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Abstract
Identifying a network misuse takes days or even weeks, and network administrators usually neglect zero-day threats until a
large number of malicious users exploit them. Besides, security applications, such as anomaly detection and attack mitigation
systems, must apply real-time monitoring to reduce the impacts of security incidents. Thus, information processing time
should be as small as possible to enable an effective defense against attacks. In this paper, we present a fast preprocessing
method for network traffic classification based on feature correlation and feature normalization. Our proposed method
couples a normalization and feature selection algorithms. We evaluate the proposed algorithms against three different
datasets for eight different machine learning classification algorithms. Our proposed normalization algorithm reduces the
classification error rate when compared with traditional methods. Our feature selection algorithm chooses an optimized
subset of features improving accuracy by more than 11% within a 100-fold reduction in processing time when compared to
traditional feature selection and feature reduction algorithms. The preprocessing method is performed in batch and streaming
data, being able to detect concept-drift.

Keywords Feature selection · Machine learning · Normalization · Data preprocessing · Network Monitoring

1 Introduction

Maintaining the stability, reliability, and security of computer
networks implies understanding type, volume, and intrinsic
features of flows comprising carried traffic. Efficient net-
work monitoring allows the administrator to achieve a better
understanding of the network [1]. Nevertheless, the pro-
cess of network monitoring varies in complexity levels,
from a simple collection of link utilization statistics up to
complex upper-layer protocol analysis to achieve network
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intrusion detection [2], network performance tuning, proto-
col debugging and user authentication [3]. Current network
analyzing tools, such as tcpdump, NetFlow, SNMP, Bro
IDS [4], Snort [5], among others, are mainly executed
in one server, and the systems are not able to cope with
ever-growing traffic throughput [6]. Bro IDS, for example,
evolved to be used in a cluster to reach up to 10 Gb/s.
Another example is the Suricata IDS, which was pro-
posed as an improvement of the Snort IDS, using graphical
processing units (GPUs) to parallelize packet inspection.

In traffic analyzing and network monitoring applications,
data arrives in real time from different heterogeneous
sources [7], such as packets captured over the network or
multiple kinds of logging from systems and applications.
An infinite sequence of events characterizes real-time
stream applications, representing a continuously arriving
sequence of tuples [8]. This kind of application generates a
significant volume of data. Even moderate speed networks
generate huge amounts of data, for instance, monitoring a
single gigabit Ethernet link, running at 50% of utilization,
generates a terabyte of data in a couple of hours.

One way to attain data processing optimization is to
employ machine learning (ML) methods. ML methods are
well suited for big data since with more samples to train,
methods tend to have higher effectiveness [9]. Nevertheless,
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with high dimensional data, machine learning methods tend
to perform with high latency, due to computational resource
consumption. For example, the K-nearest neighbors (K-
NN) algorithm uses Euclidean distance to calculate the
similarity between points. Nonetheless, Euclidean distance
is unrepresentative in high dimensions. Thus, it is necessary
to apply other similarity metrics, such as cosine distance,
which have a higher computational cost, introducing more
latency to the preprocessing. The high latency is a drawback
for machine learning methods, as they must analyze data
as fast as possible to reach near real-time responses.
Feature selection is a process to overcome the drawback,
reducing the number of dimensions or features to a
smaller subset than the set of original ones [10]. Whereas,
traditional machine learning methods, also known as
batch processing, deal with non-continuous data, in-stream
processing machine learning methods, data continuously
arrive, one sample at a time. Stream processing methods
must process data under strict constraints of time and
resources [11]. When data continuously arrive, changes
in the distribution of the data as well as the relationship
between input and output variables are observed over
the time. This behavior, known as concept-drift [12],
deteriorates the accuracy and the performance of machine
learning models. As a consequence, in case of occurrence of
concept-drift, we must train a new model must.

Streaming data arrives continuously from different
heterogeneous source and frequently contain duplicated
or missing information producing incorrect or misleading
statistics [13]. Data preprocessing deals with detecting and
removing errors and inconsistencies from data to improve
the quality of data. The purpose of data preprocessing is
to prepare the dataset that will be used to fit the model.
In general, the preprocessing step consumes 60 to 80%
of the time of the entire machine learning process and
provides essential information that will guide the analysis
and adjustment of the models [14].

The number of input variables is often reduced before
applying machine learning methods to minimize the use of
computational resource and to improve machine learning
metrics. The variable reduction can be made in two different
ways, by feature selection or by dimensionality reduction.
On the one hand, feature selection only keeps the most
relevant variables from the original dataset, creating a
new subset of features from the originals. On the other
hand, dimensionality reduction exploits the redundancy of
the input data by finding a smaller set of new synthetic
variables, each being a linear or non-linear combination of
the input variables.

In this paper, we present a preprocessing data method
for network traffic monitoring. First, we propose a fast
and efficient feature selection algorithm. Our algorithm per-
forms feature selection in an unsupervised manner, i.e.,

with no a priori knowledge of the output classes of each
flow. We compare the presented algorithm with three tra-
ditional methods: ReliefF [15], sequential feature selec-
tion (SFS), and the principal component analysis (PCA)
[16]. Our algorithm shows better accuracy fulfillment with
the used machine learning methods, as well as a reduc-
tion in the total processing time. Second, we propose
a normalization algorithm for streaming data, which can
detect and to adapt to concept-drift.

The remainder of the paper is organized as follows. In
Section 2, we introduce the concept of data preprocessing.
We present our preprocessing method in Section 3. In
Section 4, we validate our proposal and show the results.
Section 5 presents the related work. Finally, Section 6
concludes the work.

2 Data preprocessing

Data preprocessing is the most time-consuming task in
machine learning [17]. As shown in Fig. 1, data preprocess-
ing is composed of four main steps [18]. The first step is
Data Consolidation, several sources generate data; the sys-
tem collects the data, and specialists interpret the data for
better understanding. The second step, Data Cleaning, the
system analyzes all samples and verifies if there are values
that are empty or missing and is an anomaly in the dataset;
also, this step checks if there are some inconsistencies.
In the third step, Data Transformation, different functions
are applied to data to improve the machine learning pro-
cess. In Data Normalization, this step converts variables
from categorical into numerical values. In the last step,
Data Reduction, techniques such as feature selection are
applied to reduce data to improve and fast machine learn-
ing process. As the entire process finishes, data is ready for
input in any machine learning algorithm. In this work, we
focus on the last two steps: Data Transformation and Data
Reduction which are the most time-consuming steps.

Furthermore, all feature selection algorithms assume
that data arrive preprocessed. Normalization, also known
as feature scaling, is an essential method for proper use
of classification algorithms because normalization bounds
the domain of each feature to a known interval. If the
dataset features have different scales, they may impact in
different ways on the performance of the classification
algorithm. Ensuring normalized feature values, usually in
[−1, 1], implicitly weights all features equally in their
representation. Classifier algorithms that calculate the
distance between two points, e.g., K-NN and K-means,
suffer from the weighted feature effect [19]. If one of the
features has a broader range of values, this feature will
profoundly influence the distance calculation. Therefore,
the range of all features should be normalized, and each
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Fig. 1 Preprocessing steps
composed of Data
Consolidation, Data Cleaning,
Data Transformation, and Data
Reduction. Data Transformation
and Data Reduction are the most
time-consuming steps

feature contributes approximately proportionately to the
final distance.

Besides, many preprocessing algorithms consider that
data is statically available before the beginning of the
learning process [20].

Although dealing with high dimensional data is com-
putationally possible, the more the number of dimensions
increases, the more the computational costs are challenging,
and the more machine learning techniques are ineffective.
Most machine learning techniques are ineffective in han-
dling high dimensional data because they incur in overfitting
while classifying data. As a consequence, if the number of
input variables1 is reduced before running a machine learn-
ing algorithm, the algorithm can achieve better accuracy.
We achieve the desired variable number reduction in two
different ways, dimensionality reduction, and feature selec-
tion. Dimensionality reduction exploits the redundancy of
the input data by computing a smaller set of new synthetic
features, each being a linear or non-linear combination of
the data features. Hence, in this case, the set of input vari-
ables is a subset of synthetic features that better describe the
data than the original set of features. On the other hand, fea-
ture selection only keeps the most relevant variables from
the original dataset, creating a new subset of features from
the original one. Thus, the set of variables is a subset of the
set of features.

Dimensionality reduction is the process of deriving a set
of degrees of freedom to reproduce most of a data set
variability [21]. Ideally, the reduced representation should
have a dimensionality that corresponds to the data intrinsic
dimensionality. The data intrinsic dimensionality is the
minimum number of parameters to account for the observed
properties of the data. Mathematically, in dimensional-
ity reduction, given the p-dimensional random variable
x = (x1, x2, . . . , xp), we calculate a lower dimensional
representation of it, s = (s1, s2, . . . , sk) with k ≤ p.

Algorithms with different approaches have been devel-
oped to reduce dimensionality, classified into two: linear or

1Features refer to the original set of attributes that describe the data.
Variables refer to the input of the machine learning algorithms applied
over the data. If no preprocessing method handles the original data, the
set of variables and the set of features are the same.

non-linear. The linear reduction of dimensionality is a lin-
ear projection, in which the p-dimensional data are reduced
in k-dimensional data using k linear combinations of p

original features. Two important examples of linear dimen-
sion reduction algorithms are principal component analysis
(PCA) and independent component analysis (ICA). The
goal of the PCA is to find an orthogonal linear transfor-
mation that maximizes the feature variance. The first PCA
base vector, the main direction, best describes the variability
of the data. The second vector is the second-best descrip-
tion and must be orthogonal to the first and so on in order
of importance. On the other hand, the goal of ICA is to
find a linear transformation, in which the base vectors are
statistically independent and not Gaussian, i.e., the mutual
information between two features in the new vector space is
equal to zero. Unlike PCA, the base vectors in ICA are nei-
ther orthogonal nor ranked in order. All vectors are equally
important. PCA is usually applied to reduce the represen-
tation of the data. On the other hand, the ICA is usually
used to obtain feature extraction, identifying and selecting
the features that best suit the application.

Dimensionality reduction techniques lack expressiveness
since the generated features are combinations of other
original features. Hence, the meaning of the new synthetic
feature is lost. When there is a need for an interpretation of
the model, for example, when creating rules in a firewall,
it is necessary to use other methods. The feature selection
produces a subset of the original features, which are the
best representatives of the data. Thus, there is no loss
of meaning. There are three types of feature selection
techniques [10], wrapper, filtering, and embedded.

Wrapper methods, also called closed loop, uses different
classifiers, such as support vector machine (SVM), decision
tree, among others, to measure the quality of a feature
subset without incorporating knowledge about the specific
structure of the classification function. Thus, the method
will evaluate subsets based on the accuracy of the classifier.
These methods consider the feature selection as a search
problem, creating an NP-hard problem. An exhaustive
search in the full dataset must be done to evaluate the
relevance of the feature. Wrapper methods tend to be more
accurate than the filtering methods, but they present a higher
computational cost [22]. One popular Wrapper method is
the sequential forward selection (SFS) for its simplicity. The
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algorithm begins with an empty set S and the full set of all
features X. The SFS algorithm does a bottom-up search and
gradually adds features, selected by an evaluation function,
to S, minimizing the mean square error (MSE). For each
iteration, the algorithm selects the feature to be included
in S from the remaining available features of X. The main
disadvantage of SFS is adding a feature to the set S which
prevents the method to remove the feature if it has the
smallest error after adding others.

Filtering methods are computationally lighter than
wrapper methods and avoid overfitting. Filtering methods,
also called open-loop methods, use heuristics to evaluate
the relevance of the feature in the dataset [23]. As its
name implies, the algorithm filters feature that does fill
the heuristic criterion. One of the most popular filtering
algorithms is the Relief. The Relief algorithm associates
each feature with a score, which is calculated as the
difference between the distance from the nearest example
of the same class and the nearest example of the other
class. The main drawback of this method is the obligation
of labeling data records in advance. Relief is limited to
problems with just two classes, but ReliefF [15] is an
improvement of the Relief method that deals with multiples
classes using the technique of the k-nearest neighbors.

Embedded methods have a behavior similar to wrapper
methods, using a classifier accuracy to evaluate the feature
relevance. However, embedded methods make the feature
selection during the learning process and use its properties
to guide feature evaluation. Therefore, this modification
reduces the computational time of wrapper methods.
Support vector machine recursive feature elimination
(SVM-RFE) firstly appears in gene selection for cancer
classification [24]. The algorithm ranks features according
to a classification problem based on the training of a support
vector machine (SVM) with a linear kernel. The feature with
the smallest ranking is removed, according to a criterion w,
in sequential backward elimination manner. The criterion w

is the value of the decision hyperplane on the SVM.
All the previous feature selection algorithms are super-

vised methods, in which the label of the class is presented
before the preprocessing step. In applications such as net-
work monitoring and threat detection, network streams
reach classifiers without a known label. Therefore, unsuper-
vised algorithms must be applied.

3 The proposed preprocessingmethod

Our preprocessing method comprises two algorithms. First,
as shown in Fig. 2, a normalization algorithm enforces
data to a normal distribution re-scaling the values in a
range between − 1 and 1 interval. Indeed, the largest value
for each attribute is 1 and the smallest value is − 1.

Normalization and standardization methods such as max-
min or Z-score output values in a known range, usually
[−1, 1] or [0, 1]. Our normalization method is parametric-
less. Then, we propose a feature selection algorithm based
on the correlation between pairwise features. The corre-
lation feature selection (CFS) [25] inspires the proposed
algorithm. CFS scores the features through the correla-
tion between the feature and the target class. The CFS
algorithm calculates the correlation between pairwise fea-
tures and the target class to get the importance of each
feature. Thus, the CFS depends on target class informa-
tion a priori, so it is a supervised algorithm. The pro-
posed algorithm performs an unsupervised feature selec-
tion. The correlation and variance between the features
measure the amount of information that each feature rep-
resents compared to others. Thus, the presented algorithm
demands less computational time independently of class
labeling a priori.

3.1 The proposed normalization algorithm

Normalization should be applied when the data distribution
is unknown. Determine the distribution of streaming data
is computationally expensive [26]. In our normalization
Algorithm 1, a histogram of a feature fi is represented as a
vector b1, b2, . . . , bn, such that bk represents the number of
samples that falls in the bin k.

In practice, it is not possible to know in advance the min
and max for any feature. As a consequence, we use a sliding
window approach, where the dataset X are the s last seen
samples. For every sliding window, we obtain the min and
max values for each feature. Then, data values join in a set
b of intervals called bins. The idea is to divide the feature
fi in a histogram composed by bins b1, b2, . . . , bm, where
m = √

n + 1, being n the number of features, as shown in
line 3 in Algorithm 1.
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Each bin consists of thresholds k; for example, the feature
fi is grouped in b1 = [mini , k1), b2 = [k1, k2), . . . , bm =
[km − 1, maxi]. The step between threshold k is called pivot
and it is determined as (maxi − mini )/m, as it is shown
in Algorithm 2. If the min or max values of the previous
sliding window are smaller or bigger than min or max of the
current window, that is, mini−1 < mini or maxi−1 > maxi ,
new bins are created until the new values of min or max are
reached. With the creation of new bins, the proposal is able
to detect changes in the concept-drift.

The rate between the number of observed samples in a
bin and the total number of samples in the entire histogram
produces the frequency of each bin. Comparing the sample
xi against the thresholds k of the bins, line 4 Algorithm 3,
we define in which bin we have to increment the number
of observed samples. If the value of the sample xi is in-
between the thresholds of the binj , then the hit number
of observed samples f qj of the binj is increased by one.
Moreover, we calculate the relative frequency of each bin as
the relation between the bin hit number and the total number
of samples, f rj = f qj/N . Finally, the relative frequency
values f r are mapped into a normal distribution by

Z > P

(
x =

m∑
0

f rj

)
. (1)

With Eq. 1 it is possible to see that all values are now
mapped into a normal probability distribution with μ = 0
and σ = 1, line 8 in Algorithm 3. As a consequence, all
samples are normalized between −1 ≤ xi ≤ 1.

If we consider the process that generates the stream is
non-stationary, it implies a possible concept-drift. Haim and
Tov affirm that histogram must be dynamic when dealing
with streaming data [27]. As a consequence, intervals do
not have a fixed value, and the bins adapt to concept-
drift. However, if the bins remain static, it reflects the
evolution of the change during time [28]. In our application,
feature normalization for network monitoring, we follow
the former approach. Maintaining fixed intervals allow us to
see how a feature evolves. Also, as our histogram algorithm
creates new bins when a value does not enter in any of the
current intervals, it enables to detect outliers dynamically. In
streaming data, it is not possible to maintain all the samples
xi , because it is computationally inefficient and, in case of
unlimited data, it does not fit in memory. Our algorithm only
efficiently keeps the frequency of each bin.

The most complicated function in the normalization
process is to update the bins. If the max and min reference
values of the window change, the bins update functions take
the complexity O(n) on time. The creation of the histogram
is only done in the first window and takes constant time. The
histogram update uses a binary search to fill the bin value in
O(log n) time.

3.2 The proposed correlation-based feature
selection

We propose the correlation-based feature selection, a
simple unsupervised filter method for feature selection. Our
method uses the correlation between features. The Pearson
correlation of two variables is a measure of their linear
dependence. The key idea of the method is to weight each
feature based on the correlation of the feature against all
other features that describe the dataset. We adopt Pearson’s
coefficient as the correlation metric. Pearson’s coefficient
value is between −1 ≤ ρ ≤ 1, where 1 means that the
two variables are directly correlated, linear relationship, and
− 1 in the case of an inverse linear relationship, also called
anticorrelation.

The Pearson coefficient, ρ, can be calculated in terms of
mean μ and standard deviation σ ,

ρ(A,B) = 1

N − 1

N∑
i=1

(
Ai − μA

σA

)(
Bi − μB

σB

)
, (2)

or in terms of the covariance

ρ(A,B) = cov(A,B)

σAσB

, (3)
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Fig. 2 Representation of the
feature divided in histogram.
Each feature is divided in bins
that represent the relative
frequency of the samples
comprised between the
thresholds k. The second step of
the algorithm approximates the
histogram to a normal
distribution

then, we calculate the weight vector,

wi = σ 2
i∑j=N

j=0 |ρij |
. (4)

Firstly, we need to obtain the correlation matrix, calculated
by Eq. 3, line 1 Algorithm 4. The correlation matrix
is the pairwise covariance calculations between features.
Then, applying Eq. 4, we establish a weight w that is a
measure of the importance of the feature. To calculate w,
we sum the absolute values of the correlation features,
lines 5–6 Algorithm 4. This absolute value sum is due
to Pearson’s coefficient, ρ may assume negative values.
Then, we calculate the variance V̂ of each feature that
privileges the feature that has greater variance and lower
covariance, line 8 Algorithm 4. The idea is to establish
which feature represents the most information, giving the
correlation between two features. Furthermore, the weights
give us an indication of the amount of information the
feature has independently from the others. The weight w has
values between 0 ≤ N , where N is the number of features
and 0 means that the features are independent of the other.
The higher the w value is, the higher is the variance of
the feature and lesser correlation with other features. Thus,
more information is the aggregated by this feature.

4 Evaluation

To evaluate the proposed algorithm, we perform traffic
classification to detect threats. We chose the traffic clas-
sification application because it is time sensitive and our
algorithm can significantly reduce the processing time,
enabling prompt defense mechanisms. We implemented
traffic classification using machine learning algorithms
against three different datasets. The NSL-KDD is a modi-
fication of the original KDD-99 dataset and has the same
41 features and the same five classes, Denial of Service
(DoS), Probe, Root2Local (R2L), User2Root (U2R), and
normal, as the KDD 99 [29]. The improvements of the
NSL-KDD over KDD 99 are the elimination of redun-
dant and duplicate samples, to avoid a biased classification
and overfitting, and a better cross-class balancing to avoid
random selection. GTA/UFRJ dataset2 [30] combines real
network traffic captured from a laboratory and network
threats produced in a controlled environment. Network traf-
fic is abstracted in 26 features and contains three classes,
DoS, probe, and normal traffic. The NetOp2 is a real dataset
from a Brazilian operator [31]. The dataset has anonymous
access traffic of 373 broadband users of the South Zone of
the city of Rio de Janeiro. We collected data during 1 week
of uninterrupted data collection, from February 24 to March
4, 2017. We summarized packets in a dataset of 46 flow fea-
tures, associated with an IDS alarm class or the legitimate
traffic class. All datasets are summarized in Table 1.

We count on Intel Xeon processors with a clock
frequency of 2.6 GHz and 256 GB of RAM for conducting
the measurements.

In the first experiment, we use 1 day from NetOp
dataset to evaluate our normalization method. Shapiro–
Wilk test was used to verify that our proposal enforces
a normal distribution for the normalized features. Table 2
shows Shapiro-Wilk test, we considered α = 0.05. We
evaluate the hypothesis that our proposal normalization
method follows a normal distribution. According to the
results, the proposed method has a p value of 0.24 > 0.05,

2Anonymized data can be asked by sending an email contact to the
authors
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Table 1 Summary of datasets used for evaluation (Fe, features; Fl,
flows)

Dataset Format Size Attacks Type

NSL-KDD 41 Fe 150k Fl 80.5% Synthetic

GTA/UFRJ 26 Fe 95 GB 30% Synthetic

NetOp 46 Fe 5M Fl Real

and W is closer to one, W = 0.93, then we assume
that samples are not significantly different from a normal
population. In the case of max-min normalization [32], p

value is very smaller than the α, and W indicates that it
is far from 1. As a consequence, we refuse the hypothesis
assuming that sampling data are significantly different
from a normal population. Figure 3 shows a graphical
interpretation of the Shapiro–Wilk test, it represents a
sample after being normalized. As our proposal follows
the normal distribution, the blue points follow the dashed
line, while the max-min approach follows a right-skewed
distribution.

In the following experiments, we verify our preprocess-
ing method in a use case of traffic classification. Thus,
we implement the decision tree (DT), with the C4.5 algo-
rithm, artificial neural networks (ANN), and support vector
machine (SVM) as classification algorithms to evaluate the
proposed feature selection algorithm. We selected these
algorithms because they are the most used ones for network
security [33]. In all methods, we perform the training in a
70% partition of the dataset and the test run over the remain-
ing 30%. During the training phase, we perform tenfold
cross-validation to avoid overfitting. In cross-validation,
parts of the dataset are divided and not used in model param-
eters estimation. They are further used to check whether
the model is general enough to adapt to new data, avoiding
overfitting to training data.

The decision tree algorithm In a decision tree, leaves
represent the final class and branches represent conditions
based on the value of one of the input variables. During
the training part, the C4.5 algorithm determines a tree-like
classification structure. The real-time implementation of
the decision tree consists of if-then-else rules that generate
the tree-like structure previously calculated. The results are

Table 2 Hypothesis comparison for a normal distribution approach. In
Shapiro-Wilk test, p value is 0.24 > 0.05, and W is closer to one,
W = 0.93, confirming that values follow a normal distribution

Shapiro-Wilk

Mean W Mean p

Proposal 0.93 0.24

Max-min 0.65 9.28e-07

presented in the Section 4.1, along with the ones from the
other algorithms.

The artificial neural network algorithm The artificial neural
networks are inspired on the human brain, in which each
neuron performs a small part of the processing and transfers
the result to the next neuron. In artificial neural networks,
the output represents a degree of membership for each class,
and the highest degree is selected. The weight vectors �

are calculated during the training. These vectors determine
the weight of each neuron connection. In training, there are
input and output sample spaces and the errors, caused by
each parameter. The back-propagation algorithm minimizes
the errors.

In order to determine to which class a sample belongs,
each neural network layer computes the following equations:

z(i+1) = �(i)a(i) (5)

a(i+1) = g(z(i+1)) (6)

g(z) = 1

1 + e−z
(7)

where a is the vector that determines the output of layer i,
�(i) is the weight vector that leads layer i to layer i +1, and
a(i+1) is the output of layer i + 1. The function g(z) is the
activation function, represented by Sigmoid function, which
plays an important role in the classification. For high values
of z, g(z) returns one and for low values, g(z) returns zero.
Therefore, the output layer gives the degree of membership
in each class, between zero and one, classifying the sample as
the highest one. The activation function enables and disables
the contribution of a certain neuron to the final result.

The support vector machine algorithm The support vector
machine (SVM) is a binary classifier, based on the concept
of a decision plane that defines the decision thresholds.
SVM algorithm classifies through the construction of a
hyperplane in a multidimensional space that splits different
classes. An iterative algorithm minimizes an error function,
finding the best hyperplane separation. A kernel function
defines this hyperplane. In this way, SVM finds the hyper-
plane with a maximum margin, that is, the hyperplane with
the most significant distance possible between both classes.

The real-time detection is performed by the classification
to each class pairs: normal and non-normal; DoS and non-
DoS; and probe and non-probe. Once SVM calculates the
output, the chosen class is the one with the highest score.
The classifier score of a sample x is the distance from x to
the decision boundaries, that goes from −∞ to +∞. The
classifier score is given by

f (x) =
n∑

j=1

αjyjG(xj , x) + b, (8)
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Fig. 3 Representation of the feature divided in histogram. Each feature is divided in bins that represent the relative frequency of the samples
comprised between the thresholds k

where (α1, . . . , αn.b) are the estimated parameters of SVM,
and G(xj , x) is the used kernel. In this work, the kernel
is linear, that is, G(xj , x) = x

′
j x, which presents a

good performance with the minimum quantity of input
parameters.

4.1 Classification results

This experiment shows the efficiency of our feature
selection algorithm when compared to literature methods.
We try a linear principal component analysis (PCA),
the ReliefF algorithm, the sequential forward selection
(SFS), and the support vector machine recursive feature
elimination (SVM-RFE). For all methods, we analyze
their version with four and six output features in the
GTA/UFRJ dataset. For the sake of fairness, we tested all
the algorithms with the classification methods presented
before. We use a decision tree with the minimum of 4096
leaves, a binary support vector machine (SVM) with linear
kernel, and finally a neural network with one hidden layer
with 10 neurons. We use tenfold cross-validation for our
experiments.

Figure 4 presents information gain (IG) sum of the
selected feature for each evaluated algorithm. Information
gain measures the amount of information, in bits, that
a feature adds compared to the class prediction. Thus,
information gain calculation computes the difference of
target class entropy and the conditional entropy of the target
class given the feature value as known. When employing
six features, the results show our algorithm has information
retention capability between SFS and ReliefF, and higher
than SVM-RFE. The information retention capability of
PCA is higher than feature selection methods, as each
feature is a linear combination of the original features and
is computed to retain most of the dataset variance.

Figure 5 shows the accuracy of the three classification
methods: decision tree, neural network, and support vector
machine (SVM), when different dimensionality reduction
methods choose the input variables. In the first group,
our proposal with six features reaches 97.4% accuracy,
which is the best result for the decision tree classifier. The
following result is PCA with four and six features in 96%
and 97.2%. The sequential forward selection (SFS) presents
the same result with four and six features with 95.5%. The
ReliefF algorithm has the same results in both four and six
features is 91.2%. Finally, the lowest result is shown by the
SVM-RFE algorithm with four and six features. As the
decision tree algorithm creates the decision nodes based
on the variables with higher entropy, the proposed feature
selection algorithm better performs because it keeps most of
the variance of the dataset.

The second classifier, the neural network, the best result
is shown by the PCA with six features in 97.6% of accuracy.
However, the PCA with four features presents a lower
performance with 85.5%. ReliefF presents the same results
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Fig. 4 Information gain sum for feature selection algorithms. The
selected features by our algorithm keeps an information retention
capability between SFS and ReliefF in the GTA/UFRJ dataset
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Fig. 5 Accuracy comparison of feature selection methods. Our proposal, linear PCA, ReliefF, SFS, and SVM-RFE compared in decision tree,
SVM, and neural network algorithms in the GTA/UFRJ dataset

for both features in 90.2%. Our proposal shows a result with
83.9% and 85.0% for four and six features. On the other
hand, the SFS presents the worst results of all classifiers,
78.4% with four features and 79.2% with six features. One
impressive result is the SVM-RFE, with four features which
presents a deficient result of 73.6% that is one of the worst
for all classifiers; however, with six features present almost
the same best second result with 90.1%.

In the support vector machine (SVM) classifier, the
PCA presents a similar behavior compared with the neural
networks. For six features, they present the highest accuracy
of all classifiers with 98.3%, but just 87.8% for four
features. ReliefF again presents the same result for both
cases in 91.4%. Our proposal has 84% for four features
and 85% for six features. SFS presents the same result
for both features in 79.5%. The lowest accuracy of this
classifier is the SVM-RFE with 73.6% for both cases.
As our proposal maximizes the variance on the resulting
features, the resulting reduced dataset spreads into the new
space. For a linear classifier, such as SVM, it is hard to
define a classification surface for a spread data. Thus, the
resulting accuracy is not among the highest. However, as the
selected set of features still being significant for defining the
data, the resulting accuracy is not the worst one.

The sensitivity metric shows the rate of correctly
classified samples. It is a good metric to evaluate the success
of a classifier when using a dataset in which a class has
much more samples than others. In our problem, we use
sensitivity as a metric to evaluate our detection success.
For this, we consider the detection problem as a binary
classification, i.e., we consider two classes: normal and
abnormal traffic. In this way, the denial of service (DoS)
and port scanning threat classes compose a common attack
class. Similar to accuracy, representation in Figs. 5 and 6
represents the sensitivity of the classifiers applying the
different methods of feature selection. In the first group,
the classification with decision tree, PCA shows the best
sensitivity with 99% of correct classification; our algorithm
achieves a performance of almost 95% of sensitivity, with
four and six features. Neural networks, represented in
the second group, have the best sensitivity with PCA
using six features with 97.7%, then our results show good
performance with both four and six features in 89%. In
this group, the worst sensitivity of all classifiers is reached
by the SVM-RFE with four and six features in 69.3%.
Finally, the last group shows the sensitivity for support
vector machine (SVM) classifier. Again, showing a similar
behavior to the previous group, PCA with six features shows
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Fig. 6 Sensitivity of detection in decision tree, SVM, and neural network algorithms for feature selection methods in the GTA/UFRJ dataset

147Ann. Telecommun. (2019) 74:139–155



the best sensitivity with 97.8%. Then, the second-best result
is reached by our algorithm, as well as with ReliefF, with
89% sensitivity with both features. It is worthy to note that
our algorithm presents a stable behavior in accuracy as well
as in sensitivity. We highlight that our algorithm performs
nearly equal to PCA. PCA creates artificial features that
are a composition of all real features, while our algorithm
selects some features from the complete set of features.
In this way, our algorithm was the best feature selection
method among the evaluated ones, and it also introduces less
computing overload when compared with PCA.

When analyzing the features each method chooses, it is
possible to see that none of the methods selects the set
of the same features. Nevertheless, ReliefF and SFS select
as the second-best amount of IP packets. One surprising
result from the SFS is the election of Amount of ECE Flags
and Amount of CWR Flags. In a correlation test, these two
features show that there is no information inclusion because
they are empty variables. However, we realized that one of
the main features is average packet size. In this dataset, the
average packet size is fundamental to classify attacks. One
possible reason is that, during the creation of the dataset, an
automated tool performed the denial of services (DoS) and
probe attacks. Mainly, this automated tool produces attacks
without altering the length of the packet.

Figure 7 shows a comparison of the processing time of all
implemented feature selection and dimensionality reduction
methods. All measures are in relative value. We can see that
SFS presents the worst performance. The SFS algorithm
performs multiple iterations to minimize the mean square
error (MSE). Consequently, all these iterations increase the
processing time. Our proposal shows the best processing
time together with PCA because both implementations
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Fig. 7 Performance of feature selection algorithms according to
processing time. Our proposal and the PCA present the best processing
time in the GTA/UFRJ dataset

perform matrix multiplication. Matrix multiplication is a
simple computation function.

The next experiment is to evaluate our proposal in diffe-
rent datasets. We use the NSL-KDD dataset and the NetOp
dataset. Besides linear SVM, neural network, and decision
tree, we also evaluate K-nearest neighbors (K-NN), random
forest, two kernels, linear, and radial basis function (RBF)
kernel in support vector machine (SVM), Gaussian naive
Bayes, and stochastic gradient descendant (SGD). Adding
these algorithms, we cover the full range of the most
important algorithms for supervised machine learning.

The random forest (RF) algorithm avoids overfitting
when compared to the simple decision tree because it
constructs several decision trees, trained in different parts of
the same dataset. This procedure decreases the variance of
classification and improves the performance regarding the
classification of a single tree. The prediction of the class in
the RF classifier consists of applying the sample as input to
all the trees, obtaining the classification of each one of them
and, then, a voting system decides the resulting class. The
construction of each tree must follow the rules: (i) for each
node d, select k input variables of total m input variables,
such that k � m; to calculate the best binary division of the
k input variables for the node d, using an objective function;
repeat the previous steps until each tree reaches l number of
nodes or until its maximum extension.

The simple Bayesian classifier (Naive Bayes—NB) takes
the strong premise of independence between the input
variables to simplify the classification prediction, that is,
given the value of each input variable, it does not influence
the value of the other input variables. From this, the method
calculates the probabilities a priori of each input variable,
or a set of them, to set up a given class. As a new sample
arrives, the algorithm calculates for each input variables the
probability of being a sample of each class. The output of
all probabilities of each input variable results in a posterior
probability of this sample belonging to each class. The
algorithm, then, returns the classification that contains the
highest estimated probability.

In the K-nearest neighbors (K-NN), the class definition
of an unknown sample is based on the k-neighbors’ classes
closest to the sample. The value k is a positive integer and
usually small. If k = 1, then the sample class is assigned
to the class of its nearest neighbor. If k > 1, the sample
class is obtained by starting a resultant function, such as
a simple voting or weighted voting, of the k-neighbors’
classes. The neighborhood definition uses a measure of
similarity between samples in the feature space. Threat
detection literature often uses Euclidean distance, although
other distances have good results and the best choice for
a similarity measure will depend on the type of the used
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dataset [34]. The Euclidean distance of two samples p and
q in the space of n features is given by

d(p, q) =
√√√√ n∑

i

(pi − qi)2. (9)

Stochastic gradient descent with momentum: This scheme
relies on the stochastic gradient descent [35] algorithm, is
a stochastic approximation of gradient descent, in which a
single sample approximates the gradient. In our application,
we consider two classes, normal and threat. Therefore, we
use the sigmoid function, expressed by

hθ (x) = 1

1 + e−θᵀx
, (10)

to perform logistic regression. In the sigmoid function, low
values of the parameters θᵀ times the sample feature vector
x return zero, whereas high values return one. When a
new sample x(i) arrives, the SGD evaluates the sigmoid
function and returns one for hθ (x(i)) greater than 0.5 and
zero otherwise. This decision presents an associated cost,
based on the real class of the sample y(i). The cost function
is defined in Eq. 11. This function is convex, and the goal of
SGD algorithm is to find its minimum, expressed by

J(i)(θ) = y(i)log(hθ (x(i))) + (1 − y(i))log(1 − hθ (x(i))).

(11)

On each new sample, the algorithm takes a step toward the
cost function minimum based on the gradient of the cost
function.

Validation in NSL-KDD and NetOp datasets The first exper-
iment evaluates the performance of the feature selection in
both datasets. In this experiment, we vary the number of
selected features to evaluate the impact on the accuracy. We
analyze the performance with no feature selection (no FS),
and then we reduce features from 10 to 90% of the original
set of features. All the experiments were performed using
a K-fold cross-validation. The K-fold cross-validation per-
forms K training iterations in the partitions of the data and,
at each iteration, in the remaining K−1 partition, the K-fold
cross-validation performs the test in a mutually exclusive
manner. We use K = 10, which is the commonly used
value. Figure 8 shows the effect of feature selection. No
feature selection performs well for almost all algorithms.
Reducing the number of features in 10%, however, improves
accuracy in all algorithms, except for random forest. In con-
trast, a bigger reduction of feature deteriorates the accuracy
for all classifiers.

We also measure other metrics, such as precision,
sensitivity, F1-score, training, and classification time. We
compare the effect of 10% reduction in all these metrics.
Figures 9 and 10 show accuracy, precision, sensitivity, and
F1-score for dataset with no feature selection (Fig. 9) and
with 10% of reduction (Fig. 10). For K-NN, SVM with
radial basis function (RBF) kernel, and Gaussian naive
Bayes metrics remain the same. For the neural network,
MLP and SVM with a linear kernel, an improvement
between 2 and 3% in all metrics is reached with 10%
of feature reduction. Random forest presents the worst
performance when features are reduced; all metrics worsen
their values between 8 and 9%. Stochastic gradient
descendant also suffers a small reduction of 1% in their

Fig. 8 Evaluation of feature
selection varying the selected
features in NSL-KDD dataset
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Fig. 9 Accuracy, precision, sensitivity, and F1-score for NSL-KDD.
Metrics with no future selection

metrics. The decision tree is the most benefited improving
between 3 and 4% their metrics, which shows the capability
of reducing overfitting when applying feature selection.

Figure 11 shows training and classification time with
no feature selection, while Fig. 12 shows results with 10%
of reduced features. The K-NN algorithm training time
augmented considerably, passing from 0.63 to 5.03 s, while
classification time also suffers an increase passing from
1.89 to 2.88 s. Neural network reduced 9% of the training
time, from 22.99 to 20.92 s, classification time got 0.01 s
increased. Random forest training time increased 0.02 s, and
classification time remained the same, which is negligible
because of the intrinsic error of the cross-validation. SVM
with radial basis function and SVM with linear kernel
are the most benefited from feature selection. SVM-RBF
training time reduced 11% while the classification time,
16%. SVM-linear classification time reduced 46%, from
654 to 349 s, and training time, 40%, from 54.86 to 32.88 s.
Feature selection in Gaussian naive Bayes, stochastic
gradient descendant, and decision tree strongly impact in
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Fig. 11 Classification and training time in NSL-KDD Dataset with no
feature selection

training time with an approximate reduction of 30%, while
the classification time was reduced of a one-time unit in
three algorithms.

We performed the same experiment in the NetOp dataset.
Figure 13 shows the accuracy of different classifiers while
reducing from 10 to 90% of the features. Using the
NetOp dataset, applying feature selection keeps unaffected
classifier accuracy unaffected. In the case of K-NN, the
accuracy variation is less than 0.02%. A similar case occurs
with neural networks, SVN with linear and with RBF
kernels, stochastic gradient descendant, and decision tree. In
random forest, the best accuracy is found with a reduction
of 30% of the original set of features of the dataset. The best
result is reached in Gaussian naive Bayes, in which 90% of
the reduction in the selected features increases the accuracy
from 57 to 78%, using only five features.

Reducing 90% of selected features, we analyze other
metrics, such as precision, sensitivity, and F1-score, for all
classifiers. We compare the results with no feature selection,
Fig. 14, and with only five features, Fig. 15. All metrics
remain almost equal. We achieve a slight positive variation
in Gaussian naive Bayes and random forest. We conclude

Fig. 10 Metrics reducing only
10% of the initial features in the
NSL-KDD dataset
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Fig. 12 Classification and training time in NSL-KDD dataset with
only 10% of the initial features

that, for this dataset, our feature selection method maintains
the metrics unaltered or increase classifier performance,
because our proposal keeps the most of independent features
in the dataset.

Figure 16 shows the training and classification times
with no feature selection, while Fig. 17 shows the training
and classification times for the dataset with 90% of feature
reduction. All the classifiers reduced their times. K-NN
training time is reduced by 71%, while classification time is
reduced by 84%. For neural networks, it reduced the training
time by 25% and classification time is reduced in 0.02 s.
Random forest reduced their training time by 38% while
their classification time remains the same. SVM with RBF
kernel training time is reduced by 78% and training time
is reduced by 54%. SVM with linear kernel received the
biggest improvement. Training time was reduced by 88%
while classification time was reduced by 81%. Gaussian
naive Bayes reduced their training time in 80% while
classification time was reduced in 76%. Stochastic gradient
descendant also shows a reduction of 61% in training
and 66% for classification time. Finally, decision tree
reduced training time by 79% and classification time
got faster, being reduced by 28%. As a consequence, a
feature reduction of 90% impacts directly in the training
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Fig. 13 Evaluation of feature selection varying the selected features in
NetOp dataset
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Fig. 14 Accuracy, precision, sensitivity, and F1-score for NetOp
dataset. Metrics with no future selection

and classification time of the machine learning classifiers.
Therefore, our feature selection method improves training
and classification times in all.

In this experiment, we show the most important group
of features. Thus, we group features into eight groups in
the NetOp dataset. We remove the flow tuple information
features because our algorithm works on numerical features
and tuple information features are categorical. Table 3
describes the groups. We established the window size
at 1000 samples. Figure 18 shows the accuracy for all
seven algorithms for classification. In decision tree, all
groups show similar behavior and present high accuracy.
Gaussian naive Bayes and SVM with the linear kernel for
group 3, time between packets, and for group 5, subflow
information, present the lowest accuracy. For the rest of
the groups, these classifiers also reach high accuracy. K-
nearest neighbors (K-NN) shows a special case, besides
group 2, which is the highest accuracy, all the other groups
show different behaviors. In neural networks, groups 2 and
3, packet statistics and time between packets, show the
highest accuracy, while the remaining groups maintain in
50%. Random forest shows a similar behavior than decision
tree, with high accuracy in all their groups. Nevertheless,
group 5, subflow information, presents the lowest accuracy.
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Fig. 15 Metrics reducing only 90% of the initial features in the NetOp
dataset
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Fig. 16 Classification and training time in NetOp Dataset with no
feature selection

Stochastic descendant gradient shows the highest accuracy
in groups 2, 6, and 7. We conclude that group 2, packet
statistics, is the most important for the accuracy calculation
for all the classifiers.

Finally, this experiment shows how our preprocessing
method when executing with machine learning classifiers
in stream data can detect concept-drift. This experiment
also demonstrates that the proposed preprocess method
can run under batch and stream data. We use the flow
diagram of Fig. 19. We force traditional learning methods
to become adaptive learners to detect the concept-drift.
Adaptive learners dynamically adapt to new training data
when the learned concept is contradicted. Once a concept-
drift is detected, a new model is created.

We validate the proposal with the NetOp dataset. The
dataset presents labeled samples in threats and normal
traffic, a binary classification problem. We divide the
dataset in training set and test set, in a relation of 70%
for training and 30% for the test. We consider the training
set as static with T consecutive sample windows. We have
used the synthetic minority class oversampling technique
(SMOTE) [36] approach to oversampling the minority class,
only in the training set, initial window. When the number of
samples in a class is predominant in the dataset, it is called
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Fig. 17 Classification and training time in NetOp Dataset with only
90% of the initial features

Table 3 Features groups

Group Description Number of features

G1 Packet volume 4

G2 Packet statistics 8

G3 Time between packets 8

G4 Flow time statistics 9

G5 Subflow information 4

G6 TCP flags 4

G7 Bytes in headers + ToS 3

class imbalance. Class imbalance is typical in our kind of
threat detection application when attacks are rare events
when compared to normal traffic. The test set is streaming
data arriving at the same frequency. We group data in sliding
windows of N samples.

Figure 20 shows the accuracy when we analyze
1 day from NetOp dataset. In the experiment, we
measure the impact of the concept-drift on the final
accuracy. Determining the concept-drift helps to improve
the performance of the system, since the model will not be
recalculated. We train different static algorithm with 30%
of the dataset. We use 1000 samples as window size. The
trained static algorithms are the support vector machine
(SMV) with linear kernel, and with radial basis function
kernel, Gaussian naive Bayes, decision tree, and stochastic
gradient descent. The decision tree has the worst accuracy
when compared with the other algorithms. Decision tree
shows a low accuracy in the second window. This behavior
means that the created model during the training step does
not adequately represent the model of the entire dataset.
Stochastic gradient descendant shows a similar behavior of
decision tree, having a concept-drift in the second window.
The SVM with linear kernel presents a concept-drift in the
seventh window. SVM with RBF shows a lower accuracy
during all experiment and a concept-drift at the last window.
Finally, due to the implementation of the Gaussian naive
Bayes, it follows the same probability distribution as our
normalization method, as a consequence does not present
any concept-drift.

5 Related work

State-of-the-art proposals focus on algorithms for online
feature selection. Perkins and Theiler grafting algorithm
based on a stage-wise gradient descent approach. Gradient
feature testing (grafting) [37] treats feature selection in the
core of the learning process. The objective function is a
binomial negative log-likelihood loss. The grafting method
uses an incremental and iterative gradient descent. For each
step, a heuristic is used to identify which feature improves
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Fig. 18 Evaluation of group features with different machine learning algorithms

the existent model. If the feature optimizes the model, the
selected feature and the model are returned. The grafting
algorithm is able to operate with streaming features. A
value of the regularization parameter λ must be determined
in advanced to establish which feature is most likely to
improve the model at each iteration. To determine the
value of λ is required information about the global feature
set. As a consequence, grafting method is ineffective with
streaming data with unknown feature size.

The alpha-investing method [38] considers that new fea-
tures arrive in a streaming manner generated sequentially for
a predictive model. The main advantage of alpha-investing

Fig. 19 Flow diagram used for proposal evaluation

is the possibility to run in a feature set of unknown or
even infinite sizes. Every time a feature arrives, alpha-
investing uses linear regression to reduce the threshold of
error dynamically. As a drawback, alpha-investing only con-
siders the addition of new features without evaluating the
redundancy after the feature inclusion.

Wu et al. presented the OSFS (online streaming feature
selection) algorithm and its faster version, the fast-OSFS
algorithm, to avoid the redundancy of added features [39].
The OSFS algorithm uses a Markov blanket of a feature
to determine the relevance of the feature in relation with
their neighbors. The Markov blanket of a node A, MB(A),
is its set of neighboring nodes. The computational cost to
calculate the Markov blanket of a feature is prohibitive when
dealing with high dimensional data.

Smart preprocessing for streaming data (SPSD) is an
approach that uses min-max normalization of numerical
features [32]. The authors use two metrics to avoid
unnecessary renormalization. SPSD only renormalizes
when a threshold exceeds some threshold value of the
metrics. Streaming data joins equal size chunk where all
operations originate. The first data chunk is used to take
the references min-max values and to send the normalized
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Fig. 20 Concept-drift detection in 1 day of the NetOp dataset. Our
proposal was able to detect early concept-drift in SGD and in
SVM with linear kernel. Gaussian naive Bayes shows a very high
performance with no concept-drift
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data for the training model. Metric 1 represents the amount
of sample falling outside the min-max reference values;
metric 2 is the relation between new sample values in
each dimension and the referenced min-max value for that
dimension. Similar to our proposal, the algorithm works
with numerical data.

Incremental discretization algorithm (IDA) uses a quan-
tile approach to discretize data stream [28]. The algorithm
discretizes data stream in m equal frequency bins. A sliding
window version of the algorithm is proposed to follow the
evolution of the data stream. The algorithm maintains the
data into bins with fixed quantiles of the distribution, rather
than fixed absolute values, to follow the distribution drift.

In our proposal, we propose an unsupervised prepro-
cessing method. Our method includes normalization and
feature selection altogether. The proposal is parametric-less.
Our algorithm follows an active approach for concept-drift
detection. The active approach monitors the concept, the
label, to determine when drift occurs before taking any
action. A passive approach, in contrast, updates the model
every time new data arrives, wasting resources. We mod-
ified our proposed feature selection algorithm to calculate
the correlation between features in a sliding window. Also, a
normalization algorithm is proposed to handle data stream.

6 Conclusion

Achieving good classification metrics for streaming data is
a challenge because neither the number of samples nor the
domain of each sample feature is bounded. Therefore, it
is mandatory to apply preprocessing methods to streaming
data to bound the domain of each feature and to select
only the most representative features for the classification
model. In this paper, we presented a method for data
preprocessing for classification of network traffic. The
method is composed of two algorithms. First, we propose
a normalization algorithm that enforces data to a normal
distribution within values between −1 and 1, which
produces a more accurate classification model and reduces
the classification error. Then, a feature selection algorithm
calculates the correlation of all pairs of features and
selects the best features in an unsupervised way. We select
the features with the highest absolute correlation. When
compared with traditional feature selection algorithms,
our proposal selects an optimized subset of features
improving the accuracy by more than 11% within a 100-
fold reduction in processing time. Moreover, we modified
our preprocessing method to work both on batch and on
streaming data. When applied over streaming data, our
preprocessing method was able to detect concept-drift due
to the sensibility for detecting changes on the accuracy over
a threshold.
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