Annals of Telecommunications (2021) 76:119-130
https://doi.org/10.1007/512243-020-00792-1

Toward unified trust and reputation messaging in ubiquitous

systems

David Jelenc'

1')

Check for
updates

Received: 17 February 2020 / Accepted: 8 July 2020 / Published online: 7 August 2020

© Institut Mines-Télécom and Springer Nature Switzerland AG 2020

Abstract

The fifth mobile generation (5G) will enable massive distributed applications that run on various platforms and cater diverse
and interacting entities. If such interactions are to be successful, the entities will have to learn to trust each other and one way
of addressing this is to use trust and reputation systems. These systems estimate the trustworthiness of potential interaction
partners and are now being increasingly deployed. However, their inability to share information across applications is
concerning: as entities traverse application boundaries their trust and reputation information does not. Instead, it is kept in
silos forcing entities to remake it in every application they join. The lack of appropriate standards further impedes such
sharing attempts. To address this, we propose a general framework for facilitating the exchange of trust and reputation
information. The framework defines messages and a protocol that allows trust and reputation systems to query each other
for ratings, provide responses, and signal errors. We analyze the proposal and provide an implementation as free software.

Keywords Trust - Reputation - Messaging - Standardization - Interoperability

1 Introduction

With the proliferation of new network technologies, such
as 5G, and new computing paradigms, such as the
Internet of Things, collaborative applications in which
different entities interact (people, devices, services) are
becoming increasingly more common. These applications
may be running on diverse platforms ranging from powerful
hardware in the cloud to power-constrained embedded
devices; we herein refer to such systems as ubiquitous.
Establishing collaboration between entities in ubiquitous
systems is difficult, because entities can only hope that
their interaction counterparts will honor agreements. This
is even further emphasized in cases when entities have
no prior relationship, or in open environments that lack
arbiters to settle disputes. To address such cases, trust
and reputation systems have been proposed. These systems
collect, estimate and disseminate data about entities’
trustworthiness which can be later used for making various

>4 David Jelenc
david.jelenc @fri.uni-1j.si

Faculty of Computer and Information Science, University of
Ljubljana, Ve¢na pot 113, 1000 Ljubljana, Slovenia

decisions: with whom to interact in a commercial exchange,
who to query for information and similar. And while the
difference between trust and reputation is well established,
the distinction between trust and reputations systems is
often blurred; herein we use the terms trust and reputation
systems interchangeably.

Trust and reputation systems vary greatly. Some are used
in centralized settings (e.g., electronic marketplaces [1])
and some in distributed (e.g., peer-to-peer networks [2]),
some aid the decision-making of humans, and some
operate within automated tasks like routing [3]. In spite
of these differences, all systems have the same objective:
estimate trustworthiness of entities. But as entities traverse
applications boundaries, their trust and reputation does not:
it is kept in silos and made available only to the application
that generated it. If this issue was addressed, we would reap
three benefits [4]. First, we would improve the accuracy
of trust estimations in existing applications. Second, we
would allow entities to leverage trust and reputation across
different applications and not require of them to build it
from scratch in every application they join. And third,
we would accelerate the establishment of trust in new
applications (e.g., establishing trust among objects in the
Internet of Things systems [5, 6]). The ability to exchange
trust and reputation across applications is this considered an
open challenge [7].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-020-00792-1&domain=pdf
http://orcid.org/0000-0001-9286-3740
mailto: david.jelenc@fri.uni-lj.si

120

Ann. Telecommun. (2021) 76:119-130

To exchange trust and reputation we have to address
four aspects. First, we have to define messages that carry
trust and reputation. The difficulty here lies in their variety:
defined messages have to be general enough to cover a
broad spectrum of models. Second, we have to define
a protocol that exchanges these messages; this includes
sending requests and providing responses. Third, we have
to estimate the trustworthiness of responses: some sources
may not be trustworthy and this should be considered during
data integration. And forth, we have to provide translation
mechanisms that convert trust and reputation used in one
model to the form that can be consumed by the other.

Herein we provide three contributions that address the
first and the second aspect. First, we propose a general
message structure that supports the most common types of
models: those that estimate trust from ratings. We define
an abstract rating that represents either an input to, or
an output of a trust and reputation model. Second, we
design a protocol that facilitates the exchange of such
messages. And third, we implement the proposal in Java,
Python and C, and offer it as free software. We deliberately
omit the aspect of information trustworthiness estimation
and information translation. The reason is that the first is
typically already covered by the model while the second
is profoundly model specific. For instance, estimating the
trustworthiness of information is one of the tasks of trust
and reputation models: most of them already modulate
incoming information based on the trustworthiness of
the provider. And if not, models can integrate one of
general approaches [8]. Either way the integration should
be driven by the model and not by the exchange protocol.
Similarly, the information translation should be addressed
by administrators of systems that exchange information,
since they know best how to convert incoming ratings into
their domains. And while the translation can be ad-hoc,
there are also general frameworks that re-scale ratings and
account for bias [9, 10].

The paper has seven sections. Section 2 defines the
basic rating message, Section 3 describes the protocol for
their exchange, and Section 4 provides a mechanism that
simplifies message creation and parsing. Section 5 analyses
the proposal, Section 6 surveys the related work, and
Section 7 concludes the paper.

2 Basic trust and reputation message

When discussing messaging between trust and reputation
systems, the types of information with which algorithms—
trust and reputation models—operate takes the most
relevance. This includes both the type of information from
which trust is inferred (inputs) as well as the type of
information in which trust is conveyed (outputs). Therefore

@ Springer

the objective of this section is to define a general message
applicable to the majority of trust and reputations models.

2.1 Trust model inputs and outputs

Even when focusing only their inputs and outputs, trust
models still vary greatly. On the side of inputs, models
consume assessments from previous interactions, termed
experiences, and word-of-mouth information given by other
entities, termed opinions. But these are not the only options.
For instance, [11, 12] list three sources for estimating trust:
besides experiences (and opinions), they also list explicit
attitudes and behaviors. While explicit attitudes refer to
preconceived notions about trust (e.g., how to trust in
the absence of information), behaviors denote patterns of
interactions.

Many models combine multiple types to improve
estimations. On the side of outputs, the complexity is
slightly reduced due to a generally recognized notion of
trust. Although no definition is universally accepted, [12]
nicely generalize that “trust is a measure of confidence
that an entity will behave in an expected manner.” Models
mostly vary based on how this measure is expressed;
examples range from probabilistic to qualitative estimates.

Due to such diversity, it seems intractable to accommo-
date all trust and reputation models. Therefore, we focus on
models that on input consume assessments from previous
interactions and opinions obtained from other entities, that
is, on models based on ratings: either those that were gen-
erated by the entity that uses the trust model (experiences),
or those that were obtained from third-parties (opinions).
According to the literature [7, 13—15], these types are the
most common and the need to support their integration is the
greatest. Moreover, other sources, unlike ratings, are typi-
cally not expected to be exchanged: they are system specific
(like roles in a virtual organization) or obtained by analyzing
the environment (like social network structure).

2.2 The Rating data-type

We start with a Rat ing data-type that can represent either
a trust value that was computed by a trust model upon
explicit request, or an assessment that was created by an
entity after an interaction took place. The challenge is
in being sufficiently general. Looking at a few example
trust models and considering findings of multiple surveys,
common elements begin to emerge. For instance, according
to [16], trust has the following properties: subjectivity,
dynamicity, asymmetry, incomplete transitivity and context-
dependency. Similarly, [12] states that trust is context-
specific, dynamic, propagative, non-transitive, composable,
subjective, asymmetric, self-reinforcing and event-sensitive.
Although most of these properties tell how trust should be

Ann. Telecommun. (2021) 76:119-130

121

computed, they also suggest how a data-type carrying trust
values should be defined. In particular, a trust value should
exhibit that trust is subjective and asymmetric, dynamic,
and context-dependent. Therefore, we define the Rat ing
data-type as given in Listing 1; all data-types are given in
ASN.1 [17].

The Rating is derived from SEQUENCE which models
an ordered collection of variables of different types. It
contains five fields: source, target, service, date,
and value. The source represents the (identity of the)
entity that issued the rating, and conversely, the target
represents the entity to whom this rating was assigned.
The contents of these fields should uniquely identify the
entities: an email address, a URL, or an X.509 distinguished
name would be good examples. Therefore, the type of
Entity is set to be a string. These two fields cover
the requirement ratings be subjective and asymmetric.
The service component denotes the type of service
or interaction for which given rating was created. Like
Entity, service is also a string. The service allows
ratings to be context-dependent. The date denotes the
timestamp at which the rating was created. The type of
this component is BinaryTime which is an integer that
represents UNIX time. This component allows ratings to be
dynamic. The value denotes the actual value of the rating.
Its type is ANY and it represents a value of arbitrary type.
Such ambiguity is required to accommodate the diversity
of trust models: the value can be a string, an integer, or
a real number; it can be a scalar, a vector, or a tuple—it
entirely depends on the model. Having value of type ANY
supports all such cases and we include a few examples of
such definitions in Section 3.5.

But such generality has a cost: an isolated Rating has
unclear meaning, lacks parsing instructions and is not a
priori or compile-time type-safe. To determine its meaning,
we need to know whether the Rating is an assessment
created by some entity, or a trust value computed by a trust
model. This distinction is important because some models
share assessments while others share computed trust values.
To properly parse the value component and to ensure
it contains a valid value, we have to know which ASN.1

1 Rating ::= SEQUENCE {
2 source Entity,
3 target Entity,

4 service Service,

5 date BinaryTime,
6 value ANY

7}

¢ Entity ::= IAS5String
9 Service ::= IAS5String

Listing 1 A Rating has five components: two entities (one who
assigns it and the other to whom the Rat ing is assigned), the type of
service, the date of issue, and the value

data-type it encodes; Section 3 describes a protocol that
provides such meta-data. Note that this is the only part of the
proposed message structure that is not compile-time type-
safe: the remainder of the schema is designed in such a
way that any message is a valid protocol message while the
contents of the value require run-time checking to ensure
validity.

3 Message exchange

Besides a general Rat ing definition we also require means
for exchanging ratings. In particular, we require (i) means
for making queries, (ii) means for responding to queries
with results or errors, and (iii) means for obtaining Rat ing
definitions.

3.1 The protocol

We propose a simple request-response protocol. The
protocol is carried out by two peers—trust or reputation
systems—that wish to exchange information: one that
requests it, herein referred to as the caller, and one that
provides it, herein referred to as the callee. We assume
a standard peer-to-peer (symmetric) relationship where
any peer can enact either role. Each protocol message
contains four components: the version, the caller, the
callee, and the payload. The version represents the
version of the protocol the peer is using and for all messages
in this paper this value is fixed to 1. Fields caller
and the callee denote the identities of systems that sent
and responded to the request respectively. The payload
determines the semantic of each protocol message: it either
contains an instance that requests information or an instance
that replies to a pending request. The payload is therefore
modeled with the ASN.1 type CHOICE which represents a
union of one or more alternatives (see Listing 2).

The sequence of the exchange is given in Fig. 1. To
request ratings (Fig. 1), the caller sends a DataRequest,

1 Message ::= SEQUENCE {

2 version INTEGER,

3 caller Entity,

4 callee Entity,

5 payload CHOICE {

6 data—request DataRequest,

7 data—response DataResponse,
8 format—request FormatRequest,
9 format—response FormatResponse,
10 fault Fault

11 }

12}

Listing 2 A protocol Message contains the version, the id of the
caller and the callee, and a payload whose content determines
the message semantics

@ Springer

122

Ann. Telecommun. (2021) 76:119-130

Fig.1 Sequence diagram. Left:

a caller requests r.atlngs .and the Caller Callee Caller Callee
callee responds either with data
or with an error. Right: a caller | | | |
requests Rat ing definitions | | | |
and the callee responds either | DataRequest | | FormatRequest >:
with an ASN.1 specification or . . ! .
with an error alt [Normal] i alt [Normal] i
| | | |
| DataResponse | :4 FormatResponse |
|
"""" S A S T B -

| |
Fault | Fault |
| |
f t
| |
| |
| |

———Tta

(a) Obtaining Rating instances.

to which the callee responds with a DataResponse that
contains ratings. If an error occurs, the callee instead returns
a Fault. To request the definitions of Ratings (Fig. 1),
the caller sends a FormatRequest and the callee answers
with a FormatResponse that contains the definitions
in ASN.1 syntax. In case of an error, the callee returns a
Fault. Within a request-response exchange, the contents
of caller and callee remain unchanged: the first is set
to the system that originated the request and the second is
set to the system that responded to it. The following sections
describe these data-types in more detail.

3.2 Requesting and providing definitions

The definitions of Ratings—the definition of the
value component in each Rating—are requested
and respectively provided with FormatRequest and
FormatResponse (see Listing 3). A FormatRequest
is simply an alias for INTEGER and denotes a unique mes-
sage identifier. This number must be chosen anew for every
request between the peers.

An answer to a FormatRequest is a
FormatResponse containing five fields. The first is the

| FormatRequest ::= INTEGER

2 FormatResponse ::= SEQUENCE {
3 rid INTEGER,

4 assessment—id Format,

5 assessment—def IA5String,
6 trust—id Format,

7 trust—def IA5String
8}

9 Format ::= OBJECT IDENTIFIER

Listing 3 A FormatRequest requests Rat ing definitions, and a
FormatResponse returns them

@ Springer

———Ta

(b) Obtaining Rating definitions.

request identifier, rid, which must be set to the same value
that was provided in the original FormatRequest; this
links the messages. Components assessment-def and
trust-def are strings that contain ASN.1 definitions of
the callee’s Rating data-type, that is, its value com-
ponent. The first one defines the value when providing
assessments and the second one defines the value when
providing trust values. Each definition has a corresponding
identifier: assessment-id uniquely identifies the def-
inition for assessments and the trust-id identifies the
definition for trust values. Both fields have type Format
which is an alias for ASN.1 OBJECT IDENTIFIER.
These values should be globally unique. Their purpose is to
identify provided definitions: if two models use the same
definitions, they may use the same identifiers.

3.3 Requesting and providing ratings and signaling
errors

The caller requests ratings with a DataRequest which
has three fields: a request identifier rid, a request type,
and the request query (see Listing 4). While the request
identifier (a unique number linking a request to a response)
and the type (a value denoting whether trust values or
assessments are being requested) are straightforward, the
Query is more involved. We thus explain it separately in
Section 3.4. For now, it suffices to say the query specifies
criteria for ratings.

A DataRequest isresponded with a DataResponse
which contains four fields: the rid links DataRequests
with DataResponses; the format tells which defini-
tions are used in the list of provided ratings; the type tells
whether the provided ratings represent assessments or trust
values; and the response contains the list of Ratings.

Ann. Telecommun. (2021) 76:119-130

123

1 DataRequest ::= SEQUENCE {
2 rid INTEGER,
3 type ENUMERATED { trust, assessment },

4 query Query

5}

6 DataResponse ::= SEQUENCE {

INTEGER,

Format,

ENUMERATED { trust, assessment },
SEQUENCE OF Rating

7 rid

8 format

9 type

10 response
1}

12 Fault ::= SEQUENCE {
INTEGER,
14 message IA5String
15 }

13 rid

Listing4 DataRequests request ratings, DataResponses return
them, and Faults signal errors

Before we stated the Rating itself does not provide
sufficient meta-data: by looking at the Rat ing alone, we
cannot know whether it represents an assessment or a trust
value, nor we know how to decode its value. However,
if we consider a Rating within a DataResponse and
a Message, the missing pieces can be extracted. In
particular, the format in DataResponse tells how to
parse the Ratings; and the type in DataResponse
tells whether the ratings are trust values or assessments.
Moreover, based on the callee of the Message and the
source of each Rating, the caller knows whether that
Rating was created by the callee or by someone else and
the callee is relaying it as second-hand information.

If a request (FormatRequest or DataRequest)
cannot be successfully answered, the callee can respond
with a Fault (see Listing 4). It has two fields: the request
identifier, rid, linking it to a FormatRequest (or a
DataRequest), and a message containing a human-
readable description.

3.4 Filtering requests with queries

Often a caller will want to request only a subset of
ratings. To support such cases, we provide a mechanism
that allows the caller to specify the query criteria by
constraining the domain of Rating components, for
instance by stating that it is only interested in ratings
within a given time frame. In particular, the caller can
constrain the values of source, target, service
and date. Additionally, the mechanism supports stating
multiple constraints simultaneously. This is implemented
with a Query which is either a Constraint or an
Expression. The first constrains a single Rating
component while the second combines multiple such
constraints (see Listing 5).

In the simple case, a Query is a Constraint that
constrains Ratings by the values of their components.

1 Query ::= CHOICE {

2 con Constraint,

3 exp Expression

4}

5 Constraint ::= SEQUENCE {

6 operator ENUMERATED { eq, ne, 1lt, le, gt, ge }
7 value Value

8 }

9 Value ::= CHOICE {

10 source Entity,

11 target Entity,

12 date BinaryTime,

13 service Service

14 }

15 Expression ::= SEQUENCE {

16 operator ENUMERATED { and, or },
17 left Query,

18 right Query

19 }

Listing 5 A Query defines the scope of requested ratings in a
DataRequest. It may constrain a single Rating field with a
Constraint or multiple with an Expression

Constraining requires three pieces of information: the
Rating component to constrain, a value constant against
which the component will be compared, and a binary
operator that shall compare the two. The Constraint
thus has two components: a value and an operator.
The value defines the Rat ing component and its value
while the operator defines the comparison. We provide
six operators: eq (equal), ne (not-equal), 1t (lower-than),
le (lower-than or equal-to), gt (greater-than), and ge
(greater-than or equal-to).

If the caller wants to specify multiple constraints, the
Query has to be an Expression. The latter repre-
sents a logical expression composed of a left and a
right operand of type Query, and a logical operator:
a conjunction (logical and) or a disjunction
(logical or). For instance, an Expression may con-
tain two Constraints or a single Constraint and
another Expression that in turn contains additional
Constraints.

Although simple, the Query is functionally complete,
that is, it supports expressing all possible queries. This is
because it has a set of functionally complete operators:
conjunction, disjunction and negation. The latter is implicit:
a Constraint can be negated by complementing the
operator (equal with not-equal, grater-than with less-than
or equal-to, and lower-than with greater-than or equal-
to) while an Expression can be negated with the De
Morgan’s laws.!

IThe negation of a conjunction is the disjunction of the negations; and
the negation of a disjunction is the conjunction of the negations.

@ Springer

124

Ann. Telecommun. (2021) 76:119-130

3.5 Example messages

Next we use the ASN.1 value assignment syntax to show
a few example messages. Message formatRequest
in Listing 6 is an example of a FormatRequest.
Since this is an alias for INTEGER, the message simply
contains an arbitrary number (here 774) that represents
the request identifier. Message formatResponse is an
example instantiation of FormatResponse. It echoes the
incoming rid, sets the assessment-idand trust-id
to some identifier, and provides the ASN.1 definitions inside
assessment-def and trust-def; the definitions
represent a qualitative and ordinal rating scale from [18].

Message fault shows how a callee could signal an
error.

To request a list of assessments that were created before
Apr2617:46:40 1970 UTC (10000000 in UNIX time) and
were given to bob we would send message dataRequest

I formatRequest Message ::= {
2 version 1,

3 caller "alice",

4 callee "bob",

5 payload format—request 774
6}

7 formatResponse Message ::= {
8 version 1,

9 caller "alice",

10 callee "bob",

11 payload format—response: {

12 rid 774,

13 assessment—id {1111},

14 assessment—def "Formats DEFINITIONS ::=

15 BEGIN

16 QTM ::= ENUMERATED {

17 very—bad, bad, neutral,
18 good, very—good

19 }

20 END",

21 trust—id {1111},

22 trust—def "Formats DEFINITIONS ::=

23 BEGIN

24 QTM ::= ENUMERATED {

25 very—bad, bad, neutral,
26 good, very—good

27 }

28 END"

29 }

30 }

31 fault Message ::= {

32 version 1,

33 caller "alice",
34 callee "bob",

35 payload fault: {

36 rid 774,

37 message "Internal error. Try later."
38 }

39 }

Listing 6 Examples of a FormatRequest, a corresponding
FormatResponse and a Fault message

@ Springer

from Listing 7. A response to such a request is given
in message dataResponse: it echoes back the request
identifier in rid, provides the format and the type
of Ratings, and lists the Ratings in the response.
(Alternatively, in case of an error we would respond with a
Fault.)

To show the flexibility of the proposed schema, we
provide two more example specifications that can be
used within a FormatResponse message to define
either assessments (assessment-def) or trust values
(trust-def); the first is shown in Listing 6 where we had
a model [18] that uses qualitative (linguistic and ordered)

1 dataRequest Message ::= {
2 version 1,

3 caller "alice",

4 callee "bob",

5 payload data—request: {

6 rid 113,

7 type assessment,

8 query exp: {

9 operator and,

10 left con: {

11 operator 1lt,

12 value date: 10000000
13 1,

14 right con: {

15 operator eq,

16 value target: "bob"
17 3

18 }

19 }

20 }

21 dataResponse Message ::= {

22 version 1,

23 caller "alice",

24 callee "bob",

25 payload data—response: {

26 rid 113,

27 format { 1 1 1 },

28 type assessment,

29 response {

30 {

31 source "alice",
32 target "bob",

33 service "seller",
34 date 9000000,

35 value ’0a0103’'H
36 s

37

38 source '"charlie",
39 target "bob",

40 service "seller",
41 date 8000000,

42 value ’'0a0104’'H
43 }

44 }

45 }

46 }

Listing7 A DataRequest for assessments given to bob before date
10000000, and a corresponding DataResponse

Ann. Telecommun. (2021) 76:119-130

125

labels. The new examples are given in Listing 8. The first
is from a subjective logic framework [19] where Rating
values are triples denoting the amount of belief b, disbelief
d and uncertainty u regarding trust; each component is
a real number from [0, 1] and the components sum to 1.
The second example is a comparison-based model [20]
where instead of absolute ratings, pairwise comparisons are
used to express preferences: the Rat ing denotes how the
other Entity compares with the target: a comparison
can be expressed with a less-than, an equal-to,
a greater-than and an incomparable comparison.
We emphasize these examples do not cover all possibilities:
as new systems emerge, new Ratings will be defined and
the proposed framework is flexible enough to accommodate
them.

4 Creating and parsing Query instances

When specifying complex queries, Query instances can
become awkward to deal with due to their recursive struc-
ture. Consider a criteria that in SQL would be expressed
as the following: target = bob AND (service
= seller OR service = buyer) AND date >
20. The corresponding Query instance is given in List-
ing 9. Evidently, writing such SQL-like statements is easier
than constructing recursive data structures. Similarly, pars-
ing larger query instances becomes awkward too. Thus to
simplify Query manipulations, we provide means for con-
verting string statements into Query instances and outline
a general strategy for parsing them.

4.1 Creating Query instances from string
statements

To simplify the creation of queries, we build a string parser
using a grammar. The parser converts strings into parse trees
which are then turned into Query instances.

1 Formats DEFINITIONS ::= BEGIN

2 SL ::= SEQUENCE {

3 b REAL, d REAL, u REAL

4}

5 PWC ::= SEQUENCE {

6 other Entity,

7 comparison ENUMERATED {

8 less—than (0), equal (1),
9 greater—than (2), incomparable (3)
10 }

1}

12 END

Listing 8 Examples of rating definitions. The first represents a rating
definition in a subjective logic framework [19], and the second a
definition in a system that uses pairwise comparisons instead of
absolute ratings [20]

| message Message ::= {

2 version 1,

3 caller "alice",

4 callee "bob",

5 payload data—request {
6 rid 591,

7 type assessment,

8 query exp: {

9 operator and,

10 left exp: {

11 operator and,

12 left con: {

13 operator eq,

14 value target: "bob"
15 1,

16 right exp: {

17 operator or,

18 left con: {

19 operator eq,

20 value service: "seller"
21 1,

2 right con: {

23 operator eq,

24 value service: "buyer"
25 }

26 }

27 },

28 right con: {

29 operator gt,

30 value date: 20

31 }

32 }

33 }

34}

Listing 9 A more involved Query: it requests assessments given to
bob for service seller or buyer since date 20

We need a simple grammar that supports writing single-
ton constraints (e.g., date > 5), multiple constraints or
expressions (e.g., source = alice AND target =
bob) and parentheses to enforce operator precedence. The
grammar is given in Listing 10. It defines a recursive rule
stat that can take one of four alternatives: it can represent
a constraint in the form of FIELD OP VALUE,; a statement
enclosed with parentheses; or two statements combined
with a conjunction or a disjunction. The order of alternatives
defines their precedence: constraints before parentheses,
parentheses before conjunctions, and conjunctions before
disjunctions.

Lexer rules on lines 7-9 define permissible values for
tokens FIELD, OP and VALUE. The WS token denotes all
variants of white space that is ignored.

Using the grammar we build a parser that converts
string statements into parse trees. For instance, consider
the parse tree from Fig. 2 which we obtain by feeding the
parser the following: target = bob AND (service
= seller OR service = buyer) AND date >
20.

@ Springer

126

Ann. Telecommun. (2021) 76:119-130

| grammar Query;

2 stat: FIELD OP VALUE # constraint

3 | '’ stat ')’ # parenthesis

4 | stat 'AND’ stat # conjunction

5 | stat 'OR’ stat # disjunction

6 H

7 FIELD: ’source’ | ’target’ | ’service’ | ’date’
8 OP: R B i R S T
9 VALUE: [a—zA—Z0—9@\\.]+ ;

10 WS: [\t\r\n]+ — skip ;

Listing 10 A grammar for writing query statements

Finally, we convert parse trees into Query instances.
The Query is built during a depth-first tree walk:
each node made from a constraint statement becomes a
Constraint, and each node made from a conjunction
or a disjunction statement becomes an Expression with
the appropriately set operator. When visiting nodes that
represent parenthesized statements, we create no special
messages, but instead continue by recursively processing
their children; the purpose of using parenthesis in statements
is to enforce the order in which the Query gets built.

4.2 Parsing Query instances

Upon receiving a DataRequest, the callee has to parse it,
query its data storage, and then return a DataResponse
containing Rat ings that conform to the incoming Query.
The ratings data storage—a file, a database, or something
else—will unlikely be able to consume Query instances
directly. Therefore the callee will have to convert the Query
into something that is compatible with its data storage.
But since that could be anything, creating procedures for

stat
/’\
stat AND stat
T
stat AND stat date/>N20
targ(=Nbob (glat\)
/’\
stat OR stat
serv{hler serv{=Nbuyer

Fig. 2 A parse tree obtained from statement target = bob AND
(service = seller OR service = buyer) AND date
> 20 when using grammar from Listing 10

@ Springer

every imaginable storage is unfeasible. Instead we outline a
general strategy for Query parsing and provide an example
procedure that filters Rat ings that are kept in memory.

A Query can be parsed recursively. We have to han-
dle two cases depending on whether the Query is a
Constraint or an Expression. When processing a
Constraint, we test whether a particular Rat ing com-
ponent (a source, a target, a service, or a date)
satisfies the value constant using the Constraint
operator. When processing an Expression, we recur-
sively evaluate the 1eft and right operand and join the
results with the Expression operator.

5 Discussion

System architecture The proposal can be applied to central-
ized and distributed architectures. Centralized systems (e.g.,
electronic marketplaces) can use it to exchange ratings with
similar systems while entities in a distributed system (e.g.,
nodes of a peer-to-peer network) can use it to exchange rat-
ings with other entities. When a centralized system provides
a DataResponse, field callee contains the identity of
that system. In a distributed setting, the callee simply
contains the identity of the callee entity. System architecture
thus determines the peers: in centralized architectures, peers
are centralized systems while in distributed architectures
peers are entities that comprise the system.

Communication model The proposal is based on a request-
response communication model that exchanges data within
the requested scope and upon an explicit request. And
since messages have identifiers, the exchange can be
asynchronous: the caller can send multiple requests to
the same callee in parallel and match corresponding
responses with identifiers. This allows callees to avoid
blocking and respond to requests in any order. Moreover, in
asynchronous exchange peers can reuse the communication
channel: once established both peers can send requests and
receive responses regardless of who initiated it. However,
a synchronous exchange is still possible and will likely
dominate in centralized systems that have an existing web
service infrastructure.

Due to varying capabilities of trust and reputation sys-
tems, the proposal is communication channel agnostic. This
is to remain applicable to various transports and commu-
nication infrastructures: be it RESTful or classic SOA-
based web services, direct TCP or UDP sockets, MQTT
clients or IPFS nodes in a distributed web. While for the
actual information exchange the communication channel
(or even the entire communication middleware) is also
needed, we expect systems to integrate the messaging sys-
tems into their existing infrastructures: since systems are

Ann. Telecommun. (2021) 76:119-130

127

diverse, we cannot require (or enforce) the same commu-
nication infrastructure for all; the messages, however, may
be the same. For instance, centralized systems might imple-
ment this proposal as a REST endpoint that receives a
POST request containing a DataRequest and responds
with a HTTP response carrying a DataResponse; the
only requirement is that the content-type is set to
application/octet-stream if BER encoding is
used. In contrast, low-powered devices, such as nodes in
a wireless sensor network, may not have REST capabili-
ties and would use TCP or UDP sockets directly; in those
cases asynchronous messaging and the ability to reuse com-
munication channel will be even more important. For the
same reasons, the proposal provides no security guarantees.
To secure the message exchange, we suggest securing the
underlying communication channel.

The proposal and messages are open to modifications
while being backward compatible. This is true as long
as every breaking change is accompanied by raising the
protocol version number. Since all messages start with it,
the recipient can parse each message accordingly.

Encoding rules and message size ASN.1 offers multiple
encoding rules that range from space-efficient binary rep-
resentations, such as Basic Encoding Rules (BER), Packed
Encoding Rules (PER) and their unaligned version (UPER),
to more verbose and human-readable representations such
as XML Encoding Rules (XER) and JSON Encoding Rules
(JER). These rules determine the sizes of messages as well
as the speed with which they are encoded.

To show how the encoding rules affect the message
size, we generated a number of messages in which we
varied the amount of information, and then encoded them
with different encoding rules. We analyzed the sizes of
DataRequests and DataResponses, because they
represent the bulk of exchanged information. When making
DataRequests, we varied the number of constraints: each
constraint limited the source field to a 16-character string
and we combined that constraints with disjunctions. With
DataResponses we varied the number of Ratings in
the response field. In each Rat ing we set the source
and target to a random 16-character string, the date to
a random integer, and the value to a random instance of
a QTM rating [18] (a value form a 5-level scale). Tables 1
and 2 show the message sizes in bytes with respect to the
amount of information and the choice of encoding rules.

Compared to BER, DataRequests encoded with JER
and XER on average consume more space (by a factor of 3.7
and 5.3), while PER and UPER consume less (by a factor
of 1.6 and 1.8). Similarly, DataResponses encoded with
JER and XER on average take more space than BER (by a
factor of 2.3 and 3.5), while PER and UPER consume less
(by a factor of 1.2 and 1.3).

Encoding rules and speed An important characteristic of
any schema is the speed with which messages are encoded
and decoded. Here we report on the speeds in Java, C and
Python. We are only reporting the speed of BER since
these were the only encoding rules available everywhere.
We emphasize that the actual speed depends both on the
complexity of the schema as well as on the quality of the
ASN.1 library that implements it.

When timing encoding, we measured the time needed
to convert a message in memory (a struct or a class
instance) to its byte representation. When timing decoding,
we measured the time needed to convert the bytes that were
already loaded into memory to actual messages (instances
of structs or classes). We ran all benchmarks on an AMD
Ryzen 7 2700X Eight-Core Processor with 16 GB RAM
using Ubuntu Linux 18.04 with kernel 5.3.0-59. Python
messages were implemented with PyASN1? and Python
version 3.6.6, Java with jASNl3 using Java 1.8.0_201,
and the C with asnlc* and compiled with GCC version
7.5.0. The ASN.1 specifications, its implementations, and
the example of a communication channel are available on
GitHub.?

Results are shown in Fig. 3. For instance, encoding a
DataRequest with 10 constraints takes 1 Uus in Java, 10
ps in C and 424 us in Python. Encoding 100 constraints
takes 11 pus in Java, 86 ps in C and 3927 us in Python.
Decoding a DataRequest with 10 constraints takes 1 ps
in Java, 18 us in C and 1221 ps in Python. Decoding 100
constraints Java, C and Python respectively take 14 pus, 162
us, and 12,091 ps. Coding DataResponses is slower than
DataRequests which is normal since they are bigger.
For example, encoding a DataResponse with 100 ratings
takes 10 Us in Java, 92 pus in C and 3742 us in Python, while
encoding 1000 ratings takes 100 ps, 906 us, and 41,320 us
respectively. Decoding a DataResponse with 100 ratings
requires 17 s in Java, 176 us in C and 10,311 ps in Python
while decoding a DataRequest with 1000 ratings takes
168 s, 1714 ps, and 116,912 us in Java, C and Python.

While these results are platform dependent, they suggest
good performance. Unfortunately, there are no similar
benchmarks that would allow us to compare results. Lastly,
it looks surprising that a Java-based solution outperforms
a C-based one. But as stated, the speeds depend in large
on the performance of the ASN.1 library that is used. In
our experiments it happens that the Java library was more
optimized that the C library.

Zhttp://pyasn1.sf.net
3https://www.openmuc.org/asn |
“http://lionet.info/asnlc
Shttps://github.com/trust-messages.

@ Springer

http://pyasn1.sf.net
https://www.openmuc.org/asn1
http://lionet.info/asn1c
https://github.com/trust-messages

128

Ann. Telecommun. (2021) 76:119-130

Table 1 Sizes of DataRequests (in bytes) with respect to the encoding rules and the number of constraints

Constr. BER XER PER JER UPER
10 322 1656 211 1138 186
20 602 3171 382 2183 337
30 882 4686 553 3228 488
40 1162 6201 724 4273 640
50 1442 7716 896 5318 791
60 1722 9231 1067 6363 942
70 2002 10,746 1238 7408 1093
80 2282 12,261 1409 8453 1245
90 2562 13,776 1581 9498 1396
100 2842 15,291 1752 10,543 1547

Querying The framework provides querying capabilities
allowing the caller to request a subset of ratings by
constraining the values of source, target, service
and date. The mechanism is efficient, self-sufficient and
compile-time type-safe. The efficiency comes from the
encoding rules; the self-sufficiency from not relying on
external systems or tools; and type-safety from the ASN.1
schema which guarantees that a valid Query instance is
always a valid query—one cannot constrain a non-existing
field or use invalid constraint value. However, the querying
mechanism does not support constraining values of
Ratings: for instance, we cannot request Rat ings whose
values are above certain threshold. Such queries would be
possible had we used an ontology and associated languages:
Resource Description Framework (RDF) [21] and SPARQL
Protocol and RDF Query Language (SPARQL) [22].
However, relying on such external system would somehow
lessen the aforementioned benefits: first, since ontologies
use the RDF data model, so called subject-predicate-object
triples, which are based on text encodings, we would
lose efficiency; second, since ontologies are more complex
and provide additional functionalities (not all relevant

to this use-case), we would grow a rather minimalist
solution into a considerable artifact whose applicability in
constrained environments is questionable—we would lose
self-sufficiency; and third, since ontologies use run-time
constraints and schemas, we would lose compile-time type-
safety: such mechanism would allow queries that reference
non-existing fields or use invalid values and extra run-time
checking would be needed. In summary, while a semantic
system would be a more capable alternative, it would also
bring less efficiency, simplicity and type-safety.

6 Related work

A few works are explicitly dedicated to eliciting commonal-
ities of trust and reputation models. In [23] authors overview
several models, extract common properties, and define a
functional interface in the form of a pre-standardization
recommendation. The interface defines functions that mod-
els ought to implement: information gathering, scoring &
ranking, entity selection, transaction, and reward & punish.
However, the paper does not address information exchange.

Table2 Sizes of DataResponses (in bytes) with respect to the encoding rules and the number of ratings

Ratings BER XER PER JER UPER
100 5361 18,837 4444 12,157 3989

200 10,661 37,437 8845 24,157 7940

300 15,961 56,037 13,245 36,157 11,890
400 21,261 74,637 17,645 48,157 15,840
500 26,561 93,237 22,045 60,157 19,790
600 31,861 111,837 26,445 72,157 23,740
700 37,161 130,437 30,845 84,157 27,690
800 42,461 149,037 35,245 96,157 31,640
900 47,761 167,637 39,645 108,157 35,590
1000 53,061 186,237 44,045 120,157 39,540

@ Springer

Ann. Telecommun. (2021) 76:119-130

129

—— PyASN1 asnlc
Request

10 o //]

—— jASN1
Response

Encode time [s]

Decode time [s]

T T T T T * T T T T T
20 40 60 80 100 200 400 600 800 1000

Number of constraints Number of ratings

Fig. 3 Encoding speed with respect to the ASN.l1 library;
DataRequests varied in number of constraints and
DataResponses varied in number of ratings

In [15] several systems are studied and a framework
of the desired requirements and features is proposed.
The paper addresses aspects pertaining to how trust is
expressed and calculated, but not how it should be
encoded or exchanged. Similarly, [14] propose a trust and
reputation meta-model that defines trust and reputation
models and identifies standards in all contexts. The
meta-model defines model requirements: scope, goals,
fundamental concepts, context and susceptibility to attacks.
It requires the definitions be merely conceptual: the issue
of defining unified data-types or exchanging them is
unaddressed.

One of the early attempts to trust and reputation exchange
was given in [24]. They propose an XML DTD that defines
two messages, trustRequest and trustResponse,
that facilitate the exchange, but they are tied to a specific
trust model. Similarly [25] propose a SOA-based web
service to implement an interface to trust and reputation
systems. The web service allows agents to look-up trust and
reputation of other agents as well as submit ratings. They
define a rating data-type and a service interface. But the
data-type is tied to a specific model and the proposal lacks
querying facilities.

In [26] a general purpose rating ontology is pro-
posed. It has six components and the first four (about,
submittedBy, creationTime, hasAspect) directly
correspond to target, source, date and service
from Listing 1. The rating value is split in two: hasScale
and hasValue. The first determines the type of the scale
(nominal, ordinal, interval, or ratio), and the second deter-
mines the actual value. Contrary to this proposal, the ontol-
ogy can only accommodate scalar ratings; multidimensional
values are unsupported. Similarly, an evaluation framework
Alpha Testbed [27] also defines ratings as 5-tuples con-

taining source, target, service, date and value.
While the first four correspond to fields from this proposal,
the value is a scalar from [0, 1].

In [4] a sharing model termed cross-community repu-
tation (CCR) is proposed. The proposal focuses the issue
of information translation by converting ratings into uni-
versal set of context and values. CCR is extended with
an architecture proposal, called Trust and Reputation In
virtual Communities (TRIC) [28]. They propose central-
ized architecture where the TRIC server plays the role
of a information exchange proxy. The authors also dis-
cuss three aspects of exchanging information: the initiator
(whether data is pushed or pulled), the trigger (whether the
exchange is on-demand or periodical) and the sensitivity
(what kind of data change triggers an exchange). The CCR
and TRIC are promising solutions for centralized commu-
nities. However, assuming that all models use similar rating
definitions and that universally defined contexts exists is
somewhat limiting. Nevertheless, neither proposal defines
concrete data-types (messages), explicit service interfaces,
nor querying mechanisms.

7 Conclusion

We proposed a general rating message that represents either
an input to or an output of a trust and reputation model
and is flexible enough to accommodate the majority of
existing systems. We defined a service interface and a
set of related messages that allow trust and reputation
systems to query each other for and respond with ratings
or signal errors. To simplify message creation, we defined
a grammar that allows creating queries from strings and
provided a procedure that parses such query messages.
We implemented the proposal in Java, C, and Python and
released the implementation and message specification as
free software.

The proposal is a step closer toward sharing trust
and reputation across applications. It allows existing
applications to estimate trust more accurately, be it toward
existing entities or toward new ones. New applications
can use it to speed up the establishment of trust
between its members by importing it from other related
domains.

Acknowledgments We are grateful to Prof. Denis Tréek for invaluable
comments and discussions that lead to this work. We also thank Aleks
Huc¢ and Balu Deokate for their help in revising the manuscript.

References

1. Post A, Shah V, Mislove A (2011) Bazaar: strengthening user
reputations in online marketplaces. In: Proceedings of NSDI'11:

@ Springer

130

Ann. Telecommun. (2021) 76:119-130

10.

11.

13.

14.

8th USENIX Symposium on Networked Systems Design and
Implementation

. Meng X, Li T, Deng Y (2016) Prefertrust: an ordered preferences-

based trust model in peer-to-peer networks. Journal of Systems
and Software

. Khatoun R, Begriche Y, Dromard J, Khoukhi L, Serhrouchni

A (2016) A statistical trust system in wireless mesh networks.
Annals of Telecommunications

. Grinshpoun T, Gal-Oz N, Meisels A, Gudes E (2009) Ccr: a model

for sharing reputation knowledge across virtual communities.
In: IEEE/WIC/ACM International joint conferences on web
intelligence and intelligent agent technologies

. Loper ML, Swenson B (2017) Machine to machine trust in smart

cities. In: IEEE 37Th International Conference on Distributed
Computing Systems (ICDCS)

. Yan Z, Zhang P, Vasilakos AV (2014) A survey on trust

management for internet of things. Journal of network and
computer applications

. Hendrikx F, Bubendorfer K, Chard R (2015) Reputation systems:

a survey and taxonomy. Journal of Parallel and Distributed
Computing

. Parhizkar E, Nikravan MH, Zilles S (2019) Indirect trust is simple

to establish. In: Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence. International Joint
Conferences on Atrtificial Intelligence Organization

. Pinyol I, Sabater-Mir J, Cuni G (2007) How to talk about reputa-

tion using a common ontology: from definition to implementation.
In: Ninth workshop on trust in agent societies

Dondio P, Longo L, Barrett S (2008) A translation mechanism
for recommendations. In: Trust Management II - Proceedings of
IFIPTM 2008: Joint iTrust and PST Conferences on Privacy, Trust
Management and Security

Ruan Y, Durresi A (2016) A survey of trust management systems
for online social communities—trust modeling, trust inference and
attacks. Knowledge-Based Systems

. Sherchan W, Nepal S, Paris C (2013) A survey of trust in social

networks. ACM Computing Surveys (CSUR)

Pinyol I, Sabater-Mir J (2011) Computational trust and reputation
models for open multi-agent systems: a review. Artificial
Intelligence Review

Costagliola G, Fuccella V, Pascuccio FA (2014) Towards a trust,
reputation and recommendation meta model. Journal of Visual
Languages & Computing

@ Springer

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

Vavilis S, Petkovi¢c M, Zannone N (2014) A reference model for
reputation systems. Decision Support Systems

Cho JH, Chan K, Adali S (2015) A survey on trust modeling. ACM
Computing Surveys (CSUR)

ITU-T (2015) Itu-t recommendation x.680: Information tech-
nology — abstract syntax notation one (asn.l): specification of
basic notation. Technical report, International Telecommunication
Union

Jelenc D, Tréek D (2014) Qualitative trust model with a
configurable method to aggregate ordinal data. Autonomous
Agents and Multi-Agent Systems

Jgsang A (2016) Subjective logic. Springer, Berlin

Centeno R, Hermoso R (2018) Estimating global opinions by
keeping users from fraud in online review systems. Knowl Inf Syst
55(2):467-491

Lanthaler M, Cyganiak R, Wood D (2014) RDF 1.1 concepts and
abstract syntax. W3C recommendation W3C. http://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/

SPARQL 1.1 overview. W3C recommendation, W3C (2013).
http://www.w3.0rg/TR/2013/REC-sparql1 1-overview-20130321/
Marmol FG, Pérez GM (2010) Towards pre-standardization of
trust and reputation models for distributed and heterogeneous
systems. Computer Standards & Interfaces

Trcek D (2004) Towards trust management standardization.
Computer Standards & Interfaces

Kova¢ D, Tréek D (2009) Qualitative trust modeling in SOA.
Journal of Systems Architecture

Marienfeld F, Hofig E., Horch A, Kintz M, Finzen J (2011)
Making sense of ratings: a common quantitative feedback
ontology. In: Proceedings of the 7th International Conference on
Semantic Systems

Jelenc D, Hermoso R, Sabater-Mir J, Tréek D (2013) Deci-
sion making matters: A better way to evaluate trust models.
Knowledge-Based Systems

Gal-Oz N, Grinshpoun T, Gudes E, Friese I (2010) Tric: an infras-
tructure for trust and reputation across virtual communities. In:
Fifth International Conference on Internet and Web Applications
and services (ICIW)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

	Toward unified trust and reputation messaging in ubiquitous systems
	Abstract
	Introduction
	Basic trust and reputation message
	Trust model inputs and outputs
	The Rating data-type

	Message exchange
	The protocol
	Requesting and providing definitions
	Requesting and providing ratings and signaling errors
	Filtering requests with queries
	Example messages

	Creating and parsing Query instances
	Creating Query instances from string statements
	Parsing Query instances

	Discussion
	System architecture
	Communication model
	Encoding rules and message size
	Encoding rules and speed
	Querying

	Related work
	Conclusion
	References

