
Scalable kernel convex hull online support vector machine
for intelligent network traffic classification

Xiaoqing Gu1
& Tongguang Ni1 & Yiqing Fan2

& Weibo Wang3

Received: 10 June 2019 /Accepted: 22 April 2020
Institut Mines-Télécom and Springer Nature Switzerland AG 2020

Abstract
Online support vector machine (SVM) is an effective learning method in real-time network traffic classification tasks. However,
due to its geometric characteristics, the traditional online SVMs are sensitive to noise and class imbalance. In this paper, a scalable
kernel convex hull online SVM called SKCHO-SVM is proposed to solve this problem. SKCHO-SVM involves two stages: (1)
offline leaning stage, in which the noise points are deleted and initial pin-SVM classifier is built; (2) online updating stage, in
which the classifier is updated with newly arrived data points, while carrying out the classification task. The noise deleting
strategy and pinball loss function ensure SKCHO-SVM insensitive to noise data flows. Based on the scalable kernel convex hull,
a small amount of convex hull vertices are dynamically selected as the training data points in each class, and the obtained scalable
kernel convex hull can relieve class imbalance. Theoretical analysis and numerical experiments show that SKCHO-SVM has the
distinctive ability of training time and classification performance.

Keywords Online learning . Support vector machine . Scalable kernel convex hull . Network traffic classification

1 Introduction

According to the 42nd National Internet development statis-
tics report issued by China Internet Information Center, up to
December 2018 the number of Internet users in China had
reached 802 million [1]. With the increase of popularity of
Internet, the scale of the Internet is becoming larger and larger;
meanwhile, various new network applications and services are
emerging. Network technology represented by wireless

communications and networks has become one of the neces-
sities in people’s daily life. Network traffic classification and
application identification are the basis of solving many net-
work management. They are of great significance to network
security, intrusion detection and service quality guarantee. In
the last two decades, several network traffic classification
methods have been developed. The earliest traffic classifiers
are mostly port-based classification methods that use the port
number to identify applications [2]. The advantage of port-
based classificationmethods is simple and fast. However, with
more and more applications using dynamic port number, en-
cryption, and re-encapsulation technology, this type of
methods are no longer effective. For example, P2P applica-
tions evade identification by using port masquerading. Thus,
the accuracy of port-based classification methods is less than
70% in some applications [3].

To overcome these limitations, deep packet inspection
(DPI) [4] has emerged based on payload-based classification
technique. DPI searches and matches the application layer
load of the traffic stream, so that it can identify different types
of network traffic. This type of methods can accurately iden-
tify the unencrypted traffic, but their matching process costs a
lot of computation and memory. In addition, some privacy
policies do not allow users to use sensitive information or
check payload. The famous open source application in DPI
is NDPI tool [5], which can handle encrypted traffic with a

* Tongguang Ni
hbxtntg-12@163.com

Xiaoqing Gu
czxqgu@163.com

Yiqing Fan
yiqingfa@usc.edu

Weibo Wang
kevinwang@outlook.com

1 School of Information Science and Engineering, Changzhou
University, Changzhou 213164, China

2 Viterbi School of Engineering, University of Southern California,
Los Angeles 90089, USA

3 School of Information Science and Engineering, East China
University of Science and Technology, Shanghai 200237, China

https://doi.org/10.1007/s12243-020-00767-2

/ Published online: 18 June 2020

Annals of Telecommunications (2020) 75:471–486

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-020-00767-2&domain=pdf
mailto:hbxtntg-12@163.com

mount number of protocols. But NDPI cannot identify certain
types of network traffic and labels them as unknown. The
behavioral classification methods based on host behavior fea-
tures can discover new network traffic behaviors without an-
alyzing the load of the message. The research in [6] shows that
the graphical connections generated from server-client models
are different from the graphs from P2P applications. For in-
stance, this type of methods carries out classification tasks by
calculating the number of communication hosts and consider-
ing the number of ports and transport layer protocols. The
behavioral classification methods usually have high classifi-
cation accuracy with lower computational cost; however, they
only work well on the end-hosts and endpoint. In addition,
different network environments will invalidate the network
traffic classification method based on host behavior.

With the continuous improvement of hardware and soft-
ware technology, intelligent traffic classification methods
based on machine learning have been widely concerned in
recent years [7–12]. Machine learning methods generally do
not depend on the information of application layer load, but
only need the header information of packets. They establish
machine learning model to achieve network traffic classifica-
tion based on the statistical characteristics of network traffic.
The famous example of this type of methods is intrusion de-
tection systems, which apply machine learning methods such
as neural work, decision tree, support vector machine (SVM),
Bayesian network, etc. SVM becomes one of the most prom-
ising methods because SVM can solve high-dimensional non-
linear problem and maximize the margin in the kernel space
[13, 14]. For example, a SVM-based method classifies the
Internet traffic based on the statistical characterization of pay-
load [15]. An incremental SVM with attenuation factor pro-
posed in [8]. In its updating process, the support vectors and
their corresponding weight will be adjusted to adopt the
change of the classification hyperplane. A proximal SVM is
proposed to build an online network traffic classifier, and its
advantage is fast and simple system of linear equations [16].

The traditional machine learning traffic classifier trains the
network traffic data as a whole for batch learning. Batch learn-
ing is suitable for small-scale classification. However, its com-
putation complexity is high for large-scale network data. In
addition, when the data distribution of network traffic changes
with the time going, especially the new training data occur-
ring, the classification performance of batch learning will de-
grade significantly. Thus, batch learning methods cannot
adapt to practical applications of massive and streaming net-
work traffic data. Online learning is one of the effective ways
to solve this problem. Compared with traditional batch learn-
ing methods, online learning methods can achieve better gen-
eralization performance. Online learning continuously up-
dates a classifier with continues newly arrived data points,
so that its classification performance can be improved step
by step. Up to now, several successful SVM-based online

learning methods are proposed to handle with network traffic
classification. These methods can basically be grouped into
two types: (1) reducing the computation complexity by sto-
chastic gradient descent strategy [17, 18]; (2) selecting the
representative data points to keep the size of training data in
a small scale [19, 20].

However, online SVMs are almost always sensitive to
noise; meanwhile, they usually assume that the training data
are class balanced. In practice, noise and class imbalance are
common in network traffic. For example, HTTP always gen-
erates more traffic than other applications, such as P2P and
VoIP [21]. In order to establish a more effective online SVM
for network traffic classification, in this study, we propose a
scalable kernel convex hull online SVM called SKCHO-
SVM, which focuses on controlling the size of training data
points based on the scalable kernel convex hull in the noise
and imbalanced network traffic scenario. The SKCHO-SVM
method consists of two stages: (1) discard the noise points and
select the training data points based on the scalable kernel
convex hull in the offline stage, then train a robust classifier
on the basis of pinball-SVM; (2) re-compute the scalable ker-
nel convex hull and update the classifier in the online stage
step by step. Note that the scalable convex hull is computed in
both offline and online stages. We perform this procedure
periodically to control the size of training points within the
reasonable scope.

The advantages of SKCHO-SVM are as follows: (1) it can
deal with noise network traffic data efficiently since the out-
liers are discarded before the classifier training and the noise
insensitivity characteristic of pinball-SVM is inherited. (2) By
dynamically adjusting the scalable kernel convex hull as train-
ing data, SKCHO-SVM can be applied in the large scale net-
work traffic scenarios. (3) The scalable kernel convex hull can
relieve the class imbalance, since it exacts the convex hull
vertices by the profile of the data, rather than the number of
data points. (4) It is proved theoretically that the scalable ker-
nel convex hull as training data can achieve almost the same
classification performance as the classifiers trained with all the
data.

The rest of this paper is organized as follows. Section 2
introduces the concept of convex hull and pinball-SVM.
Section 3 describes the proposed SKCHO-SVM method in
detail. Section 4 presents the classification performance anal-
ysis of SKCHO-SVM. The experimental performance of
SKCHO-SVM is evaluated in Sect. 5. The conclusions are
given in the final section.

2 Related works

The classification principle of traditional SVM aims to build
an optimal classification hyperplane, which maximizes the
minimum margin between the data points belonging to

472 Ann. Telecommun. (2020) 75:471–486

different classes. In the binary classification task, given the
dataset X = {x1, x2, …, xN} and its corresponding class label
set Y = {y1, y2, …, yN}, the decision function of SVM classi-
fier is.

f xð Þ ¼ wTxþ b ð1Þ
where w and b are the weight vector and bias parameter,
respectively. Based on the maximummargin strategy, the cor-
responding classification hyperplane of SVM classifier can be
obtained as.

max
f
0k k¼1

minf
0
Ið Þ þ minf

0
IIð Þ

n o
ð2Þ

where two sets of indices I and II represent as I = {i| yi = 1}
and II = {i| yi = − 1}, respectively. Function f′(I) and f′(II)
mean f′(I) = {yif(xi), i ∈ I} and f′(II) = {yif(xi), i ∈ II}, respec-
tively. Equation (1) shows that traditional SVM is sensitive to
noise point, especially to noises around the boundary of clas-
sification hyperplane.

To solve this problem, inspired by the application of
quantile in statistics, the pinball loss function is introduced
into the traditional framework of SVM [22–24]. Huang et al.
[22] proposed the asymmetric least squares SVM called aLS-
SVM to use the pinball loss function for the least squares
SVMmodel. Huang et al. [23] proposed an asymmetric v-tube
support vector regression model to deal with noise problem in
regression tasks. Huang et al. [24] proposed the pin-SVM by
replacing the pinball loss function with the hinge loss function
in the L1-SVM. Pin-SVM aims to maximize the quantile dis-
tance instead of maximizing the margin between two classes.

Suppose the discrete scalar set U = {u1, u2,…, um} with u1
≥ u2 ≥… ≥ um, q-lower quantile of the setU called asminq{U}
can be written as

minq Uf g ¼ t : t ∈ R; t is q percent larger than uif g 0≤q≤1ð Þ
ð3Þ

The classification hyperplane of pin-SVM can be obtained
as

max
f
0k k¼1

minq f
0
Ið Þ þ minq f

0
IIð Þ

n o
: ð4Þ

Substituting Eq. (1) into Eqs. (3), (4), the decision function
of SVM can be represented as

max
wk k¼1;b

minqi∈I yi w
Txi þ b

� �þ minqi∈II yi w
Txi þ b

� �� � ð5Þ

Using the τ/(1 + τ)-lower quantile, the pinball loss Lτ(u) in
pin-SVM is defined as

Lτ uð Þ ¼ u; ifu≥0:
−τu; otherwise:

�
ð6Þ

where pinball parameter τ is equal to q/(1 − q). Substituting
Eq. (6) into Eq. (5), we can obtain

max
wk k¼1;b

argmin ∑
i∈I

Lτ 1−yi w
Txi þ b

� �� �þ
argmin ∑

i∈II
Lτ 1−yi w

Txi þ b
� �� � g

8>><
>>: ð7Þ

From Eq. (7), we can see that maximizing the quantile
distance between two classes is insensitive to noise, especially
to noise around the classification hyperplane, which improves
the robustness of the classifier. Based on this strategy, let ϕ(⋅)
be the mapping from Rd to the kernel space, the optimization
problem of pin-SVM is represented as

min
w;b;ξ

1

2
wk k2 þ C

N
∑
N

i¼1
ξi;

s:t:yi w
Tϕ xið Þ þ b

� �
≥1−ξi;

yi w
Tϕ xið Þ þ b

� �
≤1þ 1

τ
ξi:

ð8Þ

where N is the number of training set. C is the regularization
parameter, and ξi is the slack variable. When τ = 0, pin-SVM
is equivalent to the standard L1-SVM. Thus, L1-SVM can be
considered as a special case of pin-SVM. Except for insensi-
tivity to noise, it is theoretically proved that minimizing pin-
ball loss can be viewed as a trade-off between within-class
minimization and small misclassification minimization. The
solution of Eq. (8) can be converted to a quadratic program-
ming (QP) problem. The computation complexity of pin-
SVM is O(N3). Therefore, pin-SVM can only deal with the
classification tasks for small-scale datasets. For large-scale
datasets, even for medium-sized datasets, its computation is
quite large.

3 Scalable kernel convex hull online SVM

We describe the proposed SKCHO-SVM method in detail in
this section. Firstly, we introduce the scalable convex hull in
the kernel space in Sect. 3.1. It is the core component of
SKCHO-SVM. Based on the definition of scalable kernel
convex hull, a small amount of scalable convex hull vertices
are computed as training points to train a classifier. In Sect.
3.2, we present a detailed description of SKCHO-SVM. In
Sect. 3.3, we provide a theoretical analysis of SKCHO-SVM.

3.1 Scalable kernel convex Hull

The solution of traditional SVM is equivalent to finding an
optimal classification hyperplane, which separates the contour
points of two classes at the maximum intervals.

473Ann. Telecommun. (2020) 75:471–486

Geometrically, convex hull can accurately describe the geo-
metric structure of data points.

Definition 1 (convex hull) [25]. The convex hull of the
given dataset X is the smallest convex set containing all data
points in X

co Xð Þ ¼ ∑
n

i¼1
αixijxi∈Xjαi≥0j ∑

n

i¼1
αi ¼ 1

� �
ð9Þ

Any point in X can be written as a linear combination of
convex hull vertices in co(X)

xi ¼ ∑
xt∈co Xð Þ

λi;txt ð10Þ

where ∑
xt∈co Xð Þ

λi;t ¼ 1 and λi, t ≥ 0.

By introducing the nonlinear kernel mapping (ϕ), the input
data in kernel space are represented asX = {x1,…, xn}↦ ϕ(X)
= {ϕ(x1),…, ϕ(xn)}. The kernel convex hull of dataset ϕ(X) is
defined as co(ϕ(X)). Any point ϕ(xi)in ϕ(X) can be written as
a linear combination of convex hull vertices in co(ϕ(X)):

ϕ xið Þ ¼ ∑
ϕ xtð Þ∈co ϕ Xð Þð Þ

μi;tϕ xtð Þ ð11Þ

where ∑
ϕ xtð Þ∈co ϕ Xð Þð Þ

μi;t ¼ 1 and μi, t ≥ 0.

In order to ensure the solvability of the kernel convex hull,
it is necessary to “relax” the requirements for the kernel con-
vex hull. For this goal, a scalable threshold ε is introduced in
Eq. (11), and then we obtain the definition of scalable kernel
convex hull.

Definition 2 (scalable kernel convex hull). The linear rela-
tionship between kernel convex hull vertices and ϕ(xi)in the
kernel space satisfies:

max
xi∈X

min ϕ xið Þ− ∑
ϕ xtð Þ∈co ϕ Xð Þð Þ

μi;tϕ xtð Þ
�����

�����
2

≤ε ð12Þ

where 0 ≤ μi, t ≤ 1 and ∑
ϕ xtð Þ∈co ϕ Xð Þð Þ

μi;t ¼ 1.

The role of εhas two aspects. First, the scalable threshold ε
indicates the degree to which the approximation scalability can
be tolerated. Second, different ε can adjust the size of kernel
convex hull. We will discuss it in detail in the Sect. 4.3. Then,
each point ϕ(xi)in the kernel space can be written as the follow-
ing linear combination of kernel convex hull vertices:

ϕ xið Þ ¼ ∑
ϕ xtð Þ∈co ϕ Xð Þð Þ

γi;tϕ xtð Þ þ δi ð13Þ

where ‖δi‖
2 ≤ ε and γi;t ¼ μi;t; ifϕ xtð Þ∈co ϕ Xð Þð Þandϕ xið Þ∉co ϕ Xð Þð Þ;

0; otherwise:

�
.

Since ε is a very small positive constant, each component
in δi is very small.

Based on the definition of Eq. (10), the geometric structure
of data set ϕ(X) in the kernel space can be represented by the
scalable kernel convex hull. The vertexes of scalable kernel
convex hull are boundary points of ϕ(X). The classification
mechanism of SVM depends on finding the exact boundary in
the optimal kernel space. It is reasonable to use a small amount
of vertexes of scalable kernel convex hull to train a SVM-
based classifier, and SKCHO-SVM can guarantee that it is
safe to delete the data points inside the scalable kernel convex
hull.

3.2 Construction of SKCHO-SVM method

The proposed SKCHO-SVM in this paper consists of two
stages: (1) discard the noise points and compute the scalable
kernel convex hull as the initial training set to train the pinball-
SVM classifier; (2) re-compute the scalable kernel convex
hull and update pinball-SVM classifier step by step in the
online stage.

3.2.1 Compute the scalable kernel convex Hull

The noise points also called isolated points, according to
their geometric distribution, which are often far away
from most of the points belonging to the normal points
[26]. Most of noise points are located around the bound-
ary of the data points. That is to say, the noise points are
more likely to be recognized as the vertexes of scalable
kernel convex hull. Thus, we must delete the noise points
before computing the scalable kernel convex hull.
Inspired of [27], we definite the noise points as follows.
Given a random point xi, we compute the distances dker(x-
i, xj) between xi and the other point xj(xj ∈ X, xj ≠ xi) in

the kernel space: d2ker xi; x j
� � ¼ ϕ xið Þ−ϕ x j

� ��� ��2. Then, we
record the occurrence frequency k of the condition in

which the distance d2ker x; xið Þ is less than θ,

k ¼ count d2ker x; xið Þ≤θ� �
: ð14Þ

If the obtained occurrence frequency k is less than the
given number eα, xi is identified as the noise point. It is
noted that we can easily perform the deleting process in
parallel mode, such that its running time is greatly re-
duced. After deleting a large part of noise points around
the boundary the data X, we use kernel support vector
data description (KSVDD) [28] to compute the minimum
enclosing ball of X, called MEB(ϕ(X)), which is the

474 Ann. Telecommun. (2020) 75:471–486

smallest hard ball contains all data points in ϕ(X). Let c is
the center of the hypersphere for MEB(ϕ(X)). According
to the distance dker(xi, c) between each point xi and c in
the kernel space, all data points are sorted in descending
order of dker(xi, c). We set the data points on the
hypersphere boundary as the initial set of scalable convex
hull co(ϕ(X)). Based on the descending order, each point
xi(xi ∈ Xandxi ∉ co(ϕ(X))) in a sequence is checked
whether it is a scalable convex hull vertex as follows

min
μ

ϕ xið Þ− ∑
co ϕ Xð Þð Þj j

j¼1
μi; jϕ x j

� ������
�����
2

;

s:t:ϕ xið Þ∈co ϕ Xð Þð Þ; 0≤μi; j≤1; ∑
co ϕ Xð Þð Þj j

j¼1
μi; j ¼ 1:

ð15Þ

In this study, we consider the commonly used Gaussian
kernel, ϕ(xi)

Tϕ(xi) becomes a constant. Its value has no influ-
ence on the solution of Eq. (15). We discard this item, and
then Eq. (15) can be expressed as a matrix form

min
μ

μT co ϕ Xð Þð ÞT co ϕ Xð Þð Þμ−2ϕ xið ÞT co ϕ Xð Þð Þμ;

s:t: ∑
co ϕ Xð Þð Þj j

j¼1
μi; j ¼ 1; 0≤μi; j≤1:

ð16Þ

Obviously, Eq. (16) can be formulated as a convex qua-
dratic programming (QP) problem. We substitute μ into Eq.
(16), for given a threshold ε, if point xi satisfies

ϕ xið Þ− ∑
co ϕ Xð Þð Þj j

j¼1
μi; jϕ x j

� ������
�����
2

> ε, xi will be regarded as a

scalable convex hull vertex in the kernel space. Then, we
add it to set co(ϕ(X)). Otherwise, the point xi will be regarded
as a non-scalable kernel convex hull vertex, since it can be
represented linearly by the current convex hull vertexes.

3.2.2 Train pinball-SVM classifier

For a small part of noise points distributed in the region of the
data, SKCHO-SVM uses pin-SVM as the classification model
to further reduce the impact of potential noise points. Inherited
its advantage of insensitive to noise located around the classi-
fication hyperplane, SKCHO-SVM obtains the noise insensi-
tive classifier model by maximizing the quantile distance be-
tween two classes in the kernel space. The unconstrained orig-
inal problem of SKCHO-SVM is described as

min
w;b

1

2
wk k2 þ C

N
∑
M

t¼1
l w; b;ϕ xtð Þð Þ ð17Þ

where M is the size of scalable kernel convex hull. l(w, b,
ϕ(xt)) is pinball loss function, l(w, b, ϕ(xt)) = max {−τ[1 −
yt(w

Tϕ(xt) + b)], 1 − yt(w
Tϕ(xt) + b)}.

3.2.3 Update classifier online

In this stage, we re-compute the scalable kernel convex
hull with the newly coming data points, and then update
the classifier with the newly scalable convex hull. For
traditional online learning methods, two strategies are of-
ten used to update the training set: one is to directly add
new points to the current training set; the other is to com-
bine the new points with the current support vectors to
form a new training set. However, with the increase of
training data, the training efficiency of the first strategy
will have a sharp decline. It may not be suitable for real-
time classification in large scale network traffic scenarios.
The second strategy adopts the support vectors of the
online classifier as training data, but the support vectors
are only related to the classification hyperplane construct-
ed by the classifier, and cannot comprehensively represent
the contour information of the data in the kernel space.
When the distribution of newly arrived points is different
from that of historical training points, the classification
performance of this strategy is not efficient. At this stage,
we first run the noise deleting method using Eq. (14) to
judge whether the newly arrived points are noise or not.
Then, we use Eq. (3) to classify each newly arrived (or
one batch) point ex to obtain its class label ey. If the value
of its decision function is less than a limit value, we con-
sider ex is a scalable convex hull vertex, then we add ex into
the current training set

wTϕ ex	

þ b

��� ���≤1þ β ð18Þ

where β is a constant. Finally, the current pin-SVM will
be re-trained by the new training set. Otherwise, both the
training set and pin-SVM will not be updated. It is noted
that with the increase of newly arrived points, when the
number of training set is larger than a given threshold, we
will re-compute the scalable kernel convex hull again
using Eq. (16).

3.2.4 Algorithm description and computation complexity
analysis

Based on the analysis above, the SKCHO-SVM procedure
can be summarized by algorithm 1.

475Ann. Telecommun. (2020) 75:471–486

Here, we discuss the computation complexity of SKCHO-
SVM. In the first stage of SKCHO-SVM, we use the sequen-
tial minimum optimization (SMO) technology to solve Eqs.
(15), (16) in a progressive way, and the scalable convex hull of
X is obtained progressively. The time complexity of first stage

is O M 2
0

� �
, where M0 is the size of boundary points of

KSVDD. In the second stage of SKCHO-SVM, we also use
SMO technology to train pinball-SVM, and its time complex-
ity is O(M), where M is the size of scalable convex hull ob-
tained in the first stage. The third stage is online update sage of
SKCHO-SVM. We use Eq. (18) to judge the newly arrived
point whether it is a scalable convex hull vertex. The compu-
tation complexity of this stage is linear. Thus, the total com-

putation complexity of SKCHO-SVM is O M 2
0 þM 2

� �
. The

value ofM is much smaller than the training point size, so that
SKCHO-SVM can be applied to large-scale online classifica-
tion tasks. In addition, the QP solution of SKCHO-SVM can
guarantee its global optimal solution.

4 SKCHO-SVM performance analysis

To theoretically analyze the classification performance of
scalable kernel convex hull, we substitute all training points

into the unconstrained objective function of Pinball-SVM and
name it as F1(w, b):

min
w;b

F1 w; bð Þ ¼ min
w;b

1

2
wk k2 þ C

N
∑
N

i¼1
l w; b;ϕ xið Þð Þ ð19Þ

where l(w, b, ϕ(xi)) = max {−τ[1 − yi(w
Tϕ(xi) + b)], 1 −

yi(w
Tϕ(xi) + b)}.

We name the unconstrained objective function of SKCHO-
SVM, i.e., Eq. (17), as F2(w, b). In order to better compare the
relationship between F1(w, b) and F2(w, b), using ri, t(1 ≤ i ≤
N, 1 ≤ t ≤ M) obtained in Eq. (13) to construct a new uncon-
strained objective function, name it as F3(w, b):

min
w;b

F3 w; bð Þ ¼ 1

2
wk k2 þ C

N
∑
N

i¼1
l w; b; uið Þ ð20Þ

where l(w, b, ui) = max {−τ[1 − yi(w
Tui + b)], 1 − yi(w

Tui +

b)}, ui ¼ ∑M
t¼1ri;tϕ xtð Þ;ϕ xtð Þ∈con ϕ Xð Þð Þ. Different from Eq.

(19), N training points in (20) is linearly represented by scal-
able kernel convex hull.

Theorem 1. F3(w, b) andF2(w, b) are defined in Eqs. (20) and

(17), respectively.F3(w, b) ≤ F2(w, b). Proof. Since ∑
M

t¼1
ri;t ¼ 1

; we have the following:

L3 w; b; Z*� � ¼ C
N

∑
N

i¼1
max −τ 1−yi wT ∑

M

t¼1
ri;tϕ xtð Þ þ b

�
� �
; 1−yi wT ∑

M

t¼1
ri;tϕ xtð Þ þ b

�
� �

¼ C
N

∑
N

i¼1
max −τ ∑

M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �

; ∑
M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �� �

≤
C
N

∑
N

i¼1
∑
M

t¼1
max −τri;t 1−yi w

Tϕ xtð Þ þ b
� �� �

; ri;t 1−yi w
Tϕ xtð Þ þ b

� �� �� �
¼ C

N
∑
M

t¼1
max −τ 1−yi w

Tϕ xtð Þ þ b
� �� �

; 1−yi w
Tϕ xtð Þ þ b

� �� �� �
∑
N

i¼1
ri;t

¼ L2 w; b;ϕ Xð Þð Þ
ð21Þ

Adding the term (1/2)‖w‖2 on the both side of above equa-
tion, we have F3(w, b) ≤ F2(w, b). ■.

(21)

476 Ann. Telecommun. (2020) 75:471–486

Theorem 2. − C
N ∑

N

i¼1
max yiw

Tδi;−τyiwTδif g≤ F1 w; bð Þ
‐F3 w; bð Þ≤ C

N ∑
N

i¼1
max −yiwTδi; τyiw

Tδif g
Proof.

L1 w; b;Xð Þ ¼ C
N

∑
N

i¼1
max −τ 1−yi w

Tϕ xið Þ þ b
� �� �

; 1−yi w
Tϕ xið Þ þ b

� �� �
¼ C

N
∑
N

i¼1
max −τ 1−yi wT ∑

M

t¼1
ri;tϕ xtð Þ þ δi

�

þ b

�
� �
; 1−yi wT ∑

M

t¼1
ri;tϕ xtð Þ þ δi

�

þ b

�
� �

¼ C
N

∑
N

i¼1
max −τ ∑

M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �þ τyiw

Tδi; ∑
M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �

−yiw
Tδi

� �

≤
C
N

∑
N

i¼1
max −τ ∑

M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �

; ∑
M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �� �

þ C
N

∑
N

i¼1
max −yiw

Tδi; τyiw
Tδi

� �
¼ L3 w; b;Xð Þ þ C

N
∑
N

i¼1
max −yiw

Tδi; τyiw
Tδi

� �
ð22Þ

Adding the term (1/2)‖w‖2 on the both side of above in-

equality, we have F1 w; bð Þ‐F3 w; bð Þ≤ C
N ∑

N

i¼1
max −yiwTδi; τyiw

Tδif g.

Similarly,

L1 w; b;Xð Þ ¼ C
N

∑
N

i¼1
max −τ 1−yi w

Tϕ xið Þ þ b
� �� �

; 1−yi w
Tϕ xið Þ þ b

� �� �
≥
C
N

∑
N

i¼1
max −τ ∑

M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �

; ∑
M

t¼1
ri;t 1−yi w

Tϕ xtð Þ þ b
� �� �� �

−
C
N

∑
N

i¼1
max yiw

Tδi;−τyiw
Tδi

� �
¼ L3 w; b;Xð Þ− C

N
∑
N

i¼1
max yiw

Tδi;−τyiw
Tδi

� �
ð23Þ

Thus we have− C
N ∑

N

i¼1
max yiw

Tδi;−τyiwTδif g≤ F1 w; bð Þ

‐F3 w; bð Þ≤ C
N ∑

N

i¼1
max −yiwTδi; τyiw

Tδif g. ■

Theorem 3. Let w*
1; b

*
1

� �
is the optimal solution of F1(w, b),

w*
2; b

*
2

� �
is the optimal solution of F2(w, b).

F1 w*
1; b

*
1

� �
−F2 w*

2; b
*
2

� �
≤C

ffiffiffiffiffiffi
Cε

p
. Proof. According to the

duality theorem of pinball-SVM, we can get w*
2

�� ��≤ ffiffiffiffi
C

p
.

From Theorem 2,

F1 w*
1; b*1

� �
−F3 w*

2; b*2
� �

≤
C
N

∑
N

i¼1
max −yiw

*
2
T
δi; τyiw

*
2
T
δi

n o
≤
C
N

∑
N

i¼1
w*
2

�� �� δik k≤ C
N

∑
N

i¼1

ffiffiffiffiffiffi
Cε

p

¼ C
ffiffiffiffiffiffi
Cε

p

ð24Þ

w*
1; b

*
1

� �
is the optimal solution of F1(w, b), thus

F1 w*
1; b

*
1

� �
≤ F1 w*

2; b
*
2

� �
. Using Theorem 1, we can have:

F1 w*
1; b*1

� �
−F2 w*

2; b*2
� �

≤ F1 w*
1; b*1

� �
−F3 w*

2; b*2
� �

≤ F1 w*
2; b*2

� �
−F3 w*

2; b*2
� �

¼ C
ffiffiffiffiffiffi
Cε

p
:

Theorem 4 . F1 w*
2; b

*
2

� �
−F1 w*

1; b
*
1

� �
≤2C

ffiffiffiffiffiffi
Cε

p
. P roo f .

Let w*
3; b

*
3

� �
is the optimal solution of F3(w, b), α3; bα3ð Þ is

the optimal solution of L3 α3; bα3ð Þ, which is the dual form of

F3(w, b), thusF3 w*
3; b

*
3

� � ¼ L3 α3; bα3ð Þ. Similarly, α2; bα2ð Þ
is the optimal solution of L2 α2; bα2ð Þ, which is the dual form

of F2(w, b), thus F2 w*
2; b

*
2

� � ¼ L2 α2; bα2ð Þ. Suppose

h eα;αð Þ ¼ at;batð Þ : at ¼ ∑
N

i¼1
ri;teaiandbat ¼ ∑

N

i¼1
ri;tai

� �
, t h e n

h eα2;α2ð Þ ¼ α2; bα2ð Þ, thus eα2;α2ð Þ is also the optimal so-
lution of L3 α3; bα3ð Þ:

L2 h eα2; α2

	
	

¼ ∑

M

t¼1
αt−

1

2
∑
M

t¼1
∑
M

s¼1
αtαsytysϕ

	
xtϕ xsð Þ

¼ ∑
M

t¼1
∑
N

i¼1
ri;teai− 1

2
∑
M

t¼1
∑
M

s¼1
∑
N

i¼1
∑
N

j¼1
ri;tr j;seaiea jytysϕ

	
xtϕ xsð Þ

ð25Þ

(22)

(23)

477Ann. Telecommun. (2020) 75:471–486

Since ∑
M

t¼1
ri;t ¼ 1; the above formula can be simplified as

follows:

L2 h eα2;α2

	
	

¼ ∑

N

i¼1
eai− 1

2
∑
N

i¼1
∑
N

j¼1
eaieajytysϕ xtð ÞTϕ xsð Þ

¼ L3 α2; bα2

	

ð26Þ

T h u s , L2 h eα2;α2ð Þð Þ ¼ L2 α2; bα2ð Þ ¼ F2 w*
2; b

*
2

� �
=L3 α2; bα2ð Þ. At the same time, F3 w*

3; b
*
3

� � ¼ L3 α3; bα3ð Þ.
We can have L3 α3; bα3ð Þ≥L3 α2; bα2ð Þ, i.e.,

F3 w*
3; b

*
3

� �
≥ F2 w*

2; b
*
2

� � ð27Þ

From Theorem 1, F3 w*
3; b

*
3

� �
≤ F3 w*

2; b
*
2

� �
≤ F2 w*

2; b
*
2

� �
.

Thus,

F3 w*
3; b

*
3

� � ¼ F3 w*
2; b

*
2

� �
: ð28Þ

We can further obtain that

−
C
N

∑
N

i¼1
max yiw

*
1
T
δi;−τyiw

*
1
T
δi

n o
≤ F1 w*

1; b
*
1

� �
‐F3 w*

1; b
*
1

� �
ð29Þ

Table 1 The number of traffic
flows of each class in four
network traffic datasets

Traffic classes Day1 Day2 Day3 SiteB

WWW 274,977 140,875 218,620 212,492

MAIL 28,124 16,487 3978 10,871

BULK 12,151 10,793 5351 555

ATTACK 1751 987 35 4008

CHAT 0 0 66 506

P2P 2085 2762 22,287 17,851

DATABASE 2794 2606 9181 0

MULTIMEDIA 496 4 19 11

VOIP 0 0 93 1043

SERVICES 1808 1111 70 465

INTERACTIVE 86 36 323 317

GAMES 5 0 0 150

GRID 0 1 0 93

Total 324,277 175,578 260,074 248,362

Table 2 Average percentage of
scalable kernel convex hull
vertices in corresponding class
(%) in noise mode 1

σ = 10−2 σ = 10−1 σ = 100 σ = 101 σ = 102

WWW in Day1 ε = 10−2 0.567 0.975 1.934 4.871 7.456

ε = 10−3 0.864 1.232 2.308 6.970 8.338

ε = 10−4 1.296 2.779 4.902 9.532 11.550

WWW in Day2 ε = 10−2 0.571 0.980 1.941 4.799 7.498

ε = 10−3 0.859 1.238 2.311 6.957 8.328

ε = 10−4 1.292 2.768 4.900 9.535 11.547

WWW in Day3 ε = 10−2 0.561 0.980 1.938 4.879 7.452

ε = 10−3 0.870 1.239 2.312 6.980 8.345

ε = 10−4 1.289 2.772 4.905 9.529 11.548

WWW in SiteB ε = 10−2 0.572 0.972 1.929 4.883 7.459

ε = 10−3 0.869 1.240 2.311 6.965 8.332

ε = 10−4 1.301 2.782 4.908 9.539 11.559

MAIL in Day1 ε = 10−2 0.573 0.978 1.941 4.882 7.461

ε = 10−3 0.870 1.245 2.312 6.982 8.341

ε = 10−4 1.206 2.790 4.921 9.547 11.569

P2P in Day3 ε = 10−2 0.574 0.983 1.942 4.883 7.462

ε = 10−3 0.883 1.252 2.324 6.994 8.358

ε = 10−4 1.308 2.788 4.914 9.556 11.574

478 Ann. Telecommun. (2020) 75:471–486

F1 w*
2; b

*
2

� �
‐F3 w*

2; b
*
2

� �
≤
C
N

∑
N

i¼1
max −yiw

*
2
T
δi; τyiw

*
2
T
δi

n o
ð30Þ

Thus,

≤
C
N

∑
N

i¼1
max −yiw

*
2
T
δi; τyiw

*
2
T
δi

n o
þ max −yiw

*
1
T
δi; τyiw

*
1
T
δi

n oh i

≤
C
N

∑
N

i¼1
w*

2

�� �� δik k þ w*
1

�� �� δik k

≤
C
N

∑
N

i¼1
2

ffiffiffiffiffiffi
Cε

p

≤2C
ffiffiffiffiffiffi
Cε

p

The scalable threshold ε is a very small normal number. It
can be seen from Theorems 1–4 that compared with the
pinball-SVM SVM trained with all training points, SKCHO-
SVM proposed in this paper only uses the scalable kernel

convex hull to train the classifier, but the optimal classification
results of two methods are very close.

5 Experiments

In the following, we evaluated the performance of the pro-
posed SKCHO-SVMmethod on four large-scale network traf-
fic datasets and compare with four classification methods. Our
experiments are organized as follows. Datasets and experi-
ment settings are introduced in Sect. 5.1. The experimental
analysis on SKCHO-SVM is presented in Sect. 5.2. In Sect.
5.3, the comparison experiments are displayed in terms of
classification performance and running time.

In order to evaluate the robustness of SKCHO-SVM, two
different noise strategies are designed in the experiments.
First, following [22, 23], we add the noise points of 5% data

Table 3 Average running time of
computing scalable kernel convex
hull vertices in corresponding
class (seconds) in noise mode 1

σ = 10−2 σ = 10−1 σ = 100 σ = 101 σ = 102

WWW in Day1 ε = 10−2 0.78 2.45 5.29 9.50 12.32

ε = 10−3 1.46 5.56 7.11 12.53 14.38

ε = 10−4 2.29 9.73 15.83 17.02 20.55

WWW in Day2 ε = 10−2 0.77 2.46 5.27 9.47 12.33

ε = 10−3 1.50 5.56 7.10 12.50 14.40

ε = 10−4 2.30 9.72 15.80 17.00 20.58

WWW in Day3 ε = 10−2 0.76 2.43 5.28 9.48 12.30

ε = 10−3 1.45 5.54 7.12 12.54 14.39

ε = 10−4 2.28 9.72 15.82 17.00 20.54

WWW in SiteB ε = 10−2 0.80 2.48 5.19 9.55 12.47

ε = 10−3 1.54 5.49 7.02 13.00 14.65

ε = 10−4 2.27 9.69 15.80 17.14 20.75

MAIL in Day1 ε = 10−2 0.06 0.26 0.63 1.01 1.30

ε = 10−3 0.09 0.67 0.89 1.39 1.42

ε = 10−4 0.19 0.88 1.42 1.67 2.12

P2P in Day3 ε = 10−2 0.04 0.18 0.42 0.84 1.08

ε = 10−3 0.08 0.44 0.79 1.20 1.49

ε = 10−4 0.14 0.70 1.25 1.53 1.67

WWW in Day1 WWW in Day2 WWW in Day3 WWW in SiteB MAIL in Day1 P2P in Day3
93

94

95

96

97

98

99

100

Datasets

noisicerp
egarev A

=10e-2 =10e-3 =10e-4
Fig. 1 Average precision of
SKCHO-SVM with different
values of parameter ε in noise
mode 1

479Ann. Telecommun. (2020) 75:471–486

at the boundary and inside of the data. The added noises are
5% Gaussian white noise with the mean value of 0 and the
variance of 5% of the data. The data boundary in the kernel
space is obtained by SVDD method. Second, 2% data points
are randomly selected to add Gaussian white noise with the
mean value 0 and the variance 10% of the data. The intensity
of noise mode 2 is greater than that of noise mode 1, and the
number of noise points in noise mode 1 is greater than that in
noise mode 2.

The datasets for online learning methods consist of three
parts: the initial training dataset, the online learning dataset,
and testing dataset. Following [27], we divide the data into ten
equal and independent subsets, where five subsets for initial
training, two subsets for online learning, and the rest three
subsets for testing. The sets for online learning are equally
divided into five parts, and all methods are updated with one
part at a time.

5.1 Datasets and experiment settings

In our experiment, we use the classic network traffic data
Moore datasets [29], which consists of several separate
datasets each from a different period of the 24-h day. Each
dataset is represented by tens of thousands of traffic flows,
which are derived from header information. Four datasets
named as Day1, Day2, Day3, and SiteB are selected for ex-
perimental comparisons. The traffic flows from Day1, Day2,
and Day3 are selected on three weekdays in 2003, 2004, and
2006 from site A, and the ones form SiteB are selected on a

weekday in 2007. The original data points in these four
datasets are generated 248 features. Twelve features are se-
lected by the correlation-based filtering mechanism following
[30]. Table 1 shows the number of traffic flows of each class
in each dataset.

From Table 1, we can easily see that the class imbalance
exists in real word network traffic. The number of traffic flows
from “WWW” accounts for the largest proportion of all flows.
The number of traffic flows from “CHAT”, “GAMES” and
“GRID” are minimal. In this work, we delete the traffic flows
of “GAMES” and “GRID” because they are very few.
Network traffic classifications are generally evaluated from
real-time, accuracy, and robustness. Real-time reflects the
ability to classify online network traffic quickly. Accuracy
and robustness reflect the ability to correctly classify network
traffic and noise tolerance. In this study, we adopt training
time, precision and recall as the performance indexes.

Since SVM is a classic binary classifier, we use the one-
against-all classification strategy to perform multiclass classi-
fication problems. We train one SVM for each traffic category
to separate the data points of this category from points of the
other categories. The Gaussian kernel is used for all SVM
classifiers. All parameters are selected by a five-fold cross-
validation strategy on the initial training dataset. The regular-
ization parameter and the kernel width σ in Gaussian kernel
are taken in the set {10−3,…, 103}and{10−2,…, 102}, respec-
tively. Scalable parameterεin pinball-SVM is selected in the
set {10−4, 10−3, 10−2}. The parameter τin pinball loss function
is set 0.05. Based on extensive experiments, parameters β, θ,

WWW in Day1 WWW in Day2 WWW in Day3 WWW in SiteB MAIL in Day1 P2P in Day3
93

94

95

96

97

98

99

100

Datasets

llacer
egare vA

=10e-2 =10e-3 =10e-4
Fig. 2 Average recall of
SKCHO-SVM with different
values of parameter ε in noise
mode 1

Table 4 Average running time of
offline learning stage of SKCHO-
SVM and comparison methods
on noise mode 1

Pinball-
SVM

LASVM Online-
FastKDE

OCVM SKCHO-
SVM

Day1 1794.50 254.01 9.98 23.18 13.87

Day2 986.27 111.77 5.84 13.01 7.22

Day3 1380.38 185.39 7.91 17.03 10.35

SiteB 1271.56 163.04 7.20 15.12 9.94

480 Ann. Telecommun. (2020) 75:471–486

Table 5 Average performance for testing data points of all methods on Day1 in noise mode 1

Traffic classes Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

WWW 98.21 98.27 90.53 90.43 86.86 86.99 97.30 97.11 98.34 98.55

MAIL 98.54 98.41 90.24 90.08 87.34 88.02 97.87 97.28 99.03 99.12

BULK 98.12 97.74 89.24 90.23 87.03 87.83 97.21 97.25 98.47 98.70

ATTACK 94.76 84.43 90.03 76.92 89.28 87.81 94.77 94.35 95.02 95.14

P2P 96.49 90.05 91.39 80.02 90.34 91.03 94.31 94.28 95.88 95.64

DATABASE 99.17 92.36 92.21 75.23 90.26 91.18 97.87 97.26 99.21 99.09

MULTIMEDIA 96.74 85.32 91.93 73.21 90.01 90.86 95.54 95.21 96.98 96.84

SERVICES 99.41 88.63 92.05 76.01 91.34 86.47 98.37 98.42 99.43 99.26

12971 25942 38913 51884 64855
0

50

100

150

200

250

300

350

400

The size of training set

e
mit

gnin iar T

Pinball-SVM
LASVM
Online-FastKDE
OCVM
SKCHO-SVM

0.7023 1.4046 2.1069 2.8092 3.5115

x 10
4

0

50

100

150

The size of training set

e
mit

gniniarT

Pinball-SVM
LASVM
Online-FastKDE
OCVM
SKCHO-SVM

(a) (b)

1.0402 2.0804 3.1206 4.1608 5.201

x 10
4

0

50

100

150

200

250

300

350

The size of training set

e
mit

gniniarT

Pinball-SVM
LASVM
Online-FastKDE
OCVM
SKCHO-SVM

0.9934 1.9868 2.9802 3.9736 4.967

x 10
4

0

50

100

150

200

250

300

The size of training set

e
mit

gnin iarT

Pinball-SVM
LASVM
Online-FastKDE
OCVM
SKCHO-SVM

(c) (d)
Fig. 3 Average running time of updating learning stage of SKCHO-SVM and four comparison methods on noise mode 1. aDay1. bDay2. cDay3. d SiteB

481Ann. Telecommun. (2020) 75:471–486

and eα in SKCHO-SVM are set 0.1, 0.5, and 20, respectively.
All parameters in comparison methods are obtained in their
default settings. Our experiments are implemented in
MATLAB using a computer with 2.6 GHz dual-core CPU,
8 GB RAM, and Windows operation system.

5.2 SKCHO-SVM on four network traffic datasets

An effective online learning strategy is to preserve the repre-
sentative points and discard the un-representative ones in the
newly arrived data. Which are representative and howmuch is
enough to be two critical issues for online learning. In this
subsection, the performance on SKCHO-SVM is presented
as follows. We first discuss the percentage of scalable kernel
convex hull in its corresponding class, and then discuss its
running time and classification performance.

5.2.1 Average percentage of scalable kernel convex hull in its
corresponding class and its running time

As discussed in Sect. 3, the number of scalable kernel
convex hull vertices are related to the Gaussian kernel pa-
rameter σ and scalable parameter ε. We discuss the number
of scalable kernel convex hull and running time with dif-
ferent σ and ε on six classification cases: WWW in Day1,

WWW in Day2, WWW in Day3, WWW in SiteB, MAIL
in Day1, and P2P in Day3. The experimental results in the
cases of noise mode 1 are shown in Tables 2 and 3, respec-
tively. We can see that:

1. The number of scalable kernel convex hull vertices in-
creases with the increase of Gauss kernel parameter.
This is because that the value of σ is related to the feature
space. When its value is small, the distance between the
points in the kernel space is small and the distribution is
concentrated, so fewer convex hull vertices are obtained;
conversely, when its value is large, the distance between
the points is large and the distribution is dispersed, so
more convex hull vertices are obtained.

2. When the scalable threshold is small, fewer points are
satisfied Eq. (14), so more convex hull vertices are obtain-
ed, and the running time is longer. On the contrary, when
the scalable threshold is large, fewer convex hull vertices
are obtained and the running time is short.

5.2.2 Classification performance with different ε

In terms of Tables 2 and 3, the average percentage of
scalable kernel convex hull in its corresponding class is

Table 6 Average performance (%) for testing data points of all methods on Day2 in noise mode 1

Traffic classes Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

WWW 99.21 99.17 90.18 90.04 86.86 86.45 99.01 98.85 99.23 99.27

MAIL 99.45 99.36 89.66 89.83 87.34 86.63 99.12 98.76 99.45 99.14

BULK 99.17 99.31 88.31 88.46 87.03 86.77 99.06 98.53 99.61 99.20

ATTACK 93.74 86.93 89.05 80.99 89.28 89.01 93.47 93.1 94.02 94.13

P2P 97.39 85.54 90.42 78.01 90.34 90.06 97.78 97.27 98.37 98.28

DATABASE 99.02 84.36 92.01 79.55 90.24 90.02 98.80 98.39 99.35 99.19

SERVICES 99.06 85.06 92.28 82.28 91.34 90.65 98.55 98.02 99.29 99.16

Table 7 Average performance (%) for testing data points of all methods on Day3 in noise mode 1

Traffic classes Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

WWW 99.31 99.45 90.30 89.29 87.82 87.34 99.07 98.85 99.33 99.46

MAIL 99.22 91.03 90.25 82.14 85.47 85.20 98.89 98.78 99.25 99.03

BULK 99.10 90.01 89.03 81.71 85.61 85.31 98.72 98.56 99.12 98.86

P2P 99.16 98.31 89.99 87.52 86.19 86.86 98.57 98.51 99.20 98.31

DATABASE 99.29 91.05 89.37 82.06 87.24 86.72 99.55 98.94 99.34 99.17

INTERACTVE 100 90.38 92.75 79.05 88.13 87.66 100 98.78 100 99.01

482 Ann. Telecommun. (2020) 75:471–486

sensitive to scalable parameter ε. As we known, the num-
ber of and distribution of training data are directly related
to the performance of SVM. In order to discuss the rela-
tionship of classification and scalable threshold ε, we ex-
perimentally study the average testing performance of
SKCHO-SVM with different ε on six classification tasks:
WWW in Day1, WWW in Day2, WWW in Day3, WWW
in SiteB, MAIL in Day1, and P2P in Day3. Figures 1 and
2 show their precision and recall in noise mode 1, respec-
tively. From these two figures, we can see that classifica-
tion performance is closely related to scalable parameter
ε. The smaller ε tends to obtain more scalable kernel
convex hull vertices. The more vertex of convex hull,
the longer running time of convex hull selection, but it
will get better precision and recall rate. This is because
the more convex hull vectors, the better the representation
of contour distribution of data in the feature space.
Therefore, in practical network traffic classification appli-
cations, we need to balance the running time and the
number of convex hull vertices. In the following experi-
ments, we fix ε = 10−3.

5.3 Comparison experiments

In this section, we compare SKCHO-SVMwith pinball-SVM
(as baseline classifiers), and three online SVMs (including
online-FastKDE [31], LASVM [32], and OCVM [27]) in
terms of training time of offline learning stage, updating time
of updating learning stage, and classification performance for
testing stage. Pinball-SVM learns the classifier model in batch
mode and updates the classifiers with old data points and
newly arrived data points. Online-FastKDE is the online
learning version of FastKDE method that updates the classifi-
er based on the simple selection strategy. Online-FastKDE
uses the simple point selection strategy to select the number
of 1% training sets.

Average running time of offline learning stage of all com-
parison methods on noise mode 1 is presented in Table 4. We
can see that the running time of offline learning stage of
SKCHO-SVM is obviously less than other methods, except
for Online-FastKDE. Since Online-FastKDE trains the classi-
fier using the simple selection strategy, and only selects a
small amount of data points for training. Pinball-SVM has

Table 8 Average performance (%) for testing data points of all methods on SiteB in noise mode 1

Traffic
classes

Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

WWW 98.21 98.12 90.44 88.44 89.65 87.69 98.12 98.97 98.76 99.21

MAIL 98.04 97.35 91.76 88.87 90.74 84.4 97.8 97.93 98.62 98.43

BULK 96.58 82.07 89.96 89.44 87.43 83.66 96.56 97.05 97.39 97.64

ATTACK 97.36 92.64 89.12 90.06 87.32 88.23 97.43 97.54 98.17 98.05

CHAT 95.40 80.35 88.05 88.05 88.7 85.06 94.99 88.43 95.43 90.65

P2P 98.12 98.02 90.3 90.42 88.32 82.16 97.04 97.02 98.18 98.90

VOIP 89.11 90.43 88.63 89.07 85.98 89.89 88.64 96.28 89.32 97.07

Table 9 Average performance (%) for testing data points of all methods on Day1 in noise mode 2

Traffic classes Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

WWW 97.43 97.91 90.41 89.81 86.72 86.82 97.06 96.77 98.10 98.51

MAIL 98.02 98.35 90.19 89.93 87.28 87.84 97.64 96.58 98.82 98.95

BULK 97.63 97.34 88.81 89.51 86.95 87.24 97.00 96.70 98.42 98.66

ATTACK 94.13 83.89 89.84 76.26 88.87 87.67 94.51 93.83 94.86 94.89

P2P 95.79 89.34 90.95 79.31 90.07 90.37 94.28 94.20 95.60 95.51

DATABASE 98.91 92.10 91.55 74.58 90.18 90.85 97.56 96.88 98.92 98.85

MULTIMEDIA 96.29 84.83 91.84 73.17 89.61 90.35 95.48 94.85 96.92 96.63

SERVICES 98.98 88.12 91.78 75.37 91.14 85.99 98.08 97.74 99.36 98.97

483Ann. Telecommun. (2020) 75:471–486

the longest running time of offline learning stage for all
datasets. Since Pinball-SVM trains the classifier using the
whole training set; thus, its number of training set is the largest
among all comparison methods. The initial training of
LASVM is based on SMO strategy called REPROCESS. Its
training time of offline learning stage is larger than SKCHO-
SVM. OCVM selects the convex hull as training data to train
the classifier. The computation of OCVM is relatively com-
plicated compared with SKCHO-SVM. Thus, the training
time of OCVM for offline learning stage is also larger than
that of SKCHO-SVM.

Average running time of updating learning stage of all
comparison methods on noise mode 1 is presented in Fig. 3.
We can see from Fig. 3 that the running time of SKCHO-SVM
for offline learning stage is much shorter than those of pinball-
SVM, LASVM, and OCVM. Meanwhile, the training time of
SKCHO-SVM on four network traffic datasets is comparable
with that of online-FastKDE. The reason is that SKCHO-
SVM removes most of the redundant data points in the offline
learning stage; thus, the classifier built on the remaining data
points is much faster than pinball-SVM. Using the definition
of scalable kernel convex hull in Eq. (12), the running time of
extracting convex hull vertices is faster than LASVM and
OCVM. In addition, we can see that with the increase of
network traffic flows, the entire training time of SKCHO-

SVM does not increase dramatically. Pinball-SVM uses batch
mode to update the classifier, and its running time of online
learning stage is much larger than other methods, with the
increase of the newly arrived points.

The average classification performance (in terms of pre-
cision and recall) of all comparison methods on four net-
work traffic datasets in noise mode 1 are shown in
Tables 5, 6, 7, and 8. We can see that SKCHO-SVM ob-
tains the best performance in terms of precision and recall.
The reason is that (1) SKCHO-SVM deletes the noise
points around the boundary of the data at the first period
of offline learning stage, then SKCHO-SVM can obtain
relatively “clean” data. Meanwhile, SKCHO-SVM is in-
sensitive to noise with the help of pinball loss function.
(2) SKCHO-SVM computes the scalable convex hull ver-
tices in the kernel space based on Eq. (12). The obtained
convex hull vertices are used as training data points both in
the offline learning stage and online learning stage. The
training data points of SKCHO-SVM are dynamically ad-
justed, so that the structure information of data can be
retained well. (3) SKCHO-SVM efficiently relieves the
imbalance problem in network traffic classification tasks.
SKCHO-SVM respectively selects convex hull and obtains
a small amount of points in different classes. Thus, the
sizes of training data are roughly equal in different classes.

Table 10 Average performance (%) for testing data points of all methods on Day2 in noise mode 2

Traffic classes Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

WWW 98.86 98.45 89.72 89.51 86.83 86.21 98.33 98.25 98.93 99.09

MAIL 98.67 98.70 89.59 89.37 86.91 86.17 98.86 98.55 99.29 99.14

BULK 98.98 98.97 87.95 87.71 86.70 86.10 98.87 97.78 99.35 99.07

ATTACK 93.52 86.58 88.62 80.58 88.85 88.51 92.69 93.05 93.99 93.91

P2P 97.39 85.28 89.84 77.71 89.60 89.59 97.63 97.25 98.30 98.18

DATABASE 98.36 83.90 91.29 79.06 89.62 89.22 98.44 97.62 99.08 98.90

SERVICES 98.77 84.93 91.77 81.95 90.54 90.34 98.35 97.83 99.02 99.10

Table 11 Average performance (%) for testing data points of all methods on Day3 in noise mode 2

Traffic classes Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

WWW 98.83 99.24 90.21 88.73 87.63 87.10 99.02 98.18 99.11 99.31

MAIL 98.50 90.79 89.76 81.65 85.02 84.86 98.46 97.98 99.03 98.79

BULK 98.50 89.48 88.92 80.95 85.42 85.08 97.96 98.18 98.86 98.83

P2P 98.49 98.20 89.95 87.50 85.41 86.66 98.28 98.04 99.06 98.14

DATABASE 99.27 90.59 88.62 81.65 86.95 86.33 99.07 98.33 99.29 99.13

INTERACTIVE 99.23 89.84 92.47 78.71 87.63 87.40 99.64 98.13 99.81 98.80

484 Ann. Telecommun. (2020) 75:471–486

In our experiments, we use the whole data points as train-
ing data one class when its size is less than 500.

The simple selection strategy in online-FastKDE cannot
distinguish the noise from the normal points, so the noise will
become the training points in offline learning stage and online
learning stage. LASVM use REPROCESS strategy to remove
nonsupport vectors during the update process. The main idea
of REPROCESS depends on Karush-Kuhn-Tucker (KKT)
condition of SVMs, so that LASVM is sensitive to noises
and outliers. In addition, LASVM may discard some support
vectors of classifier in online learning stage; thus, some im-
portant discriminative information may be discarded. For
WWW, MAIL, and BULK classes, pinball-SVM achieves
satisfactory classification performance, since the data points
in these classes are sufficient. However, for ATTACK, P2P,
DATABASE, MULTIMEDIA, and SERVICES classes,
pinball-SVM achieves high precision and low recall since
class imbalance leads to class hyperplane skew.

In view of noise distribution, noise points can be divided
into two categories: one is distributed around the boundary of
data points, and the other is distributed within the data area. In
the following, we evaluate the second category of noise dis-
tribution. The average performance (in terms of precision and
recall) of all comparison methods on four network traffic
datasets in noise mode 2 are shown in Tables 9, 10, 11, and
12. The intensity of noise mode 2 is greater than that of noise
mode 1; we can see that the classification performance of
online-FastKDE and LASVM decrease with increasing noise
intensity, both of which are sensitive to noise. The proposed
SKCHO-SVM and pinball-SVM achieve the best precision
and recall. The performance gap between them is lower than
0.1%. Under high intensity of noise, OCVM shows lower
precision and recall than SKCHO-SVM and pinball-SVM. It
is verified that pinball loss function is a robust loss function
and insensitive to feature noise. Since OCVM can only delete
noise points around the boundary of the data, and its precision
and recall are lower than SKCHO-SVMwhen the noise points
are distributed within the data area. The experimental results

also show that using the scalable kernel convex hull, SKCHO-
SVM is faster and more efficient than four comparison
methods. Therefore, SKCHO-SVM is an effective tool for
online network traffic classification tasks.

6 Conclusion

In this study, to solve large scale noise network traffic classi-
fication, we propose a novel online learning method called
SKCHO-SVM, which takes advantages of both scalable ker-
nel convex hull and pinball loss function. In the offline learn-
ing stage and online updating stage, SKCHO-SVM distin-
guishes noise points and uses scalable kernel convex hull to
dynamically select a small amount of data points as training
data. The selected scalable convex hull vertices can represent
the profile of network traffic data in the kernel space. Thus,
SKCHO-SVM efficiently builds an online network traffic
classifier, which achieves the high classification performance
and low computation complexity. However, we only study the
feature noise problem in this paper. How to apply SKCHO-
SVM to network traffic classification tasks with label noise is
an interesting work in near future. In addition, the extraction
attribution of network traffic flow is only twelve dimensions.
We will further experimentally study the efficiency of
SKCHO-SVM for high dimensional network traffic classifi-
cation tasks.

Acknowledgments This work was supported in part by the National
Natural Science Foundation of China under Grants 61976028 and
61806026 and by the Natural Science Foundation of Jiangsu Province
under Grant BK 20180956.

References

1. China Internet Network Information Center (2019) Statistical
Report on Internet Development in China. http://cnnic.com.cn/
IDR/ReportDownloads/.[Online; Accessed 2-28-2019]

Table 12 Average performance (%) for testing data points of all methods on SiteB in noise mode 2

Traffic
classes

Pinball-SVM LASVM Online-FastKDE OCVM SKCHO-SVM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

WWW 97.98 97.96 89.99 88.04 89.00 87.06 97.38 98.77 98.62 98.96

MAIL 97.54 96.84 91.13 88.85 90.67 84.01 97.45 97.78 98.55 98.42

BULK 96.49 81.48 89.90 88.66 87.43 83.37 95.90 97.04 97.30 97.51

ATTACK 97.20 92.17 88.85 89.60 87.00 87.55 96.81 97.27 97.93 97.93

CHAT 95.11 80.22 87.53 87.42 88.44 84.62 94.97 87.70 95.23 90.65

P2P 97.63 98.00 89.54 90.28 87.76 81.52 96.77 96.44 98.17 98.88

VOIP 89.24 90.31 88.44 88.86 85.23 89.56 88.43 95.50 89.12 96.78

485Ann. Telecommun. (2020) 75:471–486

http://cnnic.com.cn/IDR/ReportDownloads/
http://cnnic.com.cn/IDR/ReportDownloads/

2. Nguyen T, Armitage G (2009) A survey of techniques for internet
traffic classification using machine learning. IEEE Commun Surv
Tutorials 10(4):56–76

3. Moore AW, Papagiannaki K (2005) Toward the accurate identifi-
cation of network applications. In: Dovrolis C (ed) Passive and
active network measurement. PAM 2005. Lecture Notes in
Computer Science, vol 3431. Springer, Berlin, Heidelberg, pp
41–54. https://doi.org/10.1007/978-3-540-31966-5_4

4. Dainotti A, Pescape A, Claffy KC (2012) Issues and future direc-
tions in traffic classification. IEEE Netw 26(1):35–40

5. Bujlow T, Carela-Español V, Barlet-Ros P (2015) Independent
comparison of popular DPI tools for traffic classification. Comput
Netw 76(1):75–89

6. Surati S, Jinwala DC, Garg S (2017) A survey of simulators for P2P
overlay networks with a case study of the P2P tree overlay using an
event-driven simulator. Eng Sci Technol 20(2):705–720

7. Rezaei S, Liu X (2019) Deep learning for encrypted traffic classi-
fication: an overview. IEEE Commun Mag 57(5):76–81

8. Sun G, Chen T, Su Y, Li C (2018) Internet traffic classification
based on incremental support vector machines. Mob Netw Applic
23(4):789–796

9. Gu XQ, Chung FL, Wang ST (2019) Extreme vector machine for
fast training on large data. Int J Mach Learn Cybern 11:33–53.
https://doi.org/10.1007/s13042-019-00936-3

10. Cao J, Fang Z, Qu G, Sun H, Zhang D (2017) An accurate traffic
classification model based on support vector machines. Int J Netw
Manag 27(1):1–15

11. Zhang J, Chen X, Xiang Y, Zhou W, Wu J (2015) Robust network
traffic classification. IEEE/ACM Trans Networking 23(4):1257–
1270

12. Divakaran DM, Su L, Liau YS, Thing VL (2015) SLIC: self-
learning intelligent classifier for network traffic. Comput Netw
91(11):283–297

13. Ni TG, Gu XQ, Wang J, Zheng YH, Wang HY (2018) Scalable
transfer support vector machine with group probabilities.
Neurocomputing 273(1):570–582

14. Gu XQ, Chung FL, Wang ST (2018) Fast convex-hull vector ma-
chine for training on large-scale ncRNA data classification tasks.
Knowl-Based Syst 151(6):149–164

15. Finamore A, Mellia M, Meo M, Rossi D (2010) Kiss: stochastic
packet inspection classifier for udp traffic. IEEE/ACM Trans Netw
18(5):1505–1515

16. GuC, Zhang S, XueX (2011) Internet traffic classification based on
fuzzy kernel K-means clustering. Int J Advancements in Comput
Technol 3(3):199–209

17. Ertekin S, Bottou L, Giles CL (2011) Nonconvex online support
vector machines. IEEE Trans Pattern Anal Mach Intell 33(2):368–
381

18. Wang T, Chen J, Zhou Y, Snoussi H (2013) Online least squares
one-class support vector machines-based abnormal visual event de-
tection. Sensors 13(12):17130–17155

19. Wang D, Qiao H, Zhang B, Wang M (2013) Online support vector
machine based on convex hull vertices selection. IEEE Trans
Neural Netw Learn Syst 24(4):593–609

20. Wang J, Zhao P, Hoi SCH (2014) Cost-sensitive online classifica-
tion. IEEE Trans Knowl Data Eng 26(10):2425–2438

21. Labovitz C, Johnson S, Oberheide J, Jahanian F, McPherson D
(2010) Internet inter-domain traffic. In: Proceedings of the ACM
SIGCOMM 2010 conference on applications, technologies, archi-
tectures, and protocols for computer communications. New Delhi,
India, pp 75–86. https://doi.org/10.1145/1851182.1851194

22. Huang XL, Shi L, Suykens JAK (2014) Asymmetric least squares
support vector machine classifiers. Comput Stat Data Anal 70(2):
395–405

23. Huang XL, Shi L, Pelckmansb K, Suykens JAK (2014)
Asymmetric ν-tube support vector regression. Comput Stat Data
Anal 77(9):371–382

24. Huang XL, Shi L, Suykens JAK (2014) Support vector machine
classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell
36(5):984–997

25. Nandan M, Khargonekar PP, Talathi SS (2014) Fast SVM training
using approximate extreme points. J Mach Learn Res 15(1):59–98

26. Almasi ON, Rouhani M (2016) Fast and de-noise support vector
machine training method based on fuzzy clustering method for
large real world datasets. Turk J Electr Eng Comput Sci 24(1):
219–233

27. Ding S, Nie X, Qiao H, Zhang B (2013) A fast algorithm of convex
hull vertices selection for online classification. IEEE Trans Neural
Netw Learn Syst 29(4):792–806

28. David MJT (2004) Support vector data description. J Mach Learn
Res 54(1):45–66

29. Network traffic data Moore datasets, https://www.cl.cam.ac.uk/
research/srg/netos/projects/brasil/data/index.html [Online;
Accessed 12-22-2018]

30. Li W, Canini M, Moore AW, Bolla R (2009) Efficient application
identification and the temporal and spatial stability of classification
schema. Comput Netw 53(6):790–809

31. Wang ST, Wang J, Chung F (2014) Kernel density estimation,
kernel methods, and fast learning in large data sets. IEEE Trans
Cybern 44(1):1–20

32. Bordes A, Ertekin S, Weston J, Bottou L (2005) Fast kernel classi-
fiers with online and active learning. JMach Learn Res 6(10):1579–
1619

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

486 Ann. Telecommun. (2020) 75:471–486

https://doi.org/10.1007/978-3-540-31966-5_4
https://doi.org/10.1007/s13042-019-00936-3
https://doi.org/10.1145/1851182.1851194
http://cnnic.com.cn/IDR/ReportDownloads/
http://cnnic.com.cn/IDR/ReportDownloads/

	Scalable kernel convex hull online support vector machine for intelligent network traffic classification
	Abstract
	Introduction
	Related works
	Scalable kernel convex hull online SVM
	Scalable kernel convex Hull
	Construction of SKCHO-SVM method
	Compute the scalable kernel convex Hull
	Train pinball-SVM classifier
	Update classifier online
	Algorithm description and computation complexity analysis

	SKCHO-SVM performance analysis
	Experiments
	Datasets and experiment settings
	SKCHO-SVM on four network traffic datasets
	Average percentage of scalable kernel convex hull in its corresponding class and its running time
	Classification performance with different ε

	Comparison experiments

	Conclusion
	References

