represents the target area (A) by some uniform random
points to make the coverage problem computationally
manageable.

Fig. 1 a 3D Directional sensing
model (source [14]). b The
projected trapezoidal area on the
target 2D plane (source [14]).
c Details of 3D directional
sensing model (source [14])
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3.2 Energy consumptionmodel

The energy consumption model of PA 1 and PA 2 is the
same as described in [14].

Calculation of energy consumption (ETot ) ET ot is the total
energy consumption by Act VSN in Joule during the
simulation time 0 to t s. ET ot is calculated for only
Act VSN. Let Eva be the total energy consumption by the
VSN v during the simulation time 0 to t s. Therefore, as
stated by the model for energy consumption described in
[14], ET ot is calculated at simulation time t s using Eq. 1
assuming that all VSNs are deployed at t=0.

ETot = EvaXAct V SN (1)

3.3 Some definitions

Definition 1 The mathematical structure of the general ILP
formulation of a single-objective optimization problem is as
follows:

Optimize F′(decs1, decs2, .....decsn)
subject to G′

j′ (decs1, decs2, ......decsn) (≤/ = / ≥) 0, 1 ≤
j′ ≤ J′

where

• F′ represents the objective function to be optimized
• (decs1, decs2, .....decsn) are the n decision variables and

decsn is the nth decision variable
• Furthermore, the problem is subjected to J′ number of

inequality/equality constraints. G′
j′ is the j

′th constraint
• Additionally, each decision variable has an upper and/or

lower bound associated with it, e.g., 1st decision
variable (decs1) has an upper and/or lower bound
(decs1(U) and/or decs1(L)), 2nd decision variable (decs2)
has an upper and/or lower bound (decs2(U) and/or
decs2(L)), and so on. decs1(L) ≤ decs1 ≤ decs1(U),
decs2(L) ≤ decs2 ≤ decs2(U) ..... decsn(L) ≤ decsn ≤
decsn(U)

Definition 2 Optimization of the objective function, either
minimization or maximization.

Definition 3 The constraints and the objective function are
the linear functions of these decision variables.

Definition 4 A set of values of decision variables (decs1,
decs2, ....decsn) is a solution.

Definition 5 A solution that satisfies the set of constraints
and variable bounds is called a feasible solution. All feasible
solutions form a feasible decision space.

Definition 6 An optimal solution is a feasible solution
that optimizes the objective function. The optimal solution
produces the optimal value of the objective function.

4 Present work

Both approaches (PA 1, PA 2) are elaborated on in this
section. The three phases, neighbor discovery phase,
registration phase and duty cycling phase are executed by
each VSN in the target area sequentially. PA 1 and PA 2
differ in the duty cycling phase. Figure 3 briefs the flow
of execution of the proposed approaches. The neighbor
discovery phase and the registration phase of PA 1 and PA 2
are the same and described in Section 1. In the registration
phase, each VSN in the target area selects a route from itself
to the BS using GPSR routing protocol with tunable MAC
[28] which is utilized in multi-hop-based routing.

4.1 Duty cycling phase

The BS in both approaches executes a centralized algorithm
for duty cycling, coverage and connectivity control (DCC).
DCC1/(DCC2) are the DCC algorithm for PA 1/(PA 2).
Both in DCC1 and DCC2, the objective function (Obj F
which minimizes Act VSN) depends on decision variables
which are the status of VSNs. The BS formulates single-
objective optimization for the objective function and
constraints in the ILP format before the execution of both
DCC1 and DCC2 as shown below.

Min Obj F(Status1, Status2, ...... StatusT N )
Subject to the following two constraints:

Obj F = Act V SN =
∑

T N
v=1(Statusv = 1)

≥ Act V SNmin (2)

Per CoV ≥ Init CoV ≥ T hcoverage (3)

(where Thcoverage is the threshold value of percentage of
area coverage [14]), Init CoV is Per CoV by Init Ran which
indicates the scenario after the initial random deployment
of VSNs when all VSNs are in active mode. Act VSNmin is
the least number of active VSNs that cannot be shut off to
satisfy the connectivity constraint. T N is the total number
of VSNs deployed in the target area. Here, Obj F is the
proposed objective function. Statusv is the status of vth VSN
where 1 ≤ v ≤ T N. Statusv ∈ (0, 1), Statusv is 1 if vth VSN
is active and 0 otherwise. Status1, Status2, .....StatusT N are
the status of deployed VSNs and also the decision variables
of the objective function. Act VSN ≥ Act VSNmin and
Per CoV ≥ Init CoV ≥ Thcoverage are the connectivity
constraint and coverage constraint respectively that need
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Fig. 3 Flow of execution of the
proposed approaches

to be satisfied. The value of Act VSNmin is calculated by
considering ε=0.3 using Eq. 5[29].

Rc = √
((1 + ε)lnA/(πλ)) (4)

Here Rc is the communication range, λ is the number
of 3D VSNs per unit area and ε is a constant whose value
lies between 0 and 0.5. Now, λ is calculated by considering
ε=0.3 using Eq. 4 for a given Rc and A, Act VSNmin is
calculated as (λ*A), i.e.,

Act V SNmin = (λ ∗ A) (5)

The corresponding ET ot is measured using Eq. 1. in Joule
during the simulation time 0 to t s.

Per CoV = (CoV Randpoints/T ot Randpoints)

∗100% (6)

where CoV Randpoints is the total number of random
points covered by all VSNs in the proposed area of size A
and Tot Randpoints is the total number of random points
created by the base station.

Let nv be the number of random points covered by the
FoV of vth VSN then

CoV Randpoints =
⋃

v=1
T N(nv ∗ Statusv) (7)

Illustrative example Let for a given value of A and Rc,
Act VSNmin is computed as 2 using Eqs. 4 and 5.

Act VSNmin basically ensures connectivity in the network.
Let us consider also that the desired threshold coverage
value (Thcoverage) is 50%. Let 100010010 denote a particular
solution that consists of the status of VSNs in the network.
1/(0) in the solution indicates the activeness/(inactiveness)
of the particular VSN in the network. Act VSN is 3 in
this solution. Let Per CoV by the active VSNs be 60%
which is computed by using Eq. 7. It is clear from this
solution that Act VSN > Act VSNmin and Per CoV >

Thcoverage. Therefore, this solution (in which coverage and
connectivity constraints are satisfied) is a feasible one.
There may exist many feasible solutions to the problem.
Out of these solutions, the solution which provides the
least value of Act VSN is accepted as the desired solution
which minimizes energy consumption in the networks while
maintaining the coverage and connectivity constraints.

4.2 DCC1

The BS minimizes (Obj F). The corresponding ILP format
of the proposed single-objective optimization is discussed in
Section 4.1 The BS solves this single-objective optimization
problem as stated below.

Step 1: DCC1 calls a Python-based package (PuLP)[30]
which calls a solver (a program), a coin-or branch cut
(CBC) to solve the above single-objective ILP problem
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Fig. 4 A snapshot of Lopt of size 10 at the BS at the end of step 2

for getting an optimal solution and optimal value of the
objective function, (Obj F) corresponding to the optimal
solution.

Step 2: The BS stores this optimal solution as a set of
values for the status of VSNs in a list, Lopt . Each value
in Lopt is either 0 (for inactive VSN) or 1 (for active
VSN). Lopt stores such values for all the VSNs in the
network (T N) and hence, the size of Lopt (Size Lopt ) is
T N bits. The value Statusv is in the vth location of Lopt .
The BS uses a counter to count the number of 1′ in Lopt

and the count value of this counter is the optimal value of
Act VSN (Act VSNopt ).

For example, Fig. 4 shows Lopt for T N = 10. The
number of logic 1 in Lopt is 6 and hence the optimal value
of the objective function (Obj F) is 6, i.e., Act VSNopt

= 6. The BS computes the optimal value of ET ot

(EnergyT ot opt ) using the value of Act VSNopt and Eq. 1.
Step 3: The BS determines the identification of active

VSNs using the position of logic 1 in Lopt . The BS
searches the BT to find the records corresponding to
the identification of the active VSNs as obtained from
Lopt , reads position and orientation from these records
to generate FoV of these active VSNs. The BS counts
the number of random points in the target area that are
inside the FoV of active VSNs as CoV Randpoints using
Eq. 7, uses Eq. 6 to compute the value of Per CoV
using the value of Tot Randpoints and CoV Randpoints.
Per CoV should not be less than Init CoV when Obj F
is equal to Act VSNopt . Init CoV should also be greater
than Thcoverage so that WVSN may remain functional.
The BS stores Act VSNopt as the optimal value of
the objective functions Obj F and EnergyT ot opt in two
separate variables.

Step 4: The BS determines the identification of inactive
VSNs using the position of logic 0 in Lopt . The BS
searches the BT to find the records corresponding to
the identification of the inactive VSNs as obtained from
Lopt , reads the position from these records and sends
sleep messages to these inactive VSNs. The BS also
updates these records in the BT by replacing the value of
“isVSNActive” Boolean variable from 1 to 0.

4.3 DCC2

DCC2 utilizes AGA[12] based single-objective optimization
technique to minimize Obj F subject to connectivity
constraint and coverage constraint. AGA is a special
category of genetic algorithm (GA) that has characteristics

Fig. 5 Genetic representation of a solution

like self-adaptive crossover and mutation operation, scale
reproduction etc [12]. AGA adaptively varies the mutation
and crossover probability following different conditions of
solutions to prevent premature convergence, preserve the
solution diversity, to enhance the speed of calculation and
the algorithm precision while searching for the optimum
value of the objective function. In DCC2, each solution (also
known as a chromosome) belonging to a population of size
NP is of length T N. The value of Statusv is in the vth

location in the solution. All the solutions in the population
are encoded in binary format as the status of each VSN is
a binary variable. It is called the genetic representation of a
solution. The general format of the genetic representation of
a solution is shown in Fig. 5.

DCC2 is divided into two parts Part 1 finds the near-optimal
solution and near-optimal value of Obj F and Part 2 finds
shutting off the maximum number of VSNs in the target
area.

Part 1: To find the near-optimal solution, Procedure
GA OPT( ) is executed.

Part 2: Shutting off the maximum number of VSNs on
the target area

Step 2.1: The BS determines the identification of inactive
VSNs using the position of logic 0 in Lopt . The BS
searches the BT to find the records corresponding to the
identification of the inactive VSNs as obtained from Lopt ,
reads position from these records and sends sleep messages
to these inactive VSNs. The BS also updates these records
in the BT by replacing the value of the “isVSNActive”
Boolean variable from 1 to 0.

4.4 Post duty cycling scenario

A maximum number of VSNs enter into sleep mode after
the execution of DCC1/(DCC2) by the BS. Now, the BS
computes T N, number of VSNs in sleep mode (say �max)
and Act VSNopt (=(T N –�max)) from Lopt for the target
area. The BS also calculates Per CoV by Act VSNopt in
the target area from the BT. In the case of (Per CoV <

Thcoverage ), the BS stops gathering data from WVSN since
WVSN is no more operational now. Suppose VSN v is
in active mode and (Per CoV ≥ Thcoverage), the VSN v
begins monitoring the target area. Owing to the continuous
dissipation of energy, VSN v dies after a certain time. Its
energy having been reduced to the value, a little more than
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Algorithm 1 GA OPT(NP , GenMax , pmu, pcr ).

zero, the VSN v transmits and routes (utilizing GPSR) dead
messages [14] to its neighbors and the BS respectively. The
size of the dead message (Size D) is 17 bits [14]. The BS
searches the BT using the id of the VSN v after receiving
the dead message from it, updating the values, isVSNActive
[14] and isVSNDead [14] to 0 and 1 respectively for VSN
v. VSN v1 (a neighbor VSN of the VSN v say) becomes
active when it receives a dead message from the VSN
v. These phenomena will happen for all dead VSNs and
consequently, the sleeping VSNs belonging to �max become
active. The BS now searches for records of sleeping VSNs
(belonging to the set �max) in the BT with the observation
of values of “isVSNActive” and “isVSNDead” set as 0
and 0 respectively. VSNs being active now, the BS updates
the values of “isVSNActive” and isVSNDead to 1 and 0
respectively.

Table 3 Comparative study of CM OV and ST OV Among PA 1,
PA 2, APP 5, APP 6 and ET 3 for T N = 70

CM OV ST OV

PA 1 230.36 kilobytes 0.21 megabytes

PA 2 230.36 kilobytes 0.21 megabytes

APP 5 [14] 231.33 kilobytes 64.35 megabytes

APP 6 [14] 231.33 kilobytes 64.35 megabytes

ET 3 [14] 241.54 kilobytes 0.22 megabytes

All the sleeping VSNs (∈ �max) being active, the BS
again calculates Per CoV by �max(=(T N -Act VSNopt ))
number of VSNs. The BS will stop collecting data from
WVSN at this point if Per CoV is less than Thcoverage.
Otherwise, Act VSN (∈ �max) will go on monitoring the
target area till they die owing to energy deficiency.

5 Qualitative performance

The evaluation of the qualitative performance is carried
out with respect to communication overhead (CM OV),
computation overhead (CP OV), and storage overhead
(ST OV) for the two schemes (PA 1 and PA 2). The existing
approach, ET 3 corresponds to EX 3 of [14]. The CM OV,
CP OV, and ST OV of APP 5, APP 6, and ET 3 are already
evaluated in [14] and are shown in Tables 3 and 4. In the
worst case, each VSN in the target area for PA 1 and PA 2
has (T N-1) number of neighbor VSNs. The overheads are
studied in the worst case in the target area.

CM OV: CM OV of PA 1 and PA 2 is the summation
of the communication overhead in the neighbor discovery
phase (CM OV1), registration phase (CM OV2) and duty
cycling phase (CM OV3).

CM OV1: In PA 1 and PA 2 each VSN sends a packet
of size Size Rec NT bits [14] to its (T N-1) number
of neighbors. Therefore, CM OV1 in PA 1 and PA 2 is
(Size Rec NT*T N*(T N-1)) bits

Table 4 Comparative study of CM OV and ST OV Among PA 1,
PA 2, APP 5, APP 6 and ET 3 for T N = 100

CM OV ST OV

PA 1 470.11 kilobytes 0.44 megabytes

PA 2 470.11 kilobytes 0.44 megabytes

APP 5 [14] 471.62 kilobytes 92.05 megabytes

APP 6 [14] 471.62 kilobytes 92.05 megabytes

ET 3 [14] 492.58 kilobytes 0.45 megabytes
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CM OV2: In PA 1 and PA 2 each VSN routes a packet of
size Size Rec NT bits [14] to the BS. So CM OV2 in PA 1
and PA 2 is (Size Rec NT*T N) bits

CM OV3: In PA 1 and PA 2 the BS routes sleep
message of size Size id bits to (T N-Act VSNmin) number
of VSNs. A dead message of size Size D is sent by
each VSN to its (T N-1) number of neighbors and to
the BS respectively in PA 1 and PA 2. Hence, CM OV3

is (Size id)*(T N- Act VSNmin) + (Size D)*T N*(T N-
1)+(Size D)*(T N) bits for PA 1 and PA 2

ST OV: ST OV of PA 1 and PA 2 is the summation
of the storage overhead in the neighbor discovery phase
(ST OV1), registration phase (ST OV2) and duty cycling
phase (ST OV3).

ST OV1: Each VSN stores T N number of records each
of size Size Rec NT bits [14] in PA 1 and PA 2. So ST OV1

in PA 1 and PA 2 are (Size Rec NT*T N*T N) bits.
ST OV2: In PA 1 and PA 2, the BS stores T N number of

records in the BT. Each record has (Tot Param+2) number
of parameters [14] of size (Size Rec NT+2) bits [14]. So,
ST OV2 in PA 1 and PA 2 is (Size Rec NT+2)*T N bits.

ST OV3: The BS stores the optimal solution in Lopt

after the execution of DCC1 in PA 1 and DCC2 in PA 2.
Size Lopt is T N bits, i.e., (1/8)*T N bytes. The BS stores
(Act VSNopt , EnergyT ot opt ) in two separate variables both
in PA 1 and PA 2. The data type of the variable which holds
the value of Act VSNopt is int. The data type of the variable
which holds the value of EnergyT ot opt is float. Therefore,
the total size needed to hold Act VSNopt and EnergyT ot opt

is (2+4) bytes, i.e., 6 bytes. So, ST OV3 both in PA 1 and
PA 2 are ((1/8)*T N+6) bytes.

CP OV: CP OV of PA 1 and PA 2 is the summation of
the computation overhead in the neighbor discovery phase
(CP OV1), registration phase (CP OV2) and duty cycling
phase (CP OV3).

CP OV1: Each VSN inserts T N number of records in its
neighbor table in the two schemes. In PA 1 and PA 2, each
record consists of Tot Param [14] number of parameters.
So, CP OV1 in PA 1 and PA 2 is O(Tot Param*T N), i.e.,
O(T N)

CP OV2: The BS inserts T N number of records in the
BT in PA 1 and PA 2. Each record in the BT contains
(Tot Param + 2) number of parameters. So, CP OV2 in PA 1
and PA 2 is O((Tot Param+2)*T N)), i.e., O(T N)

CP OV3: The computation overhead of PA 1 in the
duty cycling phase is due to the computation overhead
of DCC1 executed by the BS. DCC1 employs the ILP-
based optimization technique. In this phase, 2T N number
of possible values to the decision variables (Status1, Status2,
...... StatusT N ) are assigned in a non-deterministic manner.
The computation overhead to check the feasibility of each
solution is O(T N) and to evaluate the value of the objective
function for each solution is O(T N).

The computation overhead of PA 2 in the duty cycling
phase is due to the computation overhead of DCC2

executed by the BS. The computation overhead of AGA
utilized by DCC2 is O(population size * length of each
chromosome * number of generations), i.e., O(NP * T N *
GenMAX). The BS stores the near-optimal solution in Lopt

with a computation overhead is O(1). The BS computes
(Act VSNopt and EnergyT ot opt ) corresponding to the near-
optimal solution in Lopt and inserts them in two separate
variables with computation overhead O(T N).

So, CP OV3 in

• PA 1 is 2T N x {O(T N) + O(T N)}, i.e., O(2T N *
T N), i.e., exponential

• PA 2 is O(NP * T N * GenMAX) + O(1) + O(T N), i.e.,
O(NP * T N * GenMAX) + O(T N), i.e., polynomial in
nature.

Therefore, CP OV in
• PA 1 is O(T N) + O(T N) + O(2T N * T N), i.e., O(T N

x 2T N ), i.e., exponential in nature.
• PA 2 is O(T N) + O(T N) + O(NP * T N * GenMAX)

+ O(T N), i.e., O(T N) + O(NP * T N * GenMAX), i.e.,
polynomial in nature.

• APP 5 [14] and APP 6 [14] is O(T N6) [14]
• ET 3 is O(T N2) [14]

CP OV is the highest in PA 1 (exponential) and the lowest
in ET 3. CP OV of APP 5 and APP 6 are the same. CP OV
of ET 3 is lesser than that of APP 5, APP 6. CP OV of PA 2
cannot be compared with PA 1, APP 5, APP 6, and ET 3 as
CP OV of PA 2 depends on two other variables, GenMAX

and NP apart from T N unlike CP OV of the rest of the
approaches.

CM OV and ST OV for the five schemes are calculated
and shown in Tables 3 and 4 respectively when T N is 70
and 100.

It is observed from Tables 3 and 4 that CM OV is the least
and the same for PA 1 and PA 2. CM OV is the highest in
ET 3. CM OV is less in APP 5 and APP 6 than in ET 3. It
is also observed from Tables 3 and 4 that ST OV is the least
in PA 1 and PA 2, the highest in APP 5 and APP 6, and less
in ET 3 than in APP 5 and APP 6.

6 Quantitative performance

Both PA 1 and PA 2 are simulated using OMNET++
Castalia simulator [31]. WVSN−v4 framework [32] which
supports the modeling of video sensor coverage contains a
simulation model of WVSN. A particular VSN possessing a
larger processing capability is supposed to be the BS both in
PA 1 and PA 2. The BS utilizes pulp [30] and pymoo [33]
(both are python-based packages) to get an optimal solution
and a near-optimal solution respectively in the duty cycling
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Table 5 The basic experimental parameters for PA 1 & PA 2

Parameter Value

Target Area 75 m X 75 m

Number of VSNs 70–150

Deployment Random

Horizontal Offset Angle α 18◦

Angle of View (2*α) 36◦

Vertical Offset Angle β 45◦

Maximum Tilt Angle γ 65◦

Sensing Range 23.8 m

Communication Range 30 m

Thcoverage 50% of the target area

phase. Pymoo is a python-based package for solving the
problem of optimization utilizing different stochastic meth-
ods like GA, NSGA-II, PSO, etc. The performance of PA 1
and PA 2 is compared with APP 5 and APP 6 in [14].
Hence, the basic simulation environment, simulation envi-
ronment for energy consumption, tunable MAC parameters,
and GPSR protocol parameters as in [14] are summarized
in Tables 51, 6, 7, and 8 respectively. Tables 5, 6, 7, and
8 correspond to Tables 5, 6, 7, and 8 in [14] respectively.
Table 9 summarizes the parameters used in DCC2.

6.1 Simulationmetric

The quantitative performance of PA 1 and PA 2 is studied
based on Act VSN, ET ot (in Joule), ERes (in Joule),
Per CoV (in percentage), network lifetime (in seconds) and
R T (in seconds) in the target area. R T is the execution time
(in seconds) of PA 1, PA 2 excluding the execution time of
the neighbor discovery phase and registration phase.

The quantitative performance of PA 2 is also studied
based on Act VSN for studying the convergence of GA
OPT to the optimum value of Act VSN, i.e., Act VSNopt .

With the increase in the total number of deployed VSNs
in the target area (node density) Act VSN increases and as
a result of which ET ot , Per CoV, ERes and network lifetime
also increase. Therefore, the variation of Act VSN, ET ot ,
ERes , Per CoV and network lifetime is studied with the
variation of the node density during simulation. With the
increase in node density, R T increases as a result of which
network lifetime also increases. Therefore, the variation
of R T is studied with the variation of the node density
during simulation. The increase in the total number of
function evaluations (Function Evaluation) defined as the
product of population size and the number of generations in
GA OPT decreases Act VSN if GA OPT converges to the
optimum value of Act VSN, i.e., Act VSNopt . Therefore,

1Horizontal Offset Angle α will be 18◦ in [14]

Table 6 The experimental parameters for energy consumption in PA 1
and PA 2

Parameter Value

Initial Energy 50 J

BaselineNodePower 6 mW

Output Transmission Power 46.2 mW

MeasuredEnergyPerImageCapture 1 μJ

MeasuredEnergyPerImageProcessing 1 μJ

TimeForImageCapture 440 ms

TimeForImageProcessing 1512 ms

Table 7 Tunable MAC parameters for PA 1 and PA 2

Parameter Value

MACProtocolName TunableMAC

DutyCycle 1 ms

ListenInterval 10 ms

RandomTxOffset 1

BackoffType 2

Table 8 GPSR protocol parameters for PA 1 and PA 2

Parameter Value

GPSRProtocolName GPSR

HelloInterval 60000 ms

NetSetupTimeout 1000 ms

Table 9 Parameters used in DCC2 of PA 2

Parameter Value

Population size (NP ) 100

Offspring population size 100

Crossover probability (Pcr ) variable

Mutation probability (Pmu) variable

Crossover Operator Two point

Mutation Operator Bitflip

Number of Generations(GenMax ) 50
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the variation of Act VSN is examined by varying Function
Evaluation during simulation.

6.2 Simulation results and performance evaluation

Five simulation experiments are conducted to compare the
performance of PA 1 and PA 2 with APP 5, APP 6, ET 3
and Init Ran. The sixth simulation experiment is conducted
to compare the performance of PA 1 and PA 2 with APP 5,
APP 6 and ET 3. The seventh simulation experiment is also
conducted during the simulation of PA 2 for studying the
convergence of GA OPT to Act VSNopt . All the simulation
experiments except the fifth, sixth and seventh simulation
experiments have been conducted for the duration (0–700) s.
The fifth simulation experiment is conducted for (0–1500) s.

6.2.1 Act VSN versus node density

The first simulation experiment is conducted for observing
the variation of Act VSN with node density. The plot of
Act VSN vs. node density for Init Ran, PA 1, PA 2, APP 5,
APP 6, and ET 3 is shown in Fig. 6.

Observation from Fig. 6 Act VSN increases with node den-
sity for all the six schemes (Init Ran, PA 1, PA 2, APP 5,
APP 6, ET 3), which is quite obvious. Act VSN is the
highest for Init Ran and the least for PA 1, less in PA 2 than
in APP 5, APP 6, and ET 3, less in APP 6 than in APP 5,
ET 3, less in APP 5 than in ET 3 (for node density > 100).

6.2.2 ETot versus node density

The second simulation experiment is conducted for observ-
ing the variation of ET ot with node density. The plot of ET ot

vs. node density for Init Ran, PA 1, PA 2, APP 5, APP 6
and ET 3 is shown in Fig. 7.

Observation from Fig. 7 ET ot increases with node density
for all the six schemes (Init Ran, PA 1, PA 2, APP 5,

APP 6, ET 3). ET ot is the largest for Init Ran and the
minimum for PA 1, less in PA 2 than in APP 5, APP 6
and ET 3, less in APP 6 than in APP 5, ET 3, less in
APP 5 than in ET 3 (for node density > 100). This result
is obvious from the nature of graphs shown in Fig. 6
which plots Act VSN vs. node density since ET ot is directly
proportional to Act VSN according to Eq. 1.

6.2.3 ERes versus node density

The third simulation experiment is conducted for observing
the variation of ERes with node density. The plot of ERes vs.
node density for Init Ran, PA 1, PA 2, APP 5, APP 6, and
ET 3 is shown in Fig. 8.

Observation from Fig. 8 ERes increases with node density
for all the six schemes (Init Ran, PA 1, PA 2, APP 5,
APP 6, ET 3). ERes is the least for Init Ran and the largest
for PA 1, greater in PA 2 than in APP 5, APP 6 and ET 3,
greater in APP 6 than in APP 5, ET 3, greater in APP 5
than in ET 3 (for node density> 100). This result is obvious
from the nature of the graphs shown in Fig. 7 which plots
ET ot vs. node density since ERes is equal to (Total Initial
Energy of VSNs − ET ot )

6.2.4 Per CoV versus node density

The fourth simulation experiment is conducted for observ-
ing the variation of Per CoV with node density. The plot of
Per CoV vs. node density for Init Ran, PA 1, PA 2, APP 5,
APP 6 and ET 3 is shown in Fig. 9.

Observation from Fig. 9 Per CoV increases with node
density for all the six schemes (Init Ran, PA 1, PA 2,
APP 5, APP 6, ET 3). Per CoV is the largest for Init Ran,
PA 1, PA 2 and the lowest for APP 6, less in APP 5 than
ET 3 (for node density > 100). The nature of graphs in
Fig. 6 explains the nature of graphs in Fig. 9.

Fig. 6 Act VSN vs node density
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Fig. 7 ET ot vs node density

Fig. 8 ERes vs node density

Fig. 9 Per CoV vs node density
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Fig. 10 Network lifetime vs
node density

6.2.5 Network lifetime versus node density

The fifth simulation experiment is conducted for observing
the variation of network lifetime with node density. The
plot of network lifetime vs. node density for Init Ran, PA 1,
PA 2, APP 5, APP 6 and ET 3 is shown in Fig. 10.

Observation from Fig. 10 Network lifetime is the least in
Init Ran and ET 3 (770 s) and the highest in PA 1 and PA 2
(1500 s) for all node density. It is lesser in APP 6 than in
PA 1 and PA 2 for the node density less than equal to 80. It
is lesser in APP 5 than in PA 1, PA 2 and APP 6 for all node
densities except node densities 120 and 150. The nature of
graphs in Fig. 8 explains the nature of graphs in Fig. 10.

6.2.6 Comparison among PA 1, PA 2, APP 5, APP 6 and
ET 3 with respect to R T

The sixth simulation experiment is conducted for observing
the variation of R T with node density. Tables 10 and 11

Table 10 R T (in s) of PA 1, PA 2, APP 5, APP 6 and ET 3 for
Tot VSN=16

Approaches Run Time

PA 1(Theoretical) 107.50 seconds

PA 1 1 second

PA 2(gen=10) 12.59 seconds

PA 2(gen=20) 25.01 seconds

PA 2(gen=30) 37.09 seconds

PA 2(gen=40) 49.52 seconds

PA 2(gen=50) 61.02 seconds

APP 5 0.051 seconds

APP 6 0.05 seconds

ET 3 0.013 seconds

describe R T of PA 1, PA 2, APP 5, APP 6 and ET 3. R T
for these approaches in ascending order for all objective
functions considered here is described as follows: R T of
ET 3 < R T of APP 5 < R T of APP 6 < R T of PA 1 <<

R T of PA 2 << R T of PA 1(Theoretical). It is small for
APP 5, APP 6, and ET 3, as they are greedy approaches,
and the largest for PA 1(Theoretical)(Theoretical value of
R T of PA 1) as the computational complexity of ILP is
exponential in nature theoretically (as discussed in CP OV3

of Section 5). It is small for PA 1 as it uses CBC solver
to solve ILP. Modern solvers like CBC can solve single-
objective ILP of large problem size within 4 seconds [34].
R T value is moderate for PA 2 as it uses AGA heuristic.
Tables 10 and 11 clearly show that with the increase in
the number of generations (gen) in PA 2, R T increases
which is obvious. It is to be noted that, a small network
of 3D VSNs (16–18) VSNs on a 25m X 25 m target
area) is created to measure R T of all the approaches
as the computational complexity of PA 1(Theoretical) is
exponential.

Table 11 R T (in s) of PA 1, PA 2, APP 5, APP 6 and ET 3 for
Tot VSN=18

Approaches Run Time

PA 1(Theoretical) 421.53 seconds

PA 1 1.2 seconds

PA 2(gen=10) 13.45 seconds

PA 2(gen=20) 26.48 seconds

PA 2(gen=30) 40.14 seconds

PA 2(gen=40) 52.38 seconds

PA 2(gen=50) 64.62 seconds

APP 5 0.061 seconds

APP 6 0.06 seconds

ET 3 0.022 seconds
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Fig. 11 Act VSN vs function evaluation (Node Density=70) for PA 2

6.2.7 Act VSN versus function evaluation

The seventh simulation experiment is conducted for observ-
ing the variation of Act VSN with Function Evaluation in
PA 2. The plot of Act VSN versus Function Evaluation for
PA 2 is shown in Figs. 11 and 12 when node density equals
70 and 80 respectively.

Observation from Figs. 11 and 12 Act VSN decreases with
Function Evaluation. It is also observed from Figs. 11
and 12 that Act VSN becomes almost parallel to the
Function Evaluation axis when Function Evaluation is
greater than 1500 and 4500 respectively. It means Act VSN
has already reached its optimal value (Act VSNopt ) at
Function Evaluation greater than 1500 (or GenMax > 15)
and greater than 4500 (or GenMax > 45) in Figs. 11 and 12
respectively.

6.3 Experimental analysis

In PA 1, PA 2, APP 5, and APP 6 the collision among
messages and consequently loss in messages is reduced
by tunable MAC protocol which utilizes CSMA/CA for
reducing the message collision. As a result, the BS receives
all the messages from VSNs in the registration phase. The
BS in PA 1, PA 2/(APP 5, APP 6) sends a sleep message
again using tunable MAC protocol for turning off T N-
Act VSNopt number of/(a set of) VSNs. This results in
the minimization of Act VSN as observed in Fig. 6 and
minimization of ET ot as observed in Fig. 7 which leads to
the maximization of ERes (as observed in Fig. 8) and in turn
network lifetime (as observed from Fig. 10) both in PA 1
and PA 2. This also results in the reduction in Act VSN,
ET ot , Per CoV and an increase in ERes , network lifetime
in the case of APP 5 (for node density > 100) and APP 6
in comparison to ET 3 as observed from Figs. 6, 7, 9, 8
and 10 respectively. The four BSs operate simultaneously

Fig. 12 Act VSN vs function evaluation (Node Density=80) for PA 2

in APP 6. Hence, the BS in APP 6 receives most of the
request messages from the VSNs in the target area. This
reduces Act VSN, ET ot , Per CoV and enhances ERes , and
network lifetime more in APP 6 than in APP 5 and ET 3.
The minimization of Act VSN both in PA 1 and PA 2
(Fig. 6) results in no reduction of Per CoV from Init CoV
as observed in Fig. 9. Therefore, Per CoV is the highest in
PA 1 and PA 2 and it is the same as Init Ran.

No message-passing takes place in the duty cycling phase
of PA 1 and PA 2. Therefore, CM OV of PA 1 and PA 2
is the least as observed in Tables 3 and 4. Act VSNopt in
PA 1 is optimal (minimum) and Act VSNopt in PA 2 is
near-optimal. Therefore, Act VSNopt and EnergyT ot opt in
PA 1 are lesser than Act VSNopt and EnergyT ot opt in PA 2
as observed from Figs. 6 and 7 respectively. ERes in PA 1 is
greater than ERes in PA 2 for the same reason as observed
from Fig. 8. PA 2 being based on AGA produces very good
results in terms of minimizing Act VSN and ET ot , and
maximizing ERes and network lifetime while maintaining
Per CoV equal to Init CoV compared to that obtained by
using APP 5, APP 6 and ET 3 (as observed from Figs. 6, 7,
8, 9 and 10 (respectively).

The group leader [13] in the grid sends a sleep message
to the two VSNs belonging to the qth grid having the
highest and second-highest weight respectively in ET 3.
The VSNs get the sleep message from the corresponding
group leader and broadcast the SAM message [13] to
their corresponding neighbors. There is a collision between
the sleep messages and the SAM message although sleep
messages do not collide with each other across the grids
in the target area. This results in a loss of sleep message.
The loss of sleep message owing to collision enhances with
the enhancement of deployed VSNs in the target area. A
huge number of VSNs having the highest or second-highest
weight in several grids do not receive sleep messages from
their corresponding group leader and consequently, those
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VSNs remain active although they fulfill the condition
of redundant coverage [13, 14]. This enhances Act VSN
(Fig. 6), ET ot (Fig. 7) and Per CoV (Fig. 9) and decreases
ERes (Fig. 8) and network lifetime (Fig. 10) in ET 3
compared to APP 5 (for node density > 100).

6.4 Summary of major observation

It is observed that APP 6 produces a better result than that
of (APP 5, APP 6, and ET 3) with regard to ET ot . ET 3
shows the best results among these three state-of-the-art
works with regard to Per CoV. Act VSN is lesser in PA 1
compared to PA 2. PA 1 and PA 2 are able to reduce ET ot

by 40.85% and 33.34% respectively from the existing best
approach APP 6 (with respect to ET ot ) for 150 deployed
VSNs over the target area. With the reduction in Act VSN,
ET ot also decreases but at the expense of reduced Per CoV
in APP 5, APP 6, and ET 3. But the reduction in Act VSN
does not cause a reduction in Per CoV in PA 1 and PA 2.
For the same node density, both PA 1 and PA 2 gain a little
amount of Per CoV (i.e., 0.94%) than the existing better
approach ET 3 (in terms of Per CoV). Both PA 1 and PA 2
have the same CM OV. Both of them show better results by
0.32%/(4.25%) from (APP 5 & APP 6)/(ET 3) in terms of
CM OV for 100 deployed VSNs on the same target area.
Finally, PA 1 reveals its superiority concerning reduced
ET ot (11.26%) over that of PA 2 without losing Per CoV
for 150 deployed VSNs.

7 Conclusions

In this paper, two advanced approaches, PA 1 and PA 2
have been proposed to minimize the number of active 3D
video sensor nodes monitoring the 2D target area without
losing area coverage and ensuring network connectivity
in the target area with randomly deployed VSNs. The
total energy consumption by the video sensor nodes
being proportional to the number of active video sensor
nodes, PA 1 and PA 2 is designed for minimizing energy
consumption. PA 1 produces the optimal value of energy
consumption, while PA 2 produces a near-optimal value of
energy consumption, subject to coverage and connectivity
constraints. APP 5, APP 6, and ET 3 are the existing
state-of-the-art approaches with which PA 1 and PA 2 are
compared both with regard to energy consumption and area
coverage. It is observed that both PA 1 and PA 2 produce
much better results while minimizing energy consumption
and also maintaining the initial coverage compared to
APP 5, APP 6, and ET 3.

A new approach can be developed in the future to address
the above-mentioned conflicting issues in the presence
of heterogeneous 3D video sensor nodes where all video

sensor nodes will have different communication and sensing
ranges.
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