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Abstract
Deeper neural networks have achieved great results in the field of computer vision and have been successfully applied to tasks
such as traffic sign recognition. However, as traffic sign recognition systems are often deployed in resource-constrained envi-
ronments, it is critical for the network design to be slim and accurate in these instances. Accordingly, in this paper, we propose
two novel lightweight networks that can obtain higher recognition precision while preserving less trainable parameters in the
models. Knowledge distillation transfers the knowledge in a trained model, called the teacher network, to a smaller model, called
the student network. Moreover, to improve the accuracy of traffic sign recognition, we also implement a new module in our
teacher network that combines two streams of feature channels with dense connectivity. To enable easy deployment on mobile
devices, our student network is a simple end-to-end architecture containing five convolutional layers and a fully connected layer.
Furthermore, by referring to the values of batch normalization (BN) scaling factors towards zero to identify insignificant
channels, we prune redundant channels from the student network, yielding a compact model with accuracy comparable to that
of more complex models. Our teacher network exhibited an accuracy rate of 93.16% when trained and tested on the CIFAR-10
general dataset. Using the knowledge of our teacher network, we train the student network on the GTSRB and BTSC traffic sign
datasets. Thus, our student model uses only 0.8 million parameters while still achieving accuracy of 99.61% and 99.13%
respectively on both datasets. All experimental results show that our lightweight networks can be useful when deploying deep
convolutional neural networks (CNNs) on mobile embedded devices.
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1 Introduction

Traffic signs use characters, symbols, and colors to convey man-
datory, prohibitory, and danger information. The recognition of
traffic sign is an indispensable component of autonomous vehi-
cles and advanced driver assistance systems (ADAS). Traffic
sign recognition has high requirements as concern real-time pro-
cessing, accuracy, and robustness; moreover, energy-efficient
processing is also important in a mobile computing environment

[1]. Traffic sign images or videos in natural scenes are collected
by the camera installed on the vehicle, then inputted into the
vehicle computer. The semantics of signs can be understood
through types of processing including detection, location, track-
ing, classification, and so on. However, no real-time, accurate,
and adaptable system has been introduced so far due to the exis-
tence of several challenges, such as the complex and diverse
backgrounds in real scenes, different national traffic sign stan-
dards, illumination variations, diversified shooting angles, and
real-time requirements.

Deep learning [2], a hot topic in machine learning methods
of late, has been successfully applied to tasks including hand-
written numeral recognition [3], classification [4, 5], detection
[6], tracking [7–9], natural language processing [10], and in-
telligent question and answer systems [11] and has achieved
accomplishments that go beyond the reach of traditional
methods. The success of deep learning benefits not only from
larger and deeper models with more parameters but also from
large-scale annotated or unlabeled data provided by academia
and industry. More specifically, the large model structure en-
hances the nonlinearity of deep learning, while the huge
amount of training data enhances its generalizability.
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Traditional traffic sign recognition methods typically
use extreme learning machine (ELM) [12] or support vec-
tor machine (SVM) [13, 14] methods for feature classifi-
cation, and use handcrafted features which may result in
the loss of significant information. The recognition rate of
traditional methods will decline when traffic signs are oc-
cluded or shaded. Recently, convolutional neural networks
have been used for traffic sign recognition. MSCNN [15]
extracts the features from different convolutional layers for
traffic sign classification and achieves a recognition rate
superior to that of traditional methods. MCDNN [16] pro-
poses a multi-column network to classify traffic signs; the
recognition ability of this network was improved through
the application of expert voting. Moreover, after extracting
features from CNNs, CNN-ELM [17] uses ELM as a clas-
sifier, combining the advantages of deep learning and tra-
ditional machine learning. CNN-HLSGD [18] trains a
convolutional neural network with hinge loss, achieving a
recognition rate on the GTSRB dataset better than that of
most methods. Furthermore, in [19], the authors propose a
novel approach called DP-KELM, which classifies the
deep perceptual features using a kernel-based extreme
learning machine (KELM) in the perceptual LAB color
space, a method that can reduce the model’s computational
cost and yield an improved recognition rate.

Although deep neural networks perform well in traffic
sign recognition experiments, they are still restricted by
time and space in practical applications. As larger and
deeper networks require more resources, graphics process-
ing units (GPUs) [20] are commonly used to help speed up
computation. The strong representation ability of
convolutional neural networks arises as a result of their
millions of trainable parameters; for example, AlexNet
[21] has 60 M parameters, while VGG16 [22] has 138 M
parameters. However, the reduced computing power and
storage space of on-board equipment or wearable devices
cannot support the operational resources required by these
complex networks. As reported in [23], the parameters in
CNNs exhibit a great deal of redundancy. As a result, many
methods have been proposed to compress large CNNs.
Deep network compression primarily encompasses five
kind of methods: low-rank, pruning, quantization, knowl-
edge distillation, and compact network design. Low-rank
decomposition methods [24] such as singular value decom-
position (SVD) or tensor train decomposition use a low-
rank matrix to approximate a weight matrix in CNNs.
Channel pruning methods refer to pruning those unimpor-
tant channels [25], making the selection of the correct
pruning criterion a highly essential aspect of these
methods. Quantization reduces model size by means of
low-bit representation; for example, by quantizing weights
into ternary values [26]. It is significant to use deep neural
networks to identify traffic signs in real time with limited

equipment resources. Therefore, in the present paper, we
design two slim networks with fewer trainable parameters
that do not require special software or hardware
accelerators.

The main contributions of this paper can be summarized as
follows:

1. To alleviate the abovementioned problems, a new training
strategy and two lightweight convolutional neural net-
works are proposed. These two networks work as a teach-
er model and a student model respectively. We design a
new module in our teacher network that combines two
streams of feature channels with dense connectivity to
make the network deeper. Our student network is a sim-
ple, end-to-end architecture with five convolutional layers
and a fully connected layer.

2. The teacher model can assist the training of the student
model by means of knowledge distillation, while the stu-
dent model can obtain a better traffic sign recognition rate
than the teacher model. Finally, according to the values of
BN scaling factors towards zero to identify insignificant
channels, our student model is pruned to reduce the num-
ber of parameters and the computational costs.

3. Compared with some existing traffic sign classification
algorithms, the proposed lightweight network has fewer
parameters while still obtaining the same high recognition
rate; moreover, the input data does not require extra pre-
processing operations, thus enabling the implementation
of a simple and efficient end-to-end network.

Our proposed lightweight networks can achieve an accura-
cy loss of between 0.33 and 0.63% while parameters can be
reduced to one tenth or even 1% of those employed by the
compared algorithms. The rest of this paper is organized as
follows: In Sect. 2, our proposedmethod is described in detail.
The performance on two traffic sign datasets is presented in
Sect. 3. Finally, the conclusion is provided in Sect. 4.

2 Proposed methodology

In this paper, our work is divided into three steps. Firstly,
we design a teacher network and a student network. After
the teacher model converges on the traffic sign classifica-
tion training set, knowledge distillation is utilized in order
to improve the precision of the student model. Finally, the
student model’s channels are pruned, reducing the overall
computational cost.

2.1 Knowledge distillation

Knowledge distillation [27] can help to train the shallower
student network through the softened output of the teacher
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network on the target datasets. The training sets are as
follows: D = {X = {x1, x2..., xN}, Y = {y1, y2..., yN}}, where
x and y represent an input and a target output respectively.
The output of the teacher model is t = teacher(x); likewise,
the output of the student model is s = student(x). We train
the student model to minimize the following loss function:

LKD ¼ 1−αð ÞLCE y;σ sð Þð Þ þ 2T2αLCE σ
t
T

� �
;σ

s
T

� �� �
ð1Þ

where T and α are hyperparameters, α controls the ratio of
the two terms, T is a temperature parameter, and σ() is the
softmax function. LCE denotes a standard cross-entropy
loss that penalizes the student network when it classifies
the target incorrectly. If there is only a tiny difference be-
tween the outputs of the teacher model and the student
model, the second term is minimized.

A student network trained on softened outputs is signif-
icantly better than one that learns directly from the original
training data. This is because what the model learns direct-
ly from the traffic sign training set is one-hot class label.
For example, we train a network to classify a specific ob-
ject as either a car, dog, or cat, [0.05, 0.9, 0.6]; this is a
softened output, which is the most likely prediction of an
image. Since dogs are more similar to cats than cars, the
difference between the second and the third probabilities is
smaller than the difference between the first and the sec-
ond. In cases where the initial prediction information in
[0.05, 0.9, 0.6] makes only a minimal contribution to the
weights update, increasing the temperature parameter T can
help transfer the knowledge to the student model.

The knowledge distillation procedure is illustrated in
Fig. 1. The teacher network and the student network use
the same training set. The teacher network is first trained to
converge on the traffic sign training set, the parameters of

which will not be updated during the training of the student
network, as they only play the role of guiding the updating
of the student network parameters. We thus need to find the
appropriate hyperparameters T and α. When the accuracy
of the teacher network on the target dataset is low, it is hard
to guide the student model to update parameters; accord-
ingly, it is easy for the student network to fall into the local
optimum value. Aimed at addressing this problem, our
proposed teacher network achieves an accuracy of
99.23% and 98.89% on the GTSRB and BTSC datasets
respectively, meaning that it can be an effective means of
helping to improve the traffic sign recognition rate of the
student model.

2.2 Teacher network

Our proposed teacher network is based on an important ob-
servation result: namely, that low-level convolutional features
can better represent the target’s texture information, while
high-level convolutional features containmore semantic infor-
mation. We connect each layer by means of dense connectiv-
ity [28], while the feature maps are input to all subsequent
layers. A high utilization rate of feature maps is achieved;
moreover, the low-level and high-level feature maps are com-
bined effectively, enabling improved learning of the features
(Fig. 2).

We propose a novel module, as shown in Fig. 3. Our
teacher network is constructed as follows: (a) two 1 × 1
convolutional filters are used to reduce the number of
channels of the input feature maps. Compared with the
3 × 3 kernels, the parameters are reduced one ninth when
1 × 1 kernels are used. The nonlinearity of the network can
be greatly increased while the size of the feature maps
remains unchanged, which makes the network deeper. (b)
The 1 × 1 kernels and the 3 × 3 kernels execute convolution
operations in parallel and splice all output results, as shown
in Fig. 4. Different convolution operations can obtain dif-
ferent information being obtained about the input image,
while the feature maps following parallel operation exhibit
a stronger feature representation ability. (c) Six cells are
used to establish the direct connection between different
layers, making full use of the feature maps of each layer,
as well as integrating the characteristics of each channel in
order to alleviate the gradient disappearance problem. At
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Fig. 1 The knowledge distillation procedure
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Fig. 2 The architecture of our
teacher network
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the same time, the batch normalization [29] layer and
ReLU [30] function are used in each layer to further pre-
vent gradient disappearance and gradient explosion, in-
creasing the degree of network nonlinearity.

The teacher network proposed in this paper can integrate
the features between different layers, obtain more detail infor-
mation (such as the texture features and the edge features), and
increase the network’s ability to recognize traffic signs. By
using our novel module, we can stack multiple convolutional
layers in order to obtain a deeper network structure. As the
number of network layers increases, the representation ability
of the extracted features grows stronger; finally, only a fully
connected layer is used to transform the feature vector into a
probability vector for traffic sign classification.

2.3 Student network

CNNs can automatically extract features in an unsuper-
vised manner. As shown in Table 1, the student network
is an end-to-end structure consisting of five convolutional
layers and a fully connected layer. The input layer loads
the input data, and the input images do not require the use
of data augmentation. RGB three-color channels are used
to retain the original information of traffic signs.
Convolutional layer is used for learning features, and each
type of convolutional filter corresponds to the extraction

of a specific feature in the image. We add a BN layer and
ReLU layer following each convolutional layer in order to
increase the network nonlinearity. The pooling layer can
prevent overfitting and reduce the dimensionality of fea-
ture maps, while average-pooling can better preserve the
information of the input feature maps, such as the back-
ground information. Moreover, max-pooling can obtain
textural features, inhibiting the attenuation of the reverse
gradient. The fully connected layer can also work as a
classifier to transfer the feature vectors into target class
probability.

The Adam [31] algorithm is used to update the weights
and bias during the training of the student network. Let mt

be the exponential moving averages of the gradient, which
estimate the first moment of the gradient. vt denotes the
squared gradient, which estimates the second raw moment
of the gradient. The exponential decay rates of these mov-
ing averages are controlled by the hyperparameters β1,
β2 ∈ [0, 1). Finally, gt indicates the gradient at timestep t:

mt ¼ β1mt−1 þ 1−β1ð Þgt ð2Þ
vt ¼ β2vt−1 þ 1−β2ð Þg2t ð3Þ
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Fig. 3 One Stage module
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Fig. 4 One Cell block

Table 1 Description of our student network

Type Kernel size Stride Output size

Input 32 × 32

Convolutional 3 × 3 1 32v32

Convolutional 3 × 3 1 32 × 32

Max-pooling 2 × 2 2 16 × 16

Convolutional 3 × 3 1 16 × 16

Convolutional 3 × 3 1 16 × 16

Max-pooling 2 × 2 2 8 × 8

Convolutional 3 × 3 1 8 × 8

Average-pooling 2 × 2 2 4 × 4

Fully connected 4096

Output 43/62
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The bias-corrected first moment estimate and the bias-
corrected second raw moment estimate are computed as fol-
lows:

m̂t ¼ mt

1−βt
1

ð4Þ

v̂t ¼ vt
1−βt

2

ð5Þ

Finally, the updated formula of the parameter is as outlined
below; here, η is the learning rate, while θ0 denotes the initial
parameter vector. Moreover, ϵ is set to 10−8 to avoid division
by zero.

θtþ1 ¼ θt−η
m̂tffiffiffiffi
v̂t

p
þ ϵ

ð6Þ

2.4 Network pruning

There are some common methods used to convert networks
into more compact networks with fewer trainable parameters.
Weight quantization [26] uses low-bit weights and activations
for model compression; however, these methods require a
suitable data structure to be utilized in order to store quantized
parameters. Low-rank [32] can decompose a convolutional
layer into several efficient ones, although it is not efficient
for the current network with a 1 × 1 convolutional layer.
Network pruning is still a hot topic in the context of small
accuracy drops and efficient structured pruning.

Network pruning mainly reduces the computation re-
quired by the model by removing redundant parameters
in the network. The most time-consuming aspect of a
convolutional neural network is the convolutional layer;
moreover, the fully connected layer contains the network’s
main parameters. Minimizing the difference in accuracy
between the full and pruned models depends on the crite-
rion used to identify the “least important” parameters.
Reasonable criteria of this kind include minimum weight,
activation value, and mutual information. The method
outlined in [33] prunes redundant connections by learning
only the important connections. In [34], moreover, the
model is pruned on the fully connected layer.

Network slimming [35] employs γ parameters in batch
normalization layers as the scaling factors for channel prun-
ing. The smaller the value, the lower the importance of the
channels and the easier they are to prune. B = {x1, x2..., xm}
denotes the current mini-batch:

x̂t ¼ xt−μBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
B þ ϵ

p ð7Þ

Here, μB and σB are the mean and standard deviation values,
Zout is the output of a batch normalization layer, and γ and β are
trainable affine transformation parameters, such that

Zout ¼ γx̂t þ β ð8Þ

This loss function imposes the L1-norm on the scaling
factors of each channel in order to make the values of

Fig. 5 Sample images from the
GTSRB dataset
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unimportant channels smaller. Finally, those channels with
small scaling factors are pruned, after which the pruned net-
work is retrained to resume the recognition rate accuracy on a
target dataset. Minimizing the train objective loss:

L ¼ ∑
x;yð Þ

l f x;Wð Þ; yð Þ þ λ ∑
y∈Γ

g γð Þ ð9Þ

Fig. 6 Sample images from the
BTSC dataset

Table 2 Performance comparison of our teacher model and the general
model on the CIFAR-10 dataset

Model Parameters
(millions)

Convolutional
layers

Accuracy

AlexNet [21] 60 5 74.74%

VGG16 [22] 138.3 13 92.64%

GoogleNet [39] 6.7 22 92.57%

ResNet110 [40] 1.7 109 93.57%

Our teacher
model

7.9 32 93.16%

Table 3 Different
hyperparameters for
knowledge distillation

α T Accuracy

0.85 1 99.34%

0.85 10 99.11%

0.85 20 99.36%

0.85 30 99.44%

0.90 1 99.48%

0.90 10 99.24%

0.90 20 99.50%

0.90 30 99.35%

0.95 1 98.96%

0.95 10 98.87%

0.95 20 98.97%

0.95 30 99.39%

0.99 1 98.42%

0.99 10 98.33%

0.99 20 98.76%

0.99 30 98.71%
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Here, (x, y) represents the input and target output respec-
tively. Let W denote the trainable parameters, while g() de-
picts an L1 regularization on channel scaling factors; the two
terms are balanced by λ.

3 Experimental results

3.1 Dataset and hyperparameters

3.1.1 Dataset

The German Traffic Sign Recognition Benchmark (GTSRB)
[36] dataset is a multi-class, single-image dataset that poses a
challenge in traffic sign classification tasks. The dataset con-
sists of 51,839 samples, ranging in size from 15 × 15 to 250 ×
250, and not all of them are square. This dataset has 43 cate-
gories, each of which comprises 100~1000 images including
prohibitory signs, danger signs, and mandatory signs. The
training set contains 39,209 images; the remaining 12,630
images are selected as the testing set. Due to perspective
change, shade, color degradation, lighting conditions, and so

Fig. 7 CM of student network on GTSRB dataset

Table 4 Performance comparison on GTSRB Dataset

Method [Referenced] Parameters Accuracy

Single CNN with 3 STNs [41] 1.4 × 107 99.71%

CNN-HLSGD-ensemble [18] 2.3 × 107 99.65%

Our student network 7.3 × 105 99.61%

DP-KELM [19] 1.4 × 106 99.54%

MCDNN [16] ~ 9 × 107 99.46%

Our teacher network 7.9 × 106 99.23%

CNN-HLSGD-single [18] 1.2 × 106 99.16%

375Ann. Telecommun. (2020) 75:369–379



on, it can be difficult even for humans to recognize many of
these signs (Fig. 5).

Moreover, there are 4533 training images and 2562
testing images in the Belgian Traffic Sign Classification
dataset (BTSC) [37], which is divided into 62 traffic sign
types. The images in the BTSC dataset are often distorted
due to weather change, occlusions, etc. Compared with
the GTSRB dataset, the BTSC dataset contains a larger
number of different types but less training samples of
traffic signs, which increases the difficulty associated with
correct classification (Fig. 6).

3.1.2 Training teacher network

Our experiments are performed with PyTorch on a Linux PC
with an Intel®Xeon(R), CPUE5-2670 v3@ 2.30 GHz×24 and
an NVIDIATITAN X, 12 GB RAM. We first train our teacher
network on a general dataset. The CIFAR-10 dataset [38] con-
tains ten classes, each of which contains 6000 RGB images. The
ten classes are as follows: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck. The training set contains
50,000 images, while the testing set contains 10,000 images.
We train using a batch size of 128 for 300 epochs. The learning
rate is initially set to 0.001, and individual adaptive learning
rates are computed using the Adam method. We use a weight
decay of 10−5. The converged model can achieve comparable

performance with fewer trainable parameters. The results in
Table 2 demonstrate the generality of our teacher network.

3.1.3 Hyperparameters for knowledge distillation

To find the appropriate hyperparameters Tandα, we set out 16
kinds of hyperparameter configurations, each of which is
trained for 500 epochs on the GTSRB dataset. The results
are listed in Table 3. To achieve knowledge distillation, we
set α to 0.9 and use a temperature of 20, which can facilitate
better experimental results.

3.2 Performance on GTSRB dataset

The best recognition rate achieved by our teacher model is
99.23%, while the average recognition rate of our student model
increased to 99.61%. The confusion matrix (CM) is one of the
most widely used evaluation metrics. We construct our own con-
fusion matrix in order to further analyze the effect of the pro-
posed lightweight network, as shown in Fig. 7. CM is an evalu-
ation criterion that can measure an algorithm’s performance in a
visual way. When using a CM, each row and column represent
the actual categories and the predicted value respectively.
Accordingly, the question of whether these multiple categories
are confused or not can be intuitively seen in Fig. 7.

To demonstrate the performances of our teacher network
and student network, we first evaluate the classification task

Table 5 Pruning 50% of channels
for the student network Layer/Type Kernel size Numbers (pruned) Stride Padding Output size

1/Conv 3 × 3 32(−32) 1 1 32 × 32

2/Conv 3 × 3 32(−32) 1 1 32 × 32

3/Max-pool 2 × 2 1 2 0 16 × 16

4/Conv 3 × 3 64(−64) 1 1 16 × 16

5/Conv 3 × 3 64(−64) 1 1 16 × 16

6/Max-pool 2 × 2 1 2 0 8 × 8

7/Conv 3 × 3 128(−128) 1 1 8 × 8

8/Avg-pool 2 × 2 1 2 0 4 × 4

Table 6 Pruning 70% of channels
for the student network Layer/Type Kernel size Numbers (pruned) Stride Padding Output size

1/Conv 3 × 3 21(− 43) 1 1 32 × 32

2/Conv 3 × 3 44(− 20) 1 1 32 × 32

3/Max-pool 2 × 2 1 2 0 16 × 16

4/Conv 3 × 3 54(− 74) 1 1 16 × 16

5/Conv 3 × 3 29(− 99) 1 1 16 × 16

6/Max-pool 2 × 2 1 2 0 8 × 8

7/Conv 3 × 3 43(− 213) 1 1 8 × 8

8/Avg-pool 2 × 2 1 2 0 4 × 4
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on the GTSRB testing images. Table 4 presents the recogni-
tion rate and trainable parameters of the currently typical CNN
model on the GTSRB dataset. Our teacher network achieves a
competitive result with significantly improved computational
efficiency. The batch size is 128. The learning rate is initially
set to 0.001, while epochs are set to 300. As CNN-HLSGD
[18] needs to train 20 same networks, the number of parame-
ters it uses can be as large as 2.3 × 107, which is nearly 31
times the number used by our student network. Compared
with DP-KELM [19], moreover, the student network uses half
as many parameters; our student network is also an end-to-end
system without augmentation.

Table 5 shows the results of pruning the student network
following fine-tuning on the GTSRB dataset. We use the
values of scaling factors, which approximate to zero, to
identify insignificant channels, then prune those channels

via thresholding; finally, we retrain the pruned network
until convergence on the target task is achieved. As shown
in Table 6, we prune the filters of each convolutional layer
in order to reduce the number of redundant parameters. For
example, as 32(− 32) in Conv1 means 64 filters in the first
convolutional layer, the number of remaining filters fol-
lowing channel pruning is 32.

Table 7 presents the recognition rate of the pruned net-
work and the full student network. When the model is
pruned of 50% of its channels, the recognition rate of the
student network falls to 99.38%, but the number of param-
eters is reduced by 70%. Moreover, when compared with
DP-KELM [19], our pruned student network utilizes 16%
of the parameters used by this method, while losing only a
small amount of accuracy. When 70% channels are pruned,
moreover, the number of parameters used by the student
network is only 85,593; it can thus be deployed on mobile
devices with limited power budgets.

3.3 Performance on BTSC dataset

As shown in Fig. 8, the best recognition rate achieved by our
teacher network is 98.89%, while the average training loss
value is 0.628 over 30 epochs. One cross-entropy loss value
is calculated at each epoch, after which the mean of the loss

Table 7 Performance comparison of the original and pruned student
models on the GTSRB dataset

Model Trainable parameters Accuracy

Our student model 732,139 99.61%

Student model (50% pruned) 227,851 99.38%

Student model (70% pruned) 85,593 99.08%

Fig. 8 Comparison of the accuracy and loss of the teacher network (two pictures on the left) and the student network (two pictures on the right)
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values across all epochs is defined as the average loss value.
We use a standard cross-entropy loss to optimize the traffic
sign classification task; here, the batch size is 128 and the
initial learning rate is 0.001. Subsequently, the average recog-
nition rate of our student network increases to 99.13%.
Compared with the teacher network, the student network
achieves better progress using knowledge distillation.

As shown in Table 8, the best recognition rate achieved by
our teacher network is 98.89%, while that of our student net-
work is 99.13%. The number of trainable parameters of a
single CNN with 3 STNs [41] is 14,629,801; by contrast,
the number used by our student network is only 809,982.
After filters are pruned by half, the number of parameters used
by our student network is 266,782; under these conditions, the
obtained recognition rate is 98.89% on the BTSC dataset.

4 Conclusion

In this paper, we propose two lightweight networks for traffic
sign classification. We implement a new module in our first
model, referred to as the teacher network, which uses 1 × 1
convolutional layers and dense connectivity to learn features
through parallel channels. Due to the large size of the neural
networks involved, many models are difficult to deploy on
mobile devices (which have limited power budgets) in traffic
sign recognition systems. The secondmodel, referred to as the
student network, is a simple end-to-end architecture compris-
ing only six layers. The performance of our method illustrates
that our lightweight network is able to reduce the number of
redundant parameters while retaining comparable accuracy.
Moreover, we also prune channels for the student network,
which yields a compact model. In conclusion, our lightweight
network can provide an effective solution to deploying CNN
for traffic sign classification in a resource-limited setting. In
our future work, we aim to find a novel pruning criterion that
can prune channels while producing a lower accuracy loss.We
also plan to accelerate both the inference time and training
procedure by implementing a compact model.
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