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Abstract
This paper presents the first optimized software implementation of a SCAN decoder for Polar codes. Unlike SC and
SC-List decoding algorithms, the SCAN decoding algorithm provides soft outputs (useful for, e.g., parallel concatenated
decoders Zhang et al. IEEE Trans Commun 64(2):456–466 2016). Despite the strong data dependencies in the SCAN
decoding, two highly parallel software implementations are devised for x86 processor target. Different parallelization
strategies, algorithmic improvements, and source code optimizations were applied in order to enhance the throughput of the
decoders. The impact of the parallelization approach, the code rate, and the code length on the throughput and the latency
is investigated. Extensive experimentations demonstrate that the proposed software polar decoder can exceed 600 Mb/s on
a single core and reaches multi-Gb/s when using four cores simultaneously. These decoders can then achieve real-time
performance required in many applications such as software defined radio or cloud-RAN systems where network physical
layer is implemented in software.

Keywords Polar codes · SCAN decoding · Soft-inputs and Soft-outputs · SIMD · Multi-core · x86 processor

1 Introduction

Polar codes [2] are of a high practical interest since they
provide the possibility to implement efficient decoders with
good error correction performance. As such, they were actu-
ally selected as one of the channel codes for the future
5G mobile communication standard. The original decod-
ing algorithm for Polar codes is the Successive Cancellation
decoding algorithm (SC). Three improved decoding tech-
niques were then subsequently proposed: SC-List decod-
ing algorithm [3, 4], the soft-output Belief Propagation
(BP) algorithm [5, 6] and the Soft-CANcellation (SCAN)
algorithm [7–9]. The SC-List decoding algorithm provides
close-to-optimum decoding performance and was selected
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for the future 5G mobile communication standard. The BP
and SCAN algorithms have performance comparable to the
SC decoder but have the advantage of providing a soft out-
put. This feature can be exploited in a concatenated code
structure [1, 10] or more generally in an iterative system
where the decoder exchanges information with other com-
ponents of the communication chain (the demodulator, the
equalizer, ...). In the case of polar codes, to date, only
the BP and SCAN decoding algorithms can be used in
these so-called turbo-receivers. As an illustration, in [11–
15], different channel coding/modulation schemes require a
soft-output polar decoder.

On the implementation side, as an alternative to dedicated
hardware, the optimization of software implementations
is currently an active field for all error correction code
(ECC) families, e.g., LDPC [16] and turbo codes [17].
Optimizing a software decoder allows to (i) quickly evaluate
and compare new decoding algorithms or code families;
and (ii) meet real-time execution constraint (throughput and
latency) of software-defined radio (SDR) [18] or Cloud-
RAN systems (CR) [19].

Efficient SC decoding algorithm software implementa-
tions have been investigated in [20, 21]. Several Gbps on
an x86 single core was reached and up to 100 Mbps on a
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low-power processor targets [22]. In [23] and [4], the authors
have considered the SC-List decoding algorithm on account
of its enhanced error correction performance compared
with the SC decoding algorithm with drastically reduced
throughput levels. However, to date, none of the soft output
polar decoding algorithm (BP and SCAN) were optimized
in software. The BP algorithm has a high computation par-
allelism. Yet, it has a high computational complexity while
providing a moderate error correction performance which
limits the interest of it from practical software implemen-
tation [24]. The SCAN algorithm, which is also iterative,
exhibits not only a better correction performance than the
BP algorithm, but also a lower computation complexity.
Consequently, it has been subject to thorough algorithmic
and hardware research works, e.g., in [24, 25]. In [25], a
simplified SCAN algorithm named RC-SCAN is detailed.
In this paper, we focus on the implementation of the RC-
SCAN decoding algorithm on multi-core processors. This
is a first step towards the inclusion of SCAN decoders in
software defined “turbo-receivers”.

The remainder of the paper is organized as follows.
Section 2 describes polar codes, the SCAN and RC-SCAN
decoding algorithms. In Section 3, all the optimization
techniques that contribute to the speedup of the decoding
process are detailed. In Section 5, the experimental setup
is introduced and experimental results are summarized.
Section 6 concludes the paper.

2 Polar codes

2.1 Definition and encoding process

Polar codes are linear block codes of size N = 2n with n

a natural number. In [2], Arikan defined their construction
based on the nth Kronecker power of a kernel matrix

κ =
[
1 0
1 1

]
. The encoding process consists in multiplying

κ⊗n by a N-bit vector U that includes K information bits
and N − K frozen bits which are set to a known value.
This matrix multiplication can be efficiently implemented
by using a recursive function. This allows a reduction of
the encoding complexity to only N logN operations. The
location of the frozen bits in the vector U depends on both
the considered channel type and its noise power [26].

2.2 Original SCAN algorithm

The SCAN decoding algorithm has a sequential nature and
thus has strong data dependencies. This limits the amount of

parallelism that can be exploited. As suggested in [27] for
the SC decoding algorithm, the SCAN decoding algorithm
can be represented in the form of a tree that is recursively
traversed in the following order: root node, left child node
then right child node. In Fig. 1, a graph representation of
an N = 8 SCAN decoder is provided. Nodes are labeled
N d

p with d the depth of the node (d = n for root node and
d = 0 for leaf nodes) whereas p provides the node position
at the depth d (from left to right). Except for the leaf node,
each node N d

p stores internal LLR values named λ
d,p
E and

β
d,p
E . The data set E is composed of D = 2d−1 values. λ

values are evaluated in the descending order (step then
) whereas β are computed in the ascending order (step )

according to child node results.
After being sent over the transmission channel, the noisy

version of the codeword X is received in the form of
log-likelihood ratios (LLRs) and denoted as Y .

In Fig. 1, the root node N 3
0 receives the channel

information Y composed of 8 LLR values, and it
successively exchanges data with its left child node ( ) and
its right child node ( ) named N 2

0 and N 2
1 respectively.

Assuming that a non-leaf/non-root node N d
p receives

λ
d,p

[0,D−1]. In order to compute β
d,p

[0,D−1] ( ), it should
first recursively evaluate its child nodes as described in
Algorithm 1. The f1 and f2 functions used in Algorithm 1
are defined as follows:

f1(a, b, c) = f (a, b + c) (1)

f2(a, b, c) = f (a, b) + c (2)

with:

f (a, b) = sgn(a.b). min(|a|, |b|) (3)

Fig. 1 Recursive tree representation of a N = 8 SCAN decoder
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For leaf nodes, the processing is easier: β
0,i
i = 0 if the

leaf node corresponds to an information bit and β
0,i
i = +∞

if the leaf node is a frozen bit.
Finally, for the root node, few modifications are needed

with regard to the description provided in Algorithm 1.
Firstly, the λ0,n LLRs are replaced by channel LLRs (Y ).
Secondly, the β0,n LLRs are replaced by the decoder soft
outputs. Finally, one should notice that the whole tree can
be processed several times in an iterative manner.

2.3 Reduced complexity SCAN algorithm

The SCAN algorithm provides soft output information.
However, the memory and computation complexities of
its original description are higher than the SC decoding
algorithm (e.g., all β values have to be stored due to the
iterative decoding process which increases the memory
cost to N × logN). To solve these issues, a reduced
complexity SCAN decoding algorithm named RC-SCAN
was proposed in [25] providing equivalent correction
performance. Authors show that some of the computations
in SCAN decoding can be saved. For instance, the
λ computations for left child nodes are simplified by
removing the β term from f1 computation only for left child
node computations. The λ computation expression for left
child nodes becomes

f zero
1 (a, b) = f1(a, b, 0) = f (a, b) (4)

In addition, they demonstrate that some tree pruning opti-
mizations proposed to reduce SC computation complexity
are transposable to SCAN decoding [25].

The RC-SCAN algorithm allows a higher throughput
than the regular SCAN algorithm as shown in [25]. More-
over, the decoding performance of RC-SCAN algorithm
is slightly better than the regular SCAN when the same
amount of decoding iterations is executed. The lower com-
plexity and slightly improved decoding performance of the
RC-SCAN compared to the regular SCAN pushed us to
select it for our optimized software implementation.

3 Speeding up the software SCAN decoder

As a result of programmable architectures progress, high-
throughput software implementations of FEC decoders
became feasible for applications that were long consid-
ered practical only on ASIC devices [16, 17, 21, 28, 29].
Software implementations provide some clear benefits to
FEC decoders. At first, their high-throughput implementa-
tion enables to rapidly evaluate the decoding performance of
a given error correction code/algorithm. Moreover, they are
usually a viable solution to the real-time implementation of
FEC features on embedded systems. The challenging task in
a software implementation consists in mapping efficiently
the algorithm parallelism on an existing parallel architec-
ture designed to support different application types. Current
microprocessors have inherent built-in parallelism features
(SIMD, multi-core, etc) that may be considered and used to
efficiently execute concurrent tasks.

Polar codes have algorithmic characteristics such as their
memory access regularity which can lead to very high
throughput implementations even on embedded processors
[4, 21, 30] compared with other FEC families such as
LDPC and turbo code at similar FER performance [16,
17]. To date, only SC and SC-List decoding algorithm
were optimized in software. In this paper, the performance
of the first software SCAN polar decoder on x86 multi-
core platform is evaluated. This section describes (i) the
targeted device and the available programming models, (ii)
the analysis of the parallelism in the SCAN algorithm, and
(iii) the different optimization techniques that were applied
to the software SCAN decoder to maximize its throughput.

3.1 Selectedmulti-core architecture

x86 processors have multi-core architectures and were
initially designed to support general purpose computations.
Currently, they have high clock frequencies and they offer
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multi-level caches to minimize memory access latency. Intel
added complex SIMD instruction sets to its processors.
These instructions [31] can execute a single operation
type on multiple data sets simultaneously. In the most
advantageous cases, an SIMD unit performs up to 32 8-bit
parallel computations. SIMD parallelism mainly depends
on data format. However, using the SIMD feature is not
always easy and cost-free due to the algorithm computation
scheduling and/or the data alignment in the memory.

Current general purpose processors contain several proces-
sor cores on a single chip. For instance, Intel currently inte-
grates up to 18 processor cores in its Xeon E5 chip. Multiple
cores enable to exploit the SPMD (Single Program, Multi-
ple Data) programming model. If properly exploited, SPMD
can provide an important speedup. However, the speed does
not scale linearly with the number of cores because of the
cache coherence issues. Moreover, from a software point
of view, synchronization barriers are required, e.g., for data
exchange. Consequently, SPMD provides interesting perfor-
mance improvement when the thread runtime is important
enough to hide thread start/join penalties.

To reach high performance, both the memory footprint and
the number of instructions have to be reduced. Moreover,
the usage rate of SIMD units has to be increased. In the
next subsections, we detail the different parallelism levels
of the SCAN decoding algorithm. Then, the implementation
choices and the applied optimizations are presented.

3.2 Parallelism levels in the SCAN algorithm

To achieve high-throughput performance on a programmable
device, a software SCAN decoder has to exploit the overall
computation parallelism provided by the target. Three
parallelism levels were identified in the SCAN decoding
algorithm:

First parallelism level lies in the N d,p nodes (Fig. 1). As
shown in Algorithm 1, each node requires a large set of
computations to process the λ and β LLRs according to
upper and lower node LLRs. The amount of parallelizable
f1 and f2 computations depends on node level in the graph.
For a node N d

p , 2
d−1 computations of type f1 are first

performed to obtain the λ LLRs required by the left child
node execution. Then, 2d−1 f2 computations are required
for the right children node. Then, 2d−1 computations of type
f2 are executed to generate the λ LLRs that are inputs of
right children node. Finally, 2d−2 computations of type f1
and 2d−2 computations of type f2 are required to produce
the β LLRs that are returned to mother node (N d+1

p/2 ). At

higher graph levels, when 2d is higher or equal to the
SIMD data width, SIMD parallelization is straightforward.
It becomes however less efficient at lower graph levels

where the amount of computation to perform is less than the
SIMD data width. Therefore, these levels need complex data
padding. This parallelization approach without data padding
was selected for SC decoding algorithm implementation
in [32]. Note that due to the low computation complexity
of f1 and f2 functions and to the thread start & join
overheads, MPMD (Multiple programs, Multiple Data
streams) programming model feature is inefficient.

Second parallelism level exists between connected nodes in
the graph (descending order), e.g., N d

p and N d−1
2.p nodes. In

the SCAN algorithm, f1 computations of N d−1
2.p node can

start before the end of the f1 computations of Nd node.
Considering this, it is possible to save a small amount of
memory accesses at Nd−1 level by reusing the calculated
LLRs immediately instead of storing them back into the
memory. However, this parallelism is mainly limited by
the left edge processing. It also increases the algorithm
description complexity that is why it is discarded in real
software implementation.

Third parallelism level is located at the frame level. Two
parallelism approaches can be explored. The first one
takes advantage of the iterative nature of the algorithm. A
pipelined decoder can execute the decoding iteration i + 1
for frame q and iteration i for frame q + 1. However,
when an early termination criterion is applied to save
useless decoding iterations as shown in [25], the parallelism
becomes irregular and thus inefficient. The second approach
consists in taking advantage of inter-frame parallelism.
Several consecutive frames are simultaneously decoded at
once. Indeed, the same computation sequence is executed
over the different data sets. This approach is an efficient
parallel processing method but it requires data interleaving
and deinterleaving steps before and after the decoding
process to align the data in memory. It was demonstrated to
be the most advantageous way to achieve high-throughput
performance for SC decoding algorithm the [21] at the cost
of an increased latency.

In this work, two parallelization schemes taking advan-
tage of massively parallel devices but providing different
implementation tradeoff are explored. Indeed, they seem to
answer different use cases.

A first approach called intra-frame parallelization
focuses on the first parallelism level. Computation set in
graph nodes is optimized to benefit from SIMD features.
The P processor cores are then used to decode P distinct
frames in parallel. This way should provide low processing
latency in applications like turbo-based equalization where
a single information frame is received at once [9].

A second approach called inter-frame parallelization
focuses on the third parallelism level. It decodes a set
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of F × P frames in parallel. F frames are processed
in parallel by the SIMD units of one processor core
while the P processor cores are used in an identical way.
This way should provide higher processing regularity in
systems implementing, e.g., parallel concatenated decoders
[1] where multiple information frames are available.

4 Algorithm architecture matching

In the following subsections, we present different optimiza-
tion techniques applied to both SC and RC-SCAN decoders
using intra- and inter-frame parallelism to achieve high
throughputs for SCAN decoders.

4.1 Tree cut

In [27], it was shown that some of the computations
in the SC decoding are not necessary. Depending on
the frozen bit positions in the code, some parts of the
graph become useless and the associated computations
are either simplified or simply discarded. In [25], an
identical demonstration was made for the SCAN algorithm
though single parity check and repetition subcodes were not
simplified. Let us consider a node N d

p corresponding to the

decoding of a subcode of size D = 2d . Assuming that the
considered subcode has a code rate 0, the node N d

p always

returns β
d,p

[0,D[ = +∞ regardless of the provided λ
d,p

[0,D[.
Indeed, all bits in this subcodes are frozen. On the contrary,
when none of the bits is frozen (rate-1 subcode), the N d

p

always returns β
d,p

[0,D[ = 0. Removing these parts from the
graph significantly reduces the amount of computations in
the SCAN decoding algorithm. Each node in the tree is
characterized by its code rate which can be R = 0, R = 1
or 0 < R < 1. This information is stored in a static vector
for each node as it is constant for a given polar code. When
a node N d

p is called, it retrieves its associated code rate
then it performs the processing accordingly as shown in
Algorithm 2.

4.2N 2
p node unrolling

The singular tree-based representation of the SCAN decod-
ing algorithm motivates decoder implementations from a
recursive-based software description. It actually simplifies
the algorithm’s description but generates many recursive
function calls which are time-consuming. Indeed, a function
call needs register saving on the memory stack. At a higher
level of the graph, where a large set of f1 and f2 compu-
tations are performed, this runtime overhead is negligible.
However, at lower graph levels, such as for node N d

p with
d < 3, the additional runtime cost is non-negligible.

In order to avoid multiple recursive calls, the description
of Algorithm 1 was completely unrolled for the level
d = 2 nodes. Optimizing these lower level nodes,
execution reduces the overall decoding time. Subsequently,
the number of clock cycles spent in the control of function
calls is reduced which decreases the amount of the executed
instructions. Moreover, some control structures can be
removed, e.g., loop structures required to process λ and β

values (f1 and f2 computations) inside nodes.
Unlike the SC optimization proposed in [32], program

unrolling is only applied to N 2
p nodes. In fact, this choice

has three main advantages compared to [32]:

1. It limits the increase in program size and thus reduces
the number of cache misses at runtime.

2. A single program description can process any code
length and code rate without requiring neither regener-
ation nor recompilation of the source code.

3. It insures the decoder’s scalability for long-length codes
as stated in [32] and [33].

4.3 Memorymapping

The amount of memory that is necessary during the algorithm
execution and its access types have a large impact on the
decoder throughput. This is mainly due to the increasing cache
misses. Memory access cost at runtime mainly depends on
(a) the information location in the cache memories and (b)
the access patterns regularity. Fortunately, the SCAN algo-
rithm processes the data set linearly without random mem-
ory access, unlike LDPC codes [16] or turbo codes [17].
This characteristic enables efficient memory bandwidth
usage. However, to reach the highest performance, it is nec-
essary to minimize the decoder’s memory footprint so as to
limit the cache deficiency probability.

The first descriptions of the SCAN-based algorithm [7, 8]
and its first hardware implementation [24] consumed a large
amount of memory to store the λ and the β values. During
the decoding of one frame, the SCAN decoder has to store
the following: N channel values; N log2 N LLRs (λd,p

[0,D[)
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and N log2 N partial sums (βd,p

[0,D[). The memory footprint
of the decoder is

μA = 2N log2 N + N (Elements) (5)

For fixed-point data format used in hardware implemen-
tations [24], the memory complexity is also a limiting factor
when N increases.

In [25], the proposed algorithmic transformations reduce
the memory requirements for the β values while for the
hardware architecture, the amount of β values to store
is reduced from N(log2 N) to 3 × N . Consequently, the
memory footprint can be further reduced:

μC = 5 × N (Elements) (6)

For software implementation, the technique proposed
in [34] aiming at reducing the amount of λ LLRs to N

can also be applied to β LLR values. Indeed, in the RC-
SCAN algorithm, the β LLRs are not alive during the same
decoding time period. The memory mapping proposed in
[21] for λ values can then be reused also for β values. The
memory footprint of β values also decreases to N elements.
Finally, the memory footprint of the proposed RC-SCAN
decoder is reduced to

μD = 3 × N (Elements) (7)

This memory mapping is 1.6× less memory consuming
than the one used in hardware RC-SCAN decoder
implementation.

4.4 LLR data packing

In the previous section, we mentioned that LLR elements
and computations are performed using the 32-bit floating-
point format. It was demonstrated in [25] that 7-bit fixed-
point representation is sufficient for λ and β LLRs to
achieve decoding performance close to a floating-point
format representation even at FER=10−7 (< 0.1 dB). An
8-bit fixed-point representation is selected. Indeed, it is
a natural width of the processor data path. Moreover, it
reduces the correction performance penalty (close to 0 dB)
as shown in the experimental section (Figs. 4 and 5). The
decoding performance of several other polar codes were
simulated but not reported in the figure. In all of the
simulated codes, 8-bit quantization was sufficient to get
very close to floating point decoding performance.

In the fixed-point description of the RC-SCAN decoder,
the overall LLR elements (Y , λ, and β) in the decoding
algorithm are converted to 8-bit signed integers. This data
format transformation impacts on the memory footprint of
the software SCAN decoder, reducing it by a factor of four.

This memory saving helps to reduce the runtime cache
deficiency probability and thus to improve the decoding

throughput, especially for long frames. In the following
subsection, it will be shown that packing data into 8-bit
integers also increases the SIMD usage rate (up to 32
computations in parallel can be performed on 8-bit fixed-
point values whereas 8 floating point computations can only
be performed simultaneously).

4.5 SIMD parallelization

Today’s multi-core processors include SIMD technology
[35, 36]. The targeted Core-i7 processor supports up to
AVX2 instruction-set. It can perform 32 8-bit computations
simultaneously.

In the current work, two orthogonal approaches are used
to take advantage of computation parallelism:

The first approach explores the intra-frame parallelism.
One frame is decoded at a time and loop computations in
nodes are vectorized. Speedup can reach up to 32× with
the 8-bit fixed-point format when nodes have more than 2×
SIMD λ and β LLRs. For lower level nodes in the graph,
the SIMD units are not fully assigned and the acceleration
factors are lower.

The second approach takes advantage of the inter-
frame parallelism. F independent frames are decoded in
parallel. Consequently, with regard to a non-vectorized
implementation, the speedup is constant to 32× for a 8-bit
fixed-point version.

Inter-frame approach is more attractive, yet it suffers
from massive misaligned memory accesses. Indeed, to
process the same X elements for the different frames in
a SIMD way at the same time, non-contiguous read/write
accesses are necessary. To solve this issue, a data
interleaving process [21] has to be performed before the
decoding can start. Similarly, a deinterleaving step has to
be performed after the decoding process. In other words,
channel information X coming from the F frames are first
transformed to obtain an aligned memory data structure.

In order to maximize the efficiency of the proposed
SCAN decoder implementation, some parts of the source
code use SIMD primitives. Figure 3 shows a code snippet
of the f1 function implementation optimized for AVX2
instruction set. Figure 2 shows a naive non-optimized
implementation of the f1 function together with a SIMD-
optimized version both in floating-point format. An analysis
of the characteristics of the two compiled functions was
done with Intel Architecture Code Analyzer (IACA). On an
Intel Core-i7 processor, the naive floating-point f1 function
uses 10 instructions and takes 18 clock cycles to execute.
In fact, the optimized function is composed of the same
number of instructions but the processing latency is only
16 clock cycles. The performance improvement comes from
the fact that the SIMD f1 function processes 8 LLR values
in 16 cycles. The computation time per LLR is thus 2 cycles



Ann. Telecommun. (2018) 73:401–412 407

Fig. 2 Initial and
AVX2-optimized of f1 function
source codes (floating-point data
format)

while the naive f1 function description processes only one
LLR value per execution.

The fixed-point version of the f1 function provided in
Fig. 3 is more complex. Its higher description complexity
comes from the processing of the +∞ value that is not
defined in 8-bit fixed-point format. To solve this special
case, we have taken advantage of the symmetry of the
signed 8-bit fixed-point format and used the −128 value to
encode +∞. Runtime tests are performed to ensure that,
e.g., −128 + 127 = −128. The latency of the fixed-
point version of the f1 function which generates 32 LLR
values simultaneously is estimated to 21 clock cycles by

the IACA tool. It is 1.3× slower than the floating point
implementation but it processes 4× more LLRs. Compared
with f and g functions that are the edge processing
functions in the SC decoding algorithm [21], the execution
time of the f1 and f2 functions are about twice slower.

5 Experimental results

The software implementations of the SCAN decoder are
described in standard C++11 language. The genericity of
our C++ source code enables a single compiled source

Fig. 3 AVX2-optimized of f1
function source code
(fixed-point data format)
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code to decode any polar code (different frame lengths
and code rates) without neither regeneration nor recompi-
lation. The source codes were compiled with INTEL C++
compiler 16 toolchain. The following compilation flags
were added: -march=native -fast -fopenmp
-opt-prefetch -unroll-aggressive.

The evaluation platform used for measuring the charac-
teristics of the SCAN decoders is composed of an INTEL
Haswell Core-i7 4960HQ CPU. The turbo-boost option was
switched on. Hence, the operating clock frequency of the
processor reaches 3.6 GHz when a single processor core is
used and 3.4 GHz when the four cores are switched on.

A complete evaluation of the proposed parallel pro-
cessing SCAN decoders is carried out in the following
subsections.

5.1 Error correction performance

Before analyzing the optimized decoder throughput, the
error correction performance was investigated in order to
verify the correctness of the RC-SCAN decoder implemen-
tations. The decoding performance is actually equivalent
to the one reported in [24]. Figure 4 provides the frame
error rate (FER) for the 215 Polar code with floating-point
and fixed-point decoders. SCAN-x refers to the decoding
performance of a SCAN decoder with x iterations. Random
codewords and AWGN channel are considered for simula-
tion. The frozen bits are selected for σ = 0.419. Figure 5
provides the same curves for a 211 polar code. In both cases,
the fixed-point format reaches decoding performance very
close to floating-point decoders.

The selected fixed-point format representation enables to
achieve similar performance to a floating point representation

as demonstrated by the FER performance shown in Figs. 4
and 5.

5.2 Throughput performance

Two different variants of the SCAN decoders are compared
by considering the intra- and inter-frame parallelizations in
fixed-point format. The time required to decode F frames
includes (i) the writing of the F frames in the processor
memory, (ii) the writing of the F estimated codewords, (iii)
the decoding of F frames with the SIMD decoder, and (iv)
the ordering (�)/reordering (�−1) functions (only for inter-
frame implementations). The intra-frame decoder processes
only F = 1 frame at the time. For the inter-frame decoders,
the processor core processes 32 frames in parallel. For the
experimentation, the air throughput called � is estimated
thanks to the Chrono API from Boost library.

The error correction performance increases along with
the code length N and it is likewise for both computation
complexity and memory footprint. Hence, we found
relevant to evaluate the impact of the code length on the
decoder throughput. The throughput was measured for one
decoding iteration for each decoder (intra-frame and inter-
frame). The results are reported in Fig. 6 for two different
code rates.

These results demonstrate that the proposed optimized
software SCAN decoders reach high throughputs. For a
code rate 1/2, the throughputs of the intra-frame decoder
vary from 387 Mbps (n = 220) to 529 Mbps (N =
212) while for the inter-frame decoder throughputs range
from 324 to 1004 Mbps. For a code rate 9/10, the air
throughputs of the two decoders are higher than their rate-
1/2 counter part. This is also the case for floating-point

Fig. 4 Decoding performance of
the floating-point SCAN
decoders for a (32768, 29504)
Polar code using floating-point
data format and b (32768,
29504) Polar code using 6b
quantization format for channel
and 8b quantization format for
LLRs

a b
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Fig. 5 Decoding performance of
the floating-point SCAN
decoders for a (2048, 1723)
Polar code using floating-point
data format and b (2048, 1723)
Polar code using 6b quantization
format for channel and 8b
quantization format for LLRs

a b

versions. Regarding the code rate 9/10 configuration, the
throughputs of the intra-frame decoder vary from 523 Mbps
(n = 220) to 838 Mbps (n = 212) while for the inter-frame
decoder throughput range from 337Mbps (n = 220) to 1421
(n = 210) Mbps.

The intra-frame parallelization approach does not always
provide the best performance. For a code rate 1/2, the inter-
frame decoder is more efficient when n ≤ 18, while for
a code rate 9/10, it is faster when n ≤ 15. The lower
throughput of the intra-frame decoders is due to the data
padding required for the lower level nodes d < 6. It
drastically reduces the efficiency of the intra-frame decoder
because the SIMD units have to perform a large set of
useless computations and data padding. It can be noticed

Fig. 6 Measured coded throughputs on a single core of the Core-i7
processor with fixed-point data formats and AVX2 instruction set

that the code length and code rate have also an impact on
the throughput performance. Besides, the constant SIMD
parallelization leads to a high speed for the inter-frame
decoder which are less important when N increases. Indeed,
a constant parallelism is achieved at the cost of increased
memory requirements. When N increases, it leads to high
memory footprint which gives rise to a large set of cache
misses that counterbalances the processing efficiency.

The SCAN decoding algorithm is based on an iterative
process. As shown previously, more than one decoding
iteration can be executed on the data set to improve
the decoding performance. The decoder’s throughput
decreases along with the number of iterations. Since the
amount of computation is the same at each iteration,
the throughput decreases linearly with the number of
iterations. This was actually verified experimentally for
a large set of code lengths and code rates. To facilitate
the experimentations understanding, all the throughput
evaluations are provided for one decoding iteration. When
several iterations are performed, the decoder throughput
can be safely approximated by the throughput of a single
iteration decoder divided by the number of iterations.

An important parameter in most of the digital commu-
nication systems is the decoding latency (L), which is the
time required by the decoder to obtain a decoded data. It is
reported in Fig. 6 by using Eq. 8 with N the frame length
and F the SIMD computation parallelism level (F = 1 for
intra-frame decoders).

L = N × F

throughput
(8)

The processing latency depends on the considered
parallelism (intra- or inter-). Indeed, the inter-frame
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Fig. 7 Speedup factor achieved using multiple processor cores

decoder processes F frames. This requires that the system
buffers the data which generates latency penalty before
beginning of the decoding process. Consequently, inter-
frame decoders processing latency is at least F times higher
than intra-frame decoders when an equivalent throughput is
considered. For instance, for the fixed-point decoders with
N = 215 and a code rate 9/10, the intra-frame decoder
latency is about 50μs whereas the latency of the inter-frame
decoder is 1574μs (32× higher).

5.3 Impact of themulti-threading

Current embedded CPUs include multiple processing cores.
The performance of computation intensive algorithms
running on a multi-core processor depends on the number
of available cores. The speed is also highly impacted by the
processor’s memory architecture. It generates more cache

deficiencies and limits the speedup offered by the multi-core
processing.

OpenMP directives [37] were included in the decoder
descriptions to perform multi-core execution. One thread is
used per available core. Assuming P cores are available, the
P threads are first created. Then, each core processes F =
32 frames in parallel for inter-frame decoders and F = 1
for intra-frame decoders. Finally, threads are synchronized
before a new set of F frames is launched. Figure 7 shows the
measured acceleration of the fixed-point decoders for one
iteration, P = {2, 4} cores and a code rate R = 1/2.

A maximum speedup of ∼ 3.6 is reached for 1024 ≤
N ≤ 4096 and M = 4 for inter-frame decoders. The
improvement is slightly lower (∼ 3.4) for the intra-frame
decoders. The maximum speedup decreases with N for the
three aforementioned reasons. Note that for the inter-frame
decoder, the speedup significantly decreases when N > 15.
This due to its memory footprint that is 4× higher than in
a single-core scenario. The intra-frame decoder provides a
more constant speedup factor as N increases.

Despite the decreasing speedup, the intra-frame decoders
reach throughputs of 3600 Mbps when N = 210 and
654 Mbps with N = 220, if four processor cores are
switched on. They provide throughputs of 1753 and 1199
Mbps in similar conditions. These results show that the
two decoder implementations on a multi-core processor can
reach throughputs higher than 1 Gbps.

Compared with hardware solutions [24, 25], the proposed
software implementations offers a higher flexibility at equal
throughput performance. Indeed, compared with an FPGA
prototype [24], where the throughput reaches 17 Mbps for
a (1024, 512) code, the software implementation delivers
more than 1 Gbps on a single Core-i7 processor core. In
comparison with ASIC circuit result which reports a
throughput of 2208 Mbps for a 215 code [25], the perfor-
mance level achieved by the proposed software solution

Table 1 Throughput and
latency comparison of different
software implementations of
polar decoding algorithms for
(2048, 1723) code

Related work decoders Proposed SCAN decoders

Algo. Par. Targ. List μs Mbps Par. Targ. Iter. μs Mbps

SC [21] Inter C1 – 30 2172 Inter C1 1 54 1202

2 607 107

4 306 211

SC [30] Intra C2 – 1 1293 Intra C1 1 2 839

2 4 421

4 8 211

SCL [39] Intra C3 8 490 2.09 Intra C1 1 2 839

SCL [40] C4 8 392 2.61 2 4 421

SCL [40] C4 32 1531 0.67 4 8 211

C1 Core-i7 4960HQ, C2 Core-i7 4770S, C3 Core-i7 2600, C4 Core-i7 4790k
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when four processor cores are switched on is slightly higher
(about 2.4 Gbps).

5.4 State-of-the-art software polar decoders

Among all existing polar decoding algorithms, one should
keep in mind that only the BP decoder actually delivers a
soft output. However, in order to have an idea of the speed
of the proposed SCAN decoder in comparison with other
software polar decoders, Table 1 shows the throughput and
latency of SC and SCL optimized software polar decoders.

From Table 1, one can notice that the SC decoder has the
lowest complexity and then provides the highest throughput.
The SCAN is always slower than SC software decoders
but can have slightly improved decoding performance if the
number of iterations is higher than 1.

The SCL decoding clearly outperforms the SCAN in
terms of decoding performance at the cost of an increased
complexity. The throughputs of the state-of-the-art SCL
software decoders is at least 100 times lower than SC or
SCAN software decoders.

The only fully relevant algorithm to compare with is
the BP decoding implementation [38] because it does
provide soft outputs. However, this algorithm hardly reaches
the decoding performance of SC and SCAN decoders
while requiring a large number of iterations (at least 20).
In terms of throughput, this large number of iterations
limits the throughput to a few megabits per second. In
[38], throughputs of 6.04 and 2.11 Mbps are reported for
(1024, 512) and (2048, 1024) polar codes, respectively.
The implementation platform was a NVIDIA GTX 560
Ti GPU device. For the same polar codes, the proposed
inter-frame parallelized decoders deliver higher decoding
throughputs: 1004 and 796 Mbps whereas intra-frame
parallelized decoders reach 506 and 529 Mbps. It shows the
interest of the proposed x86 implementation for soft output
polar code decoding.

6 Conclusion

In this paper, two optimized software implementations of
the SCAN decoding for Polar codes are detailed. The intra-
frame and inter-frame parallelization strategies are exploited
in order to efficiently map the decoding process to a
multi-core processor. In addition to SIMD parallelization,
the decoder description was optimized at algorithmic and
source code levels. The enhancements lead to improved
results which reach multi-Gbps for the software decoders.
Reported throughputs are higher than the ones reported
for ASIC and FPGA implementations at the cost an
increased power consumption. However, these performance

levels obtained on a laptop CPU target associated with
software flexibility should meet with current and future
communication networks or Cloud-RAN systems where
most of the processing function would be implemented in
software.
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