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Abstract
Numerous sensor network applications require accurate and rapid localization of randomly deployed sensor nodes. For
wireless sensor network (WSN) localization, optimization methods can provide specific and reliable position estimates of a
sensor node. The fixed density of beacons may be increase or decrease owing to various reasons, such as upkeep, lifespan,
and breakdown. Because of its robustness, flexibility, and economic viability, the distance vector-hop (DV-Hop) algorithm
is used to locate WSN nodes. Because of its high precision and fast computing speed, class topper optimization (CTO)
is suitable to solve localization problems. This study proposes an orthogonal learning CTO-based DV-Hop localization
algorithm for three-dimensional WSNs. Moreover, this study used a refined formula to calculate the minimum hop size
of beacon nodes for reducing localization errors (LEs) in the approximated distance between the beacon and dumb nodes.
Results revealed that our proposed method outperformed some existing algorithms in terms of reducing LEs (0.6%) and
localization error variance (0.3%) and enhancing localization accuracy (0.4%) and coverage (0.7%).
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1 Introduction

Wireless sensor networks (WSNs) have attracted
considerable research attention. WSNs are composed of
numerous small sensor devices called sensor nodes that
gather and communicate data from the environment [1].
WSN localization of collected usable data is a critical
problem. Furthermore, without determining actual location-
related information within each sensor node, the obtained
data are not useful [2]. Moreover, the location of a data-
sensing sensor is as crucial as the data itself. Thus, the data
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and position-related information must be jointly commu-
nicated to determine the precise location of information
collected by the sensor node. Several applications designed
for use in extreme environments are increasingly using
WSNs, such as those employed in battlegrounds, border
patrols, and rain forests [3, 4] and those used for the remote
control of hazardous areas and routing [5, 6]. Although
the global positioning system is commonly used for sensor
localization, it is not a viable choice because of the high
cost of WSNs. Thus, researchers have proposed various
WSN localization algorithms [7]. Numerous localization
algorithms currently available are classified into two types:
range based and range free [8].

To calculate a node’s location, range-free localization
algorithms are used to estimate the distance within nodes
and do not require external hardware. For these types
of algorithms, the closest node whose position is known
is used to localize dumb nodes. The centroid algorithm
[9], DV-Hop [10, 11], amorphous [12], approximate point
in triangulation test [13], and multidimensional scaling
techniques [14] are some of the well-known range-free
localization algorithms. However, the existing range-free
localization algorithms have many limitations. For example,
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these algorithms are not resistant to environmental noise
interference, require long computational time to determine
sensor node positions, and provide only coarse-grained
precision. Range-based localization algorithms require
precise measurement methods that necessitate expensive
equipment to determine the distance or angle between a
node and its counterpart, providing highly accurate location-
related information [15]. Received signal strength indicator
[16], time of arrival [17], angle of arrival of signals packets
[18], and time difference of arrival [19] are some examples
of range-based localization algorithms. We focus on range-
free algorithms in this study because they do not require
additional devices.

Range-free localization techniques do not require any
hardware, making them less expensive than range-based
localization techniques. Furthermore, to reduce the local-
ization error (LE), appropriate localization optimization
methodologies must be developed in conjunction with a
range-free localization algorithm. Although a localization
method involving the use of a high percentage of localized
nodes would be adequate for localization, it does not guar-
antee fine-grained precision. Thus, optimization algorithms
should be applied to the results of localization techniques
to reduce the LE. Optimization algorithms are useful in
practical applications. However, with the availability of an
increasing amount of information in the IoT era, many real-
world problems include multiple decision parameters and
evaluation indicators. Single-objective optimization algo-
rithms cannot efficiently solve such problems. Thus, multi-
objective optimization algorithms have been proposed and
are used in diverse fields. Most studies have used single-
objective optimization algorithms to solve localization prob-
lems [20]. However, numerous studies have demonstrated
the importance of multiobjective optimization algorithms
in solving multiobjective complex problems [21]. Although
traditional studies have focused on two-dimensional space,
most sensors have been deployed in three-dimensional
space for various applications, necessitating further research
to overcome complex challenges.

Several optimization techniques have been developed
to solve real-time optimization problems. However, these
techniques are not useful for solving large-scale, complex
problems in WSNs. The class topper optimization (CTO)
method is proposed in this study to overcome existing
limitations. The CTO algorithm presented in [22] is a
population-based meta-heuristic optimization technique.
On the basis of students’ learning behaviors, a CTO is
motivated to become the best student in the class (class
topper). A class is divided into sections where students learn
regarding various subjects. Exams are conducted each year
to evaluate each student’s performance in a specific class.
Section toppers are students who receive the highest marks
in a section, whereas class toppers receive the highest marks

in a class. Students are always striving to improve their
knowledge to be the best student possible. To become a class
topper, the CTO algorithmmimics students’ unique learning
behaviors. During the process of becoming a class topper in
CTO, students enhance their knowledge with the help of the
knowledge of their respective section topper.

Contribution of this study:

i We discovered a novel formula to optimize the average
hop-distance calculation among nodes in a 3D wireless
sensor network.

ii An orthogonal learning–based CTO (OLCTO) focused
on a DV-Hop localization algorithm was developed to
reduce the LE in 3D WSNs.

iii The efficiency and reliability of the algorithm were
improved by implementing the optimization process by
using the OLCTO approach.

iv Simulation results revealed that our new multiobjective
OLCTO method outperforms some existing approaches.

2 Associated works

Numerous optimization-based algorithms have been devel-
oped to solve localization problems. In [20], an NSGA-
II-based multiobjective DV-Hop localization algorithm was
proposed; this study applied an improved constraint strategy
to all beacon nodes to improve DV-Hop location estima-
tion precision. This algorithm exhibited greater accuracy
with a small increase in computational costs. Kaur et al.
[23] proposed Wolf algorithm–based optimization to accu-
rately estimate the average hop distance for each beacon
node. The algorithm provided precise results with a small
increase in the computation cost. Another study [24] rec-
ommended using multiobjective functions to solve difficult
problems involving several objects and track them in order
to reduce the model’s size. However, that study measured
the proportion of selection to determine the global opti-
mum solution. The effect of radio irregularity was not
examined in that study. Kanwar and Kumar [25] suggested
a range-free localization approach using runner-root algo-
rithms. They changed the average hop size of anchor nodes
by refining a correction factor and optimized the hop size by
using a line search algorithm. The precision of localization
was improved using a runner-root method.

The genetic method was used in [26] to improve range-
free localization. The authors introduced a correction factor
to alter the hop size of anchor nodes, which was then
further improved using a line search algorithm. However,
holes, nonuniform node distribution, network sparsity,
and irregular radio patterns may reduce the suggested
algorithm’s performance. Using PSO, Singh and Sharma
[27] proposed an improved DV-Hop localization algorithm.
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They measured the hop count and minimum hop size by
using the proposed algorithm to determine the location
and evaluate performance errors. The developed method
utilized the hop size of the anchor from which the dumb
node defined its reach. In addition, with the PSO strategy,
the positions of unknown nodes can be determined. The
dynamic-range average bisector approach was proposed
in [26] to identify the location of nodes. In the system,
each anchor node transmits data at two range levels. The
correction factor was employed to prevent the overlapping
of regions at the expense of increased computational costs.

A multipath routing scheme for homogeneousWSNs was
presented in [28]. The proposed routing method was used
to reduce energy consumption and balance load, resulting in
increased network lifetime. We aim to reduce the packet loss
rate in this work. Clustering network nodes, exploring paths
between CHs, and maintaining paths are the three phases of
the proposed routing method. A two-level routing algorithm
with two phases, clustering and routing, was proposed in
[29]. CHs are chosen during the clustering phase on the
basis of residual energy, length from the BS, centrality,
and the number of neighbors. BCHs and CHs are chosen
during this phase. Each clustering setup phase has two
clustering-steady phases, as determined by BCH selection.
Thus, clustering’s overhead is minimized. Routing is the
second phase, which has two levels: intra cluster and inter
cluster. Each cluster is divided into four sections, each with
a CH centrality, and nodes are located in these four sections
in intra cluster routing. In inter cluster routing, CHs are
layered in accordance with their distance from the BS.

A safe data aggregation scheme was described in [30].
The goal of data patterns is to reduce redundant data
in the network, reduce sensor node energy consumption,
and maintain data accuracy and precision. Intra cluster
data aggregation, inter cluster data aggregation, and data
transfer are the three phases of a secure data aggregation
method. In [31], a binary tree was used to organize sensor
nodes. Subsequently, data aggregation was conducted on
the tree’s middle nodes, and analyzed data were sent to
the root node. The data must first be approved to prevent
unauthorized data aggregation requests. The aggregation
process then begins, and an enhanced cyclic redundancy
code is used hop by hop to ensure data aggregation accuracy
and reliability. Meanwhile, data packets obtained from their
offspring are subjected to cumulative functions imposed by
intermediate nodes. As a result, the workload of sensors in
the network is significantly reduced. This pattern continues,
and aggregated data are eventually sent to the base station.

In [32], a secure combination data aggregation method
called SHSDA was proposed; this method is based on a
mixture of star and tree structures. The network is divided
into four sections, each of which is geographically split
into four equal components. A star structure is formed

among nodes. The best node in terms of residual energy
and centrality is chosen as the root of a star structure in
each section. An energy-efficient layer routing protocol
was proposed by Hajipour and Barati [33]. This technique
divides the network into circles that are concentric. The
circles are then divided into eight equal sectors at a 45◦
angle. For each section, an agent is chosen. Each section’s
agent is in charge of gathering and aggregating data sensed
by nodes in that section. When the agent receives data, it
adds error detection and correction codes before sending
the data to the lower layer of the same sector’s agent. The
process is repeated until the arrival of all data at the base
station.

In [34], a two-level energy-aware routing and a clustering
method were proposed. The network is clustered, and the
most suitable CHs are chosen on the basis of main factors
related to energy consumption. A rendezvous region is then
built to create a communication substructure between CHs,
and nodes in this region are referred to as backbone nodes.
In this area, a tree is created to send aggregated data to
the sink through CHs. This tree provides an appropriate
substructure for sending data to the sink, allowing CHs to
send data to the sink with the least amount of overhead and
energy and in a short amount of time. Because of the use of
this microstructure, CHs do not need to use route discovery
to send data to the sink. These findings indicate that range-
free localization algorithms still need improvement in terms
of localization accuracy (LA). Thus, we propose a new
algorithm for 3D WSNs that employs the multiobjective
OLCTO approach.

3 Conventional 3DDV-hop algorithm

The free localization technique is based on a protocol
for distance routing. To determine the number of hops of
beacon nodes and the minimum hop distance apart from
WSNs, the distance between dumb nodes or unknown nodes
and beacon nodes is calculated. Different paths form in a
network topology among dumb and beacon nodes that are
not linear due to nonuniform connectivity with wireless
sensor nodes. The 3D DV-Hop localization algorithm is
an extension of the classic DV-Hop technique. Therefore,
some errors have been identified in the algorithm for node
positioning [25].

Step 1 The minimum hop amount is defined for unknown
and beacon nodes in step 1. By transmitting signals
through beacon nodes through the vector protocol
system, neighboring nodes can be shown their location.
Information exists in the form of Hi , aj , bj , and cj in
which id is the identity; aj , bj , and cj are coordinates;
and Hi is the hop count for the i beacon node. First, 0 is
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set as the value of Hi [35]. The nodes obtain data from
the broadcast and record the hop amount and localization
of the vector’s beacon nodes. The Hi value must be
increased by 1 through this process [26]. In this update
process, if any node receives the same id group, the new
received data will be compared with the original value
of Hi . The nodes obtain broadcast data and track the
hop amount and localization for the beacon nodes of the
vector.

Step 2 The minimum hop count and average hop dis-
tance are determined to calculate the distance between
unknown and beacon nodes. The average hop distance for
the entire network is determined by obtaining the posi-
tion and hop amount for beacon nodes, as described in
the previous stage. Then, these data are transmitted to the
entire network. Furthermore, most nodes require infor-
mation on the average hop distance from a beacon node
that is nearer to them [36]. The following equation pro-
vides the typical distance of the hop (jpi) and the hop
range (pi) between the i(ai, bi, ci) beacon node and the
other (beacon) node j(aj , bj , cj ):

jpi =
∑

i �=j

√
(ai − aj )

2 + (bi − bj )
2 + (ci − cj )

2

∑
i �=j h(ij)

,

(1)

where jpi is the minimum hop distance and h(ij) is
the number of hops from beacon nodes i and j . The
following formula can be used to calculate the distance
between beacon and dumb nodes.

piU = jpiU × Hopmin, (2)

where jpiU is the step distance, Hopmin is the step
count between the i beacon nodes, and piU denotes the
estimated distance between the dumb node U and the
beacon node i.

Step 3 Let the coordinates of the U dumb node be
(a, b, c), and the ith beacon node be (ai, bi, ci)(1 ≤ i ≤
n) in stage 3. Correspondingly, the distance between the
ith beacon node and the unknown or dumb node U is
pi(1 < i < n). The dumb node’s coordinates can been
determined as follows:

(a − a1)
2 + (b − b1)

2 + (c − c1)
2 = p2

1;
(a − a2)

2 + (b − b2)
2 + (c − c2)

2 = p2
2; (3)

.......................................

(a − an)
2 + (b − bn)

2 + (c − cn)
2 = p2

n;

a21 − a2n − 2(a1 − an)a + b21 − b2n − 2(b1 − bn)b

+c21 − c2n − 2(c1 − cn)a = p2
1 − p2

n; (4)

.....................................................................

a2n−1 − a2n − 2(an−1 − an)a + b2n−1 − b2n − 2(bn−1

−bn)b + c2n−1 − c2n − 2(cn−1 − cn)c = p2
n−1 − p2

n;
(4) can be arranged in the matrix from as follows:

SA = T , (5)

where S =
⎡

⎢
⎣

2(a1 − an) 2(b1 − bn) 2(c1 − cn)
2(a2 − an) 2(b1 − bn) 2(c1 − cn)

.................................
2(an−1 − an) 2(b1 − bn) 2(c1 − cn)

⎤

⎥
⎦ ,

T =

⎡

⎢
⎢
⎣

a21 − a2n + b21 − b2n + c21 − c2n + p2
n − p2

1
a22 − a2n + b22 − b2n + c22 − c2n + p2

n − p2
2

..........................................
a2n−1 − a2n − b2n−1 − b2n − c2n−1 − c2n + p2

n − p2
n−1

⎤

⎥
⎥
⎦ ,

A =
[
a
b
c

]

,

Finally, the least square approximation is used to
calculate the dumb node coordinates as given below:

A = (ST S)
−1

ST T . (6)

4Methodology:

4.1 Mathematical formulation of localization
in 3D WSNs

Let us consider an update to a 3-dimensional network.
(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), ...........(an, bn, cn) are
the positions of beacon nodes. The positions of
dumb nodes are (as+1, bs+1, cs+1), (as+2, bs+2, cs+2),

(as+3, bs+3, cs+3)...........(as+t , bs+t , cs+t )). The following
formula can be used to calculate the distance between
beacon nodes:

(a, b, c) = fi=1,2.........s(ai, bi, ci , pi). (7)

where (a, b, c) are the coordinate of the dumb node,
(ai, bi, ci) are the coordinates of the ith beacon node
position, and pi denotes the distance between dumb nodes
and the ith beacon node. In general, localization systems
work in two stages:

Stage 1: Internode distances can be estimated using the
hop link (hop counting) or internode communication.
In addition, measurements can be used to calculate the
actual physical distance.

Stage 2: Distances are calculated and converted into the
known coordinates of the network’s node. To estimate
distance measurements, an optimization problem model
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( , , )i i ia b c

( a, ,  )b cDumb node

Beacon node

2 2 2( ) ( ) ( )i i i ia a b b c c p

Euclidean Distance 
Between
Dumb and Beacon 
node

Fig. 1 Euclidean distance between dumb nodes and beacons

that minimizes the total sensor position errors can be
designed.

As presented in Fig. 1, the Pythagorean theorem can
be utilized to calculate the distance between nodes. The
Euclidean distance between the dumb and beacon nodes is
given as follows:
√

(a − ai)
2 + (b − bi)

2 + (c − ci)
2 = pi . (8)

f (a, b, c) = min

⎛

⎝
∑

i=1,2....m

∣
∣
∣
∣

√

(a − ai)
2 + (b − bi)

2 + (c − ci )
2 − pi

∣
∣
∣
∣

⎞

⎠ .

(9)

where f (a, b, c) is the objective function that represents
the distance error. The optimization problem defined by
(9) can be solved using diverse optimization approaches.
The chosen method should effectively minimize the LE and
optimize derived locations to improve LA. To overcome
the challenge of localization, many scholars have proposed
employing popular heuristic methods.

4.2 OLCTO algorithm

Meta-heuristic optimization algorithms are frequently uti-
lized in both experimental and industrial settings because of
their versatility, simplicity, and robustness. CTO is among
the most recent and widely used algorithms in this field [37].
A chaotic dynamic is introduced in CTO with an adjustable
inertia weight factor to enrich the search behavior and pre-
vent local optimum problems [38]. The following equation
can be used to describe a chaotic search strategy:

CSt+1
i = 4CSt

i (1 − CSt
i ), i = 1, 2.....n, (10)

The CTO approach includes the use of nonlinear dynamic
acceleration coefficients to change the cognitive component
C1 and the social component C2 as follows [39]:

C1 = −(C1f − C1i ) ×
(

iter

itermax

)2

+ C1f , (11)

C2 = C1i ×
(

1 − iter

itermax

)2

+ C1f × iter

itermax
. (12)

The CTO algorithm has several flaws, including the
ability to trap in local minima and other limitations when
dealing with multiobjective problems. Thus, OLCTO is
currently being used to overcome the limitations of CTO.
The orthogonal diagonalization (OD) technique is used
by the OLCTO algorithm. This technique can be used to
derive orthogonal guidance vectors in the active group.
The diagonal matrix can be obtained using the OD process
by converting the multiplication of three matrices into the
diagonal matrix (DM). DM is used to update the section
topper, the class topper, and learn from vectors for all
students in the class. To obtain DM , a square matrix P of
size r×r is converted into aDM of size r×x×r as follows:

P = RDMR−1, (13)

where R is a r × x × r-dimensional matrix composed of
P ′s eigenvector and DM ′s diagonal elements. Because R is
invertible, Eq. (13) can be defined as follows:

P = BDMB−1, (14)

where B is an orthogonal matrix; thus, (14) can be written
in the following form:

DM = BT PB, (15)

Figure 2 shows the OLCTO flowchart.
The OLCTO procedure steps are as follows:

Step 1. Initialize the vectors of position (students) Si(0) at
random and learn the form Li(0) for each student i. i =
1,2,..., m.

Step 2. Calculate the performance index p(x) by using the
position vector (students) Si(0).

Step 3. Use the equation to initialize the section topper
position vector of student i in the CTO algorithm:

QSt ,i = Si(0), (16)

where QSt ,i denotes the section topper. To determine the
section topper position vectors, use (16).

Step 4. The m section topper position vectors can be
ordered in ascending order by using the performance
index value of p(x).

Step 5. Create a matrix B with the size m × x × p. Each
entry in this matrix corresponds to one of the m section
topper position vectors in same order as in Step 4.
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Fig. 2 Flowchart of OLCTO

Set no. of Section, no. of students in sections, each student having subject, 

c= 2.5 to 0.5, w= 0.8

If max 

Iteration

End
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Learns from Class 

Topper

Update Si  and Li using equation (17 and 18)

Yes

No Yes

If 

Student= 

Si

Initialize Si  and Li

Estimate f(Si(0)) and get Qst,(0)

Create matrix A

t = t + 1

OD procedure; obtain the matrices B, C, D

Determine Section Topper (St)  Using equation 19 

Determine Class Topper (Ct)  Using equation 20

No

Step 6. To transform matrix B into a symmetric matrix A

with a dimension of m×x ×p, use the CTO pseudo code
[22].

Step 7. Apply OD to matrix A to obtain a DM of size
r × x × r .

Step 8. The equations below can be used to update the
vectors:

Lt
i = Lt−1

i + C × φ × [DMt
i − St−1

i ], (17)

St
i = St−1

i + Lt
i, (18)

DMi is the diagonal of the matrix DM , and i = 1,2,...,
r , C is the coefficient of nonlinear dynamic acceleration,
ranging from [2.5 to 0.5].

Step 9. Calculate Qt
St ,i

(section topper) from the m

students by using the following Eq. (19):

Qt
St ,i

=
{

St
i , if h(Si

t ) ≤ h(Qi
t−1),

Qt−1
St ,i

otherwise,
(19)

Then, calculate f (Qt
St ,i

). i = 1,2,..., m.

Step 10. The following method can be used to determine
the class topper (best position). Choose QSt , which
corresponds to the minimum of f (Qt

St
). i = 1,2,..., m.

Assess p(x) to findQt
Ct
, which is the class topper (best

position).

Qt
Ct

= minQt
St ,i

, (20)

Step 11. Finish the iterations, t = Niter

The following steps are included in the proposed
algorithm:

Step 1. Dumb node locations are determined using the
minimum hop distance calculated by each beacon (i.e.,
one-hop-size) from another beacon in the network. The
greater the precision of this estimated distance is, the
more effective the approximate positions are.

Step 2. Instead of using the conventional approach, we
define and measure the average hop distance among
beacons. Thus, we use the polynomial approximation to
reduce the estimated LE and increase LA. The following
polynomial is used to calculate the approximate hop
distance from the ith beacons and other beacons m.

rim = κ0 + κ1pim + κ2p
2
im, (21)

where κ0, κ1 and κ2 are the coefficients.
⎡

⎢
⎢
⎢
⎣

p2
i1 pi1 1

p2
i2 pi2 1
...

...
...

p2
ij pij 1

⎤

⎥
⎥
⎥
⎦

⎡

⎣
κ2
κ1
κ0

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

ri1
ri2
...

rij

⎤

⎥
⎥
⎥
⎦

, (22)

We solve the following equation to determine the
polynomial function estimate of the distance among
nodes:

κ = (P T P )
−1

P T R, (23)
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For each dumb node, the distance between itself and the
beacon node is calculated as follows:

rij = κ0 + κ1pij + κ2p
2
ij , (24)

where rij and pij represent the distance as well as
minimum number of hops between the ith dumb node
and the j th beacon node, respectively. Thus, we obtain
the following matrix form:

rest = hop × κ, (25)

The actual distance between the ith and j th is
calculated as

rtrue =
√

(ai − aj )
2 + (bi − bj )

2 + (ci − cj )
2. (26)

The error between the ith and j th nodes of the beacon is
determined as follows:

rerror = rest − rtrue. (27)

We now add a rectification factor, which is defined as
follows:

τ = rerror

s
, (28)

where s is the number of beacon nodes. The τ

rectification factor is used by adding it to the previous
hop size to change the hop size of the beacon node. The
adjusted distance between the ith beacon nodes and the
kth dumb node is determined as [40]:

rMod
ik = (HopSize + τ) × Hik . (29)

Step 3. To enhance the location accuracy between sensor
nodes, we present an orthogonal learning DV-Hop
localization approach based on CTO. In orthogonal
learning optimization, the optimal solution for result
comparison is indicated as the minimum of the sum of
two goal values. We used four single-objective functions
and two multiobjective (orthogonal learning) functions
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Fig. 3 Deployment of 3D sensor nodes

Table 1 Parameters for simulation

Parameters Value

Border length 100×100×100m3 to 300×300×
300m3

Number of sensor nodes 200 to 450

Beacon nodes (M) 20 to 160

Range (R) 25 to 50

Algorithm of optimization OLCTO

Maximum iterations 50

Simulation tool LabVIEW©2015

to develop our proposed technique. The following is
a proposed algorithm that employs single-objective
optimization functions:

f1(a, b, c) = min

⎛

⎝
∑

i=1,2....M

∣
∣
∣
∣

√

(a − ai )
2 + (b − bi )

2 + (c − ci )
2 − rMod

ik

∣
∣
∣
∣

⎞

⎠ .

(30)

f2(a, b, c) = min

⎛

⎝
∑

i=1,2....M

∣
∣
∣
∣

√

(a − ai )
2 + (b − bi )

2 + (c − ci )
2 − rMod

ik

∣
∣
∣
∣

⎞

⎠

2

.

(31)

f3(a, b, c) = min

⎛

⎝
∑

i=1,2....M

∣
∣
∣
∣

√

(a − ai)
2 + (b − bi)

2 + (c − ci )
2 − rMod

it

∣
∣
∣
∣

⎞

⎠ .

(32)

where rMod
it = hop×κ , κ = (P T P )

−1
P T R and rerror =

rest − rtrue.

f4(a, b, c) = min

⎛

⎝
∑

i=1,2....M

∣
∣
∣
∣

√

(a − ai )
2 + (b − bi )

2 + (c − ci )
2 − rMod

it

∣
∣
∣
∣

⎞
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2

.

(33)
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Fig. 4 Changes in LE with respect to changes in the number of beacon
nodes

481



Annals of Telecommunications (2023) 78:475–489 

20 40 60 80 100 120 140 160
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of beacon nodes 

 L
oc

al
iz

at
io

n 
Er

ro
r V

ar
ia

nc
e 

 

 
f3(single)
f4(single)
m2(multi)
f2(single)
m(multi)[24]
f1(single)
m1(multi)

Fig. 5 Changes in LEV with respect to changes in the number of
beacon nodes

The proposed algorithm considers the following multiobjec-
tive (orthogonal learning) functions, wherem1 is formulated
by combining f1 and f2, and m1 and m1 is represented as
follows:

m1(a, b, c) = min

⎛

⎝
∑

i=1,2....M

∣
∣
∣
∣

√

(a − ai )
2 + (b − bi )

2 + (c − ci )
2 − rMod

ik

∣
∣
∣
∣

⎞

⎠ ;

and

min

⎛

⎝
∑

i=1,2....M

∣
∣
∣
∣

√

(a − ai )
2 + (b − bi )

2 + (c − ci )
2 − rMod

ik

∣
∣
∣
∣

⎞

⎠

2

;

(34)

m2 is the formulated by combining f3 and f4, and m2 is
represented as follows:
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Fig. 6 Changes in LA with respect to changes in the number of beacon
nodes

m2(a, b, c) = min

⎛

⎝
∑

i=1,2....M

∣
∣
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√

(a − ai )
2 + (b − bi )

2 + (c − ci )
2 − rMod

it

∣
∣
∣
∣

⎞
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and

min

⎛
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∣
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(a − ai )
2 + (b − bi )
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⎞

⎠

2

;

(35)

5Metrics of performance

LE, localization error variation (LEV), LA, and coverage
are parameters used to evaluate the performance of the
proposed OLCTO-based DV-Hop algorithm.

Table 2 Comparison of the effects of the proposed (multiobjective) algorithm on LE and LEV beacon nodes with single-objective algorithms and
multiobjective PSO [24]

Number of beacon nodes 20 50 80 100 130 150

f 5 (single objective) LE .37 .5 .6 .66 .62 .91

LEV .75 .625 .6 .75 .58 1

f 4 (single objective) LE .29 .47 .58 .6 .6 .74

LEV .35 .225 .2 .35 .28 .77

m2 (multiobjective) LE .22 .27 .32 .48 .4 .5

LEV .25 .2 .18 .24 .2 .55

m multiobjective [24] LE .156 .19 .25 .28 .27 .35

LEV .20 .16 .15 .17 .16 .31

f 2 (single objective) LE .148 .19 .24 .27 .26 .3

LEV .15 .1 .12 .14 .1 .33

f 1 (single objective) LE .074 .09 .12 .14 .13 .16

LEV .05 .04 .042 .046 .23 .22

m1 (multiobjective) LE .068 .041 .1 .12 .11 .14

LEV .047 .035 .04 .043 .13 .2
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Fig. 7 Changes in coverage with respect to changes in the number of
beacon nodes

5.1 LE

The LE for a 3D WSN can be computed as follows:

LE =

t∑

i=1

√(
aest
i − atr

i

)2 + (
best
i − btr

i

)2 + (
cest
i − ctr

i

)2

t × R
,

(36)

5.2 LEV

Variance measures how far each number in a set deviates
from the mean. LEV for a 3D WSN can be computed as
follows:

LEV =

√
√
√
√
√

t∑

i=1

(√
(aest

i − atr
i )

2 + (best
i − btr

i )
2 + (cest

i − ctr
i )

2 − LE × R

)2

t × R2
,

(37)
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Fig. 8 Changes in LE with respect to changes in the number of nodes

5.3 LA and coverage

LA can be computed as follows:

LA =

t∑

i=1

√
(aest

i − atr
i )

2 + (best
i − btr

i )
2 + (cest

i − ctr
i )

2

t × R2
,

(38)

Coverage can be computed as follows:

Coverage =

t⋃

i=1
R2(ai, bi, ci)

Area
, (39)

where t denotes the number of unknown or dumb nodes
and (atr

i , btr
i , ctr

i ) is true positions of unknown or dumb
node i. The estimated dumb node positions are ith is

Table 3 Comparison of the effects of the proposed (multiobjective) algorithm on LA and coverage beacon nodes with single-objective algorithms
and multiobjective PSO [24] were conducted

Number of beacon nodes 20 50 80 100 130 150

m1 (multiobjective) LA 0.062 0.071 0.019 0.018 0.052 0.033
Coverage 0.066 0.075 0.025 0.023 0 0

m2 (multiobjective) LA 0.058 0.061 0.011 0.011 0.042 0.023
Coverage 0.055 0.065 0.015 0.013 0 0

m multiobjective [24] LA 0.069 0.078 0.021 0.020 0.062 0.043
Coverage 0.058 0.075 0.025 0.023 0 0

f 1 (single objective) LA 0.079 0.081 0.031 0.030 0.072 0.045
Coverage 0.47 0.65 0.29 0.27 0.31 0

f 2 (single objective) LA 0.81 0.38 0.35 0.26 0.21 0.187
Coverage 0.58 0.65 0.28 0.26 0.1 0

f 4 (single objective) LA 0.84 0.42 0.41 0.36 0.27 0.45
Coverage 0.79 0.75 0.48 0.06 0.1 0

f 3 (single objective) LA 0.86 0.54 0.58 0.45 0.26 0.58
Coverage 1 0.79 0.48 0.19 0.1 0
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Fig. 9 Changes in LEVwith respect to changes in the number of nodes

(aest
i , best

i , cest
i ). R is the sensor node’s communication

range.

6 Simulation and results analysis

In a 3D environment, the proposed approach is imple-
mented. For our system, we used the OLCTO algorithm
with C = 4, W= 2.5 to 0.05, I termax = 20, as well as
random variables between 0 and 1. For a 3D, the minimum
transmission range of a node is 25m2. The value of the com-
munication range is dependent on node density. The greater
the communication range is, the lower is the node density.
The communication range of 3D space is larger than that of
2D space. Figure 3 depicts the typical distribution of 150
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Fig. 10 Changes in LA with respect to changes in the number of nodes

dumb nodes and 30 beacon nodes in 3D space. Table 1 lists
parameters used in the simulation. For the scenario, we used
uniformly dispersed dumb nodes and beacon nodes, and the
results were assessed using the following parameters: (i)
the total number of nodes, (ii) the total number of beacon
nodes, and (iii) communication range of nodes.

6.1 Effects of beacon nodes on LE, LEV, LA,
and coverage

Figures 4 and 5 present the effects of the beacon on LE and
LEV, respectively. The number of beacon nodes varies from
20 to 160. As presented in Table 2, the m1 had less LEs
and LEV. For example, when the total number of beacon
nodes is set to 20, the multiobjective function m1 had

Table 4 Comparison of the effects of the proposed (multiobjective) algorithm on the LE and LEV of the number of nodes with single-objective
algorithms and multiobjective PSO [24]

Number of nodes 200 250 300 350 400 450

f 5 (single objective) LE 0.144 0.14 0.028 0.036 0.037 0.04

LEV 1.8 0.035 0.037 0.076 0.16 0.173

f 6 (single objective) LE 0.118 0.13 0.028 0.035 0.036 0.038

LEV 1.5 0.037 0.038 0.083 0.19 0.21

m2 (multiobjective) LE 0.105 0.056 0.058 0.065 0.065 0.072

LEV 0.96 0.43 0.44 0.55 0.61 0.54

f 2 (single objective) LE 0.092 0.084 0.085 0.095 0.095 0.099

LEV 0.78 0.77 0.78 0.88 0.95 0.59

m multiobjective [24] LE 0.065 0.08 0.075 0.085 0.085 0.089

LEV 0.35 0.78 0.79 0.89 0.98 0.61

f 1 (single objective) LE 0.026 0.112 0.115 0.166 0.169 0.171

LEV 0.32 0.037 0.038 0.083 1.22 0.58

m1 (multiobjective) LE 0.025 0.140 0.159 0.20 0.19 0.21

LEV 0.24 0.035 0.037 0.076 0.16 0.017
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Fig. 11 Changes in coverage with respect to changes in the number of
nodes

approximately 0.6%, 8%, 8.8%, 15.2%, 22.2%, and 30.2%
less LEs in f 1, f 2, m [24], m2, f 4, and f 5, respectively,
and 0.3%, 10.3%, 15.3%, 20.3%, 30.3%, and 70.3% less
LEV in f 1, f 2, m [24], m2, f 6, and f 5, respectively. The
proposed method has approximately 0.4%, 0.8%, and 0.9%
less LEs in [30, 41] and [28], respectively, and 0.5%, 1.3%,
and 1.9% less LEV in [30, 41] and [28], respectively.

Figures 6 and 7 present the effects of the beacon on LA
and coverage, respectively, and Table 3 presents the analysis
data. As indicated in Table 3, the multiobjective function
m1 exhibited improved LA and coverage. For example,
when the total number of beacon nodes was set to 20,
the multiobjective function m1 had approximately 0.4%,
2%, 73.2%, 74.2%, 78.3%, and 80.02% improved LA in
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Fig. 12 Changes in LE with respect to range

m2, m [24], f 1, f 2, f 4, and f 3 and 0.7%, 9.8%, 47.8%,
49.8%, 69.8%, and 89.8% improved coverage inm2,m [24],
f 1, f 2, f 4, and f 3, respectively. The proposed method
had approximately 0.4%, 2%, and 8.02% improved LA in
[30, 41] and [28], respectively, and 0.7%, 6.8%, and 9.8%
improved coverage in [30, 41] and [28], respectively.

6.2 Effect the total number of nodes on localization
errors, error variance, accuracy, and coverage

Figures 8 and 9 present the effect of number nodes on LE
and LEV, respectively. As presented in Table 4, with an
increase in the total number of nodes, the multiobjective
functionm1 had the lowest LE and LEV. For example, when
the total number of nodes was set to 200, the multiobjective

Table 5 Comparison of the effects of the proposed (multiobjective) algorithm on LA and coverage for the number of nodes with single-objective
algorithms and multiobjective PSO [24]

Number of nodes 200 250 300 350 400 450

m1 (multiobjective) LA 0.038 0.066 0.043 0.035 0.032 0

Coverage 0.03 0.02 0.05 0.01 0 0

m multiobjective [24] LA 0.04 0.14 0.13 0.12 0.11 0

Coverage 0.031 0.02 0.05 0.014 0 0

m2 (multiobjective) LA 0.07 0.056 0.033 0.035 0.022 0

Coverage 0.04 0.04 0.045 0.014 0 0

f 1 (single objective) LA 0.69 0.66 0.43 0.45 0.32 0

Coverage 0.5 0.5 0.55 0.15 0.14 0

f 2 (single objective) LA 0.76 0.76 0.53 0.55 0.42 0

Coverage 0.6 0.9 0.3 0.9 0.6 0

f 4 (single objective) LA 0.84 0.78 0.55 0.57 0.45 0

Coverage 0.8 0.2 0.8 0.3 0.21 0

f 3 (single objective) LA 0.92 0.88 0.65 0.67 0.55 0

Coverage 1 0.2 0.8 0.4 0.3 0
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Fig. 13 Changes in LEV with respect to range

function m1 had approximately 1%, 4%, 6.7%, 8%, 9.3%,
and 11.9% less LEs in f 1, m [24], f 2 m2, f 6, and f 5,
respectively, and 8%, 11%, 54%, 72%, 84%, and 84.6% less
LEV in f 1, m [24], f 2 m2, f 6, and f 5, respectively. The
proposed method had approximately 1.2%, 5%, and 6.9%
less LEs in [30, 41] and [28], respectively, and 4%, 7%, and
8.6% less LEV in [30, 41] and [28], respectively.

Figures 10 and 11 present the effect of the total number
of nodes on LA and coverage, respectively, and Table 5
presents the associated analysis of data. With an increase
in the total number of nodes, the multiobjective function
m1 exhibited improved LA and coverage. For example,
when the total number of nodes was 200, the multiobjective
function m1 exhibited approximately 0.2%, 3.2%, 65.2%,
72.2%, 80.2%, and 88.2% improved LA in m [24], m2, f 1,
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Fig. 14 Changes in LA with respect to range

f 2, f 4, and f 3, respectively, and 0.1%, 1%, 47%, 57%,
77%, and 97% improved coverage in m [24], m2, f 1, f 2,
f 4, and f 3, respectively. The proposed method resulted in
approximately 0.5%, 2.2%, and 8.2% improved LA in [30,
41] and [28], respectively, and 0.2%, 3%, and 7% improved
coverage in [30, 41] and [28], respectively.

6.3 Effect of LE, LEV, LA, and coverage
on the communication range

Figures 12 and 13 present the effect of the transmission
range on LE and LEV, respectively, and Table 6 presents
the associated analysis of data. For example, when the
transmission range was 25, the multiobjective function m1
had approximately 2.8%, 5%, 15%, 19%, 22%, and 26%

Table 6 Comparison of the effects of the proposed (multiobjective) algorithm on LE and LEV for the transmission range with single-objective
algorithm and multiobjective PSO [24]

Transmission range (m) 25 30 35 40 45 50

f 3 (single objective) LE 0.35 0.51 1.2 1.10 1 0.94

LEV 0.68 2.6 3 4.3 4.6 4.3

f 4 (single objective) LE 0.29 0.37 0.8 1 0.89 0.84

LEV 0.5 2.2 2.75 3.1 3.5 3.2

m2 (multiobjective) LE 0.23 0.31 0.75 0.84 0.52 0.51

LEV 0.43 1.8 2.1 3.7 2.1 2.5

f 2 (single objective) LE 0.17 0.27 0.7 0.78 0.31 0.30

LEV 0.31 0.84 1.95 2.9 1.6 1.3

f 1 (single objective) LE 0.058 0.13 0.2 0.31 0.157 0.21

LEV 0.25 0.65 1 1.7 0.97 0.92

m multiobjective [24] LE 0.029 0.034 0.15 0.052 0.94 0.052

LEV 0.12 0.43 0.73 0.92 0.35 0.34

m1 (multiobjective) LE 0.028 0.033 0.13 1 0.95 0.05

LEV 0.11 0.28 0.33 0.25 0.142 0.142
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Fig. 15 Changes in coverage with respect to range

less LEs in m [24], f 1, f 2 m2, f 6, and f 5 and 8%, 56%,
64%, 74%, 78%, and 83% less LEV in m [24], f 1, f 2
m2, f 6, and f 5, respectively. The proposed method had
approximately 1.8%, 3%, and 6% less LEs in [30, 41] and
[28], respectively, and 6%, 6.6%, and 8.3% less LEV in [30,
41] and [28], respectively.

Figures 14 and 15 present the effect of the total number
of nodes on LA and coverage, respectively, and Table 7
presents the associated analysis of data. As indicated in
Table 7 with an increase in the transmission range, the
multiobjective function m1 exhibited improved LA and
coverage. For example, when the total number of nodes was
25, the multiobjective function m1 had approximately 7%,
15%, 36%, 50%, 78%, and 86% improved LA in m [24],

m2, f 1, f 2, f 4, and f 3 and 9%, 14%, 94%, 95%, 96%, and
97% improved coverage in m [24], m2, f 1, f 2, f 4, and f 3,
respectively. The proposed method exhibited approximately
7%, 7.8%, and 8.6% improved LA in [30, 41] and [28] and
9%, 9.5%, and 9.8% improved coverage in [30, 41] and [28].

7 Conclusion

In this study, we present a range-free DV-Hop localization
method in 3D space by utilizing the OLCTO optimization.
The suggested approach converts single-objective functions
based on the DV-Hop localization algorithm into two
multiobjective functions to reduce LEs. The goal of
multiobjective localization is to reduce LEs while increasing
positional precision. Among all the proposed objective
functions, the multiobjective function m1 had the least
LEs and LEV as well as improved LA. Simulation
results revealed that the multiobjective function m1 had
the highest placement accuracy among all single- and
multiobjective functions and multiobjective PSO [24]. The
proposed method’s main limitations are in terms of energy
consumption, network lifetime, and network reliability. In
our next study, we will focus on improving the convergence
rate and reducing energy consumption to enhance LA.
The following study focuses on reducing communication
between dumb and beacon nodes by computing the hop
size of all beacons at dumb nodes. This approach can
reduce computational time while reducing node energy
consumption. Future studies can develop circular and spiral
beacon nodes for the deployment of the multi-hop-based
approach in a 3D system and on a physical staging ground.

Table 7 Comparison of the effects of the proposed (multiobjective) algorithm on LA and coverage for the transmission range with single-objective
algorithm and multiobjective PSO [24]

Transmission range (m) 25 30 35 40 45 50

m1 (multiobjective) LA 3 2.03 1.64 1.8 1.37 0.069

Coverage 0.03 0.025 0.02 0.015 0 0

m multiobjective [24] LA 2.8 2.71 2.73 1.64 0.75 0.04

Coverage 0.3 0.025 0.02 0.015 0 0

m2 (multiobjective) LA 2.6 2.01 2.53 1.24 0.70 0.05

Coverage 0.035 0.03 0.025 0.022 0 0

f 1 (single objective) LA 2.2 0.9 0.85 0.74 0.09 0.025

Coverage 0.5 0.25 0.3 0.26 0 0

f 2 (single objective) LA 2 0.8 0.76 0.72 0.07 0.012

Coverage 0.6 0.38 0.37 0.35 0 0

f 4 (single objective) LA 0.66 0.52 0.46 0.44 0.08 0.025

Coverage 0.8 0.7 0.6 0.4 0 0

f 3 (single objective) LA 0.4 0.3 0.25 0.4 0.07 0.024

Coverage 1 0.85 0.6 0.45 0 0
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