
Improving spectrum efficiency in self-organized femtocells
using learning automata and fractional frequency reuse

Maryam Nasr-Esfahani1 & Behrouz Shahgholi Ghahfarokhi1

Received: 4 September 2015 /Accepted: 17 July 2017 /Published online: 13 August 2017
# Institut Mines-Télécom and Springer-Verlag France SAS 2017

Abstract Deploying heterogeneous networks (HetNets) and
especially femtocell technology improves indoor cell cover-
age and network capacity. However, since users install
femtocells which usually reuse the same frequency band as
macrocells, interference management is considered a main
challenge. Recently, fractional frequency reuse (FFR) has
been considered as a way to mitigate the interference in tradi-
tional as well as heterogeneous cellular networks. In conven-
tional FFR methods, radio resources are allocated to
macrocell/femtocell users only according to their region of
presence ignoring the density of users in defined areas inside
a cell. However, regarding the unpredictability of cellular traf-
fic, especially on the femtocell level, smart methods are need-
ed to allocate radio resources to the femtocells not only based
on FFR rules, but also traffic load. In order to solve this prob-
lem, new distributed resource allocationmethods are proposed
which are based on learning automata (LA) and consider two
levels of resource granularity (subband and mini-subband).
Using the proposed methods, femto access points learn to
choose appropriate subband and mini-subbands autonomous-
ly, regarding their resource requirements and the feedback of
their users. The goal of the proposed methods is reduction of
interference and improvement of spectral efficiency.
Simulation results demonstrate higher spectral efficiency and
lower outage probability compared to traditional methods in
both fixed and dynamic network environments.
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1 Introduction

The usage of smartphones by home users is widespread [1],
and the traditional cellular design is not capable of supporting
high numbers of users through the expensive deployment of
macrocells. Accordingly, low-power short-range femto access
points (FAPs) have recently been introduced. Femtocell tech-
nology is a highly promising technique which can be used to
tackle high amounts of traffic load, increase cell coverage and
capacity, and improve the quality of home and edge users in a
cost-effective manner [2]. In spite of femtocell benefits,
femtocell deployment faces many challenges such as security,
mobility and handoff management, auto-configuration, and
especially interference management [3]. Since FAPs are
installed and managed by users, their location as well as the
pattern of their on/off switching is not known for the underly-
ing cellular systems [4]. Moreover, as femtocells usually ex-
ploit the same frequency band as macrocells, interference mit-
igation techniques should consider not only co-tier interfer-
ence (i.e., the interference occurring between neighboring
femtocells) but also cross-tier interference (i.e., macro-to-
femto and femto-to-macro interference) [5–8]. Therefore, a
self-organized mechanism is required for FAPs to avoid such
interferences [7].

Fractional frequency reuse is considered to be an effective
method capable of reducing co-channel interference and in-
creasing the network capacity for orthogonal frequency-
divisionmultiplexing (OFDM)-based HetNets [9, 10]. In most
FFR schemes, the macrocell area is split into a number of
subregions, and the frequency band is divided into subbands
to allocate the different subbands to those subregions [5]. In
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general, FFR deployment schemes are categorized as static or
dynamic. In static FFR schemes (such as strict FFR, soft FFR,
FFR-3, and optimal static fractional frequency reuse (OSFFR)
[6]), the assignment of subchannels to the user equipment
(UEs) is performed statically with regard to the subregions
in which the UEs are located [6]. For instance, in OSFFR,
the macrocell coverage is divided into two zones: the center
and edge zones, each including six sectors. From the other
side, the entire frequency band is partitioned into seven parts:
one is considered for the center zone and the other six are
assigned to sectors of the border area, one part per each sector,
as shown in Fig. 1. Accordingly, eachmacrocell UE (MUE) in
the edge zone may experience intercell interference from one
of the neighboring macrocells assuming the first tier. For ex-
ample, in Fig. 1, the MUEs located in sector ×1 of macrocell,
one may experience interference only frommacrocell 2. Also,
since different subbands are used in the center and edge zones,
intracell interference is avoided. In this scheme, the FAPs
located in the center zone use only the subbands used by
the MUEs in other sectors of the edge zone and not used in
the adjacent border area of the current sector. However, the
FAPs in the edge zone can exploit all subbands excluding
the subbands assigned to the MUEs in that sector of the
edge zone [6].

In contrast to static FFR methods which are based on
hard reservation, dynamic FFR schemes can adaptively
allocate radio resources to subregions and/or intelligently
adjust the optimal radius of the center zone with regard to
channel conditions and traffic load [11, 12]. However,
these FFR methods usually select the best spectrum
partitioning concerning the signal-to-interference-plus-
noise ratio (SINR) level [4, 9, 10, 13]. Moreover, most
of the contributions in the literature focus on centralized
resource allocation techniques [7, 14]. Since centralized
approaches run the risk of the single point of failure on
the one hand and since femtocells are installed by the
users themselves on the other, such techniques are not
appropriate for femtocell networks.

The literature also includes distributed resource allocation
methods (e.g., [15–17]) based on multi-agent learning tech-
niques, where FAPs select appropriate subchannels with re-
gard to local user feedbacks.With such schemes, due to a large
number of non-organized subchannels, the search space is
large and, consequently, performance is not appropriate with
regard to the dynamic nature of the HetNet environment.
Therefore, to cope with this problem and to better reduce
interference and improve spectral efficiency as a result, in this
paper, a combination of the FFR idea with the multi-agent
learning concept is proposed to ensure self-organized resource
allocation methods for femtocells. The proposed methods can
choose adequate resources with respect to the requirements of
users and the status of network.

In this paper, two self-organized fractional resource alloca-
tion methods are proposed where each FAP independently
tries to learn the best resource allocation strategy using leaning
automata (LA). The methods consist of two learning stages. In
the first stage, each FAP tries to determine the best subband
based on received feedbacks from its UEs and the macro base
station (MBS) independently. However, as the size of the
subbands may be large compared to femtocell needs, a more
quantized level of resource partitioning, namely, mini-
subband, is introduced and the second stage of the learning
process is performed on the mini-subband level to further
improve the utilization of the radio resources The second stage
only considers the feedback of FAP users (in terms of SINR
level) and chooses one or more mini-subbands based on the
aggregate demand of FAP users as regard the selected subband
from stage 1. The second proposed method differs from the
first in its second stage. In this method, distinct learners are
exploited in the second stage according to the total resource
demands of FAP users in order to improve convergence speed.
It is noteworthy that the proposed methods give more priority
to MUEs and no interaction is required between FAPs.

The rest of this paper is organized as follows: Related work
is explained in the next section. Subsequently, the system
model, problem formulation, and proposed methods are

Fig. 1 OSFFR deployment
scheme for HetNets [6]
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described in Sect. 3. Simulation results and discussions are
presented in Sect. 4. Finally, the conclusion and future work
are given in Sect. 5. Table 1 shows the abbreviations used in
this paper and their definitions.

2 Related work

In OFDM systems, three different radio resource allocation
techniques are available: power control, time-frequency re-
source allocation, and hybrid schemes. Besides, there are
two different approaches for employing these techniques,
i.e., centralized methods and distributed methods. However,
considering the ad hoc nature of femtocell networks and re-
garding the fact that femtocells are installed and managed by
users at unknown locations, it is essential to focus more on
distributed mechanisms. Several studies aim at reducing inter-
ference and improving spectral efficiency using power control
[1, 2, 4, 5]. However, the complexity of power control mech-
anisms, especially when the movement of the users is consid-
ered, is significant. On the other hand, numerous studies [3,
6–12] are dedicated to time-frequency resource allocation.
The authors in [6] propose a distributed resource allocation
technique based on game theory and Gibbs sampler to miti-
gate interference. Sudeepta Mishra and Siva RamMurthy [18]
present a distributed power and physical resource block (PRB)
assignment method for Long-Term Evolution (LTE) femtocell
networks. The proposed method considers the location of
the UEs on their interfering FAPs. The method includes an

iterative elimination algorithm for PRB allocation and an
adaptive power control algorithm to find the required
transmission power of each PRB. In [19], subchannel and
transmit power allocation is formulated as an optimization
problem in which the goal is to maximize the overall up-
link throughput while guaranteeing minimum rate require-
ments of the femto user equipments (FUEs) and MUEs.
The matching theory has been exploited to model the prob-
lem, and distributed algorithms are proposed on its basis.
Moreover, several studies [7, 8, 14] suggest resource allo-
cation algorithms based on reinforcement learning. In these
approaches, each FAP is defined as an autonomous agent
with local knowledge from the environment, assuming no
communication between FAPs.

Distributed Q-learning mechanisms are proposed in [7, 8],
in which femtocells choose the appropriate resource allocation
policy based on local information, aiming to mitigate cross-
tier interference in a self-organized manner. There, MBS pe-
riodically receives RSSI reports from MUEs and sends some
control messages to the FAPs. Then, each FAP uses a Q-table
to select the best action with respect to those environment
feedbacks. This scheme is extended further in [14] using the
combination of fuzzy inference system and multi-agent rein-
forcement learning.

Similarly, Bernardo et al. [10, 11] have proposed a distrib-
uted mechanism to maximize spectral efficiency in HetNets
where FAPs are introduced as autonomous agents consisting
of three different parts: RL dynamic spectrum assignment
strategy (RL-DSA), cell characterization entity (CCE), and
observer status. The RL-DSA algorithm plays the most im-
portant role, i.e., learning and selecting the best channel as its
action. Moreover, CCE is a kind of system model, which
estimates the feedback of the environment. Finally, observer
status is responsible for triggering the RL-DSA algorithm and
defining the cell state and updating allocation policy accord-
ing to network conditions. Additionally, two distributedmech-
anisms have been proposed in [20] that exploit game theory
and Q-learning. In the first scheme, each FAP adaptively
chooses resources according to instant reward and the behav-
ior of other agents while the second approach applies a trial-
and-error mechanism to attain the best performance. Similarly,
Semasinghe et al. [21] propose an evolutionary game theory-
based distributed subcarrier and power allocation scheme for
OFDMA-based small cells to learn from the environment and
make individual decisions with minimum information ex-
change. The utility function of the small cells depends on
average SINR level and data rate. Likewise, Xu et al. [22]
formulates the resource allocation problem as a non-
cooperative rate maximization game where the utility of each
FAP is its capacity. Later, a utility-based learning model was
proposed that requires no information exchange between
FAPs. However, in the above learning methods introduced
in the literature, the possible actions of the learners include

Table 1 Abbreviations used in this paper

Abbreviations Definition

BS Base station

CCE Cell characterization entity

FAP Femto access points

FFR Fractional frequency reuse

FUE Femto user equipment

HetNets Heterogeneous networks

LA Learning automata

MBS Macro base station

MUE Macrocell UE

OFDM Orthogonal frequency-division multiplexing

OSFFR Optimal static fractional frequency reuse

PDF Probability density function

RL-DSA RL dynamic spectrum assignment strategy

RSRP Reference signal received power

RSSI Received signal strength indication

SINR Signal-to-interference-plus-noise ratio

UE User equipment

PRB Physical resource block
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the set of subchannels/PRBs where the large size of the set
affects the convergence speed. As a result, it seems only log-
ical to exploit FFR resource allocation rules to improve con-
vergence speed in self-organized learning-based methods.

FFR has recently been considered as an intercell interfer-
ence mitigation technique designed to improve spectral effi-
ciency. Researchers provide a wide comparison among four
different static FFR schemes for downlink resource alloca-
tions in [15]. However, as the static resource allocation may
not be preferable for dynamic conditions, some previous stud-
ies have focused on centralized dynamic resource allocation
approaches based on FFR. For example, Oh et al. and Lee
et al. [13, 23] employ a central controller to assign subbands
to FAPs andMBS at the expense of higher signaling overhead
and complexity. In [16], each FAP repeatedly transmits the
preamble signal. So, each MUE provides a neighboring list
of the FAPs to its MBS, which is finally used to create a
table to determine available resources for each FAP. Lee
et al. [17] propose a centralized mechanism to reduce in-
terference between femtocells using FFR. They employ a
centralized server which evaluates the interference be-
tween the femtocells and allocates orthogonal resources
based on evaluation.

Part of the literature focuses on distributed resource assign-
ment methods based on FFR. The authors of [3] propose a
self-organizing spectrum allocation mechanism for femtocell
networks based on the FFR technique. The method exploits
random frequency hopping where each user selects a random
subcarrier for transmission with respect to a given probability
density function (PDF). Zhang et al. [9] propose a new inter-
ference management strategy to select the appropriate FFR
scheme that improves the system throughput with respect to
system constraints such as spectral efficiency and outage
probability. For this purpose, at first, the spectrum is allocated
to macrocells according to an FFR scheme. Then, each FAP
sorts neighboring macrocells according to the reference signal
received power (RSRP) and chooses the subband with the
least RSRP. In [24], a distributed resource allocation mecha-
nism is proposed for HetNets that not only improves user
throughput but also reduces the interference on the uplink of
the UEs. Whenever a FAP is plugged in, it calculates the
distance from neighboring MBSs and the proper angle to all
nearby MBSs to adjust its transmission power. Then, the FAP
evaluates the set of possible transmission rates and selects the
best subband that supports the target rate. Saadat et al. [25]
present an algorithm for cognitive FAPs that guarantees a
minimum QoS for FUEs regarding bandwidth while ensuring
frequency reuse at the macrocell level. The solution con-
siders a specific FFR scheme where part of the PRBs
are allocated to the outer region of the macrocell (with a
reuse factor of 1/3), and the remaining RBs are dynami-
cally assigned to each sector in the inner region of the
macrocell based on the demand of the MUEs.

As mentioned before, most FFR techniques restrict
femtocells to the usage of specific frequency subbands while
it is possible for intelligent FAPs to choose other subbands that
are out of the frequency plan of a static FFR scheme, to im-
prove the reuse and, consequently, spectrum efficiency. On the
other hand, most of the previous works assume only one user
with a constant request rate in each femtocell and mostly as-
sume a network with static conditions. The primary purpose of
this paper is to introduce more inventive self-organized re-
source allocation methods for femtocells to improve spectral
efficiency in FFR-based HetNets. The proposed methods can
also be rapidly adapted to the dynamic conditions of the net-
work. In our proposed learning-based methods, the conver-
gence speed has been studied by reducing the search/action
space exploiting the FFR concept. Also, the proposed
methods do not need any information exchange between the
FAPs and only local femto and macro feedbacks are consid-
ered which diminishes the signaling overhead. A preliminary
version of this research has already been presented in [26]. In
that work, a learning automata is employed by each FAP to
choose the appropriate subband based on previous feedbacks
received from its local UEs. However, the study considers
equal-size subbands which is lacking when FAPs with various
user demands are considered. In the current research, we have
extended our previous work regarding two levels of resource
granularity in the learning process and also addressed
macrocell users.

3 Proposed methods

In this section, the system model is presented followed by
problem formulation; finally, the proposed methods are de-
scribed in detail.

3.1 System model

A two-tier cellular network with n macrocells is consid-
ered where the MUEs, FAPs, and femto user equipments
(FUEs) are randomly distributed in cells according to nor-
mal distributions. By evaluating the strength of the refer-
ence signals from the adjacent MBSs and FAPs, each UE
connects to the base station (BS) with the highest signal
strength. Here, it is supposed that the FAPs do not use
power control. Therefore, FAP transmission power is
fixed. Furthermore, it is assumed that the allocation of
radio resources to the MUEs is based on OSFFR (shown
in Fig. 1). In OSFFR, the number of subchannels allocat-
ed to the center zone (Kcenter) is obtained from Eq. (1)
where K is the total number of available subchannels
and rcenter represents the radius of the center zone. rcenter
is assumed to be 0.65 times the radius of the macrocell, R
as shown in Eq. (2) [15].
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Kcenter ¼ K
rcenter
R

� �2
� �

ð1Þ

rcenter ¼ 0:65*R ð2Þ

In Eq. (3), the number of subchannels allocated to the edge
zone, Kedge, is calculated where N is the reuse factor of the
edge zone in the mentioned FFR scheme, i.e., 6 for OSFFR.

Kedge ¼ K−Kcenterð Þ
N

ð3Þ

In the proposed method, the subchannels are categorized
into certain subbands. Also, as shown in Fig. 2, each subband
is divided into a number of mini-subbands. The number of
mini-subbands (NMsb) in each subband is a function of
subband size (SSb) and mini-subband size (SMsb) as shown in
Eq. (4). The sizes represent the number of subchannels in the
subband and the mini-subband, respectively. It is assumed that
all users of each FAP can be served by at most one subband.
However, as the number of FUEs associated with each FAP
and their requested bandwidth are changeable, the number of
mini-subbands allocated to each FAP is variable. It is assumed
that the round-robin scheduling algorithm is used to assign the
allocated subchannels to the FAP FUEs.

NMsb ¼ SSb
.
SMsb ð4Þ

3.2 Problem formulation

In the proposed methods, the goal is to improve spectral effi-
ciency and consequently aggregate network capacity (Ctotal)
given by Eq. (6). In this equation, τ kxm:m and τky f : f

show the

allocation of subchannel k to MUE xm (that is associated with
macrocell m) and FUE yf (that is related to femtocell f), as
shown below:

τ kαi:i ¼
1 subchannel k is allocated to UE αi which is associated with BS i
0 otherwise

�

ð5Þ
Similarly, Ck

xm:m and Ck
y f : f

represent the maximum achiev-

able data rate for MUE xm and FUE yf on subchannel k. In Eq.
(6), we use the aggregation of the log-scaled data rates to
achieve proportional fairness [27] in addition to spectrum ef-
ficiency. In (6), M represents the set of all macrocells and Xm
denotes the set of users associated with macrocell m.
Likewise, FA shows the set of all femtocells and Yf means
the set of users associated with femtocell f. It is considerable
that the values of bothCk

y f : f
andCk

xm:m are functions of vectors

SB and MSB where SB and MSB denote the subband and the
mini-subband allocation matrices of the femtocells.

Ctotal ¼ Σm∈MΣxm∈XmΣk∈K τ kxm ⋅m � log10C
k
xm ⋅m SB:MSBð Þ

h ih i
þ

Σ f ∈FAΣy f ∈Y f Σk∈K τ ky f ⋅ f � log10C
k
y f ⋅ f SB:MSBð Þ

h ih i ð6Þ

Equation (7) shows the definition of SB and MSB.

SBi: j ¼ 1 subband j is allocated to FAP i
0 otherwise

n

MSBi: j ¼ 1 mini‐subband j is allocated to FAP i
0 otherwise

n ð7Þ

It should be noted that the MSB columns, the relevant
subband of which is assigned to the FAP, are considered in
Eq. (7) and the values of the other columns are zero.

Therefore, the values of Ck
xm:m and Ck

y f : f
are calculated using

Eqs. (8) and (9) where the SINR levels of the downlink trans-
missions to MUE xm and FUE yf on subchannel k are denoted as
SINRk

xm:m and SINRk
y f : f

, respectively. In (8) and (9), the

subchannel bandwidth is shown by ΔB. It is clear that

SINRk
xm:m and SINRk

y f : f
depend on subband and mini-subband

allocations and are, therefore, functions of matrices SB andMSB.

Ck
xm:m ¼ ΔB:log2 1þ SINRk

xm:m

� �
ð8Þ

Ck
y f : f

¼ ΔB:log2 1þ SINRk
y f : f

� �
ð9Þ

Based on the above definitions, the resource allocation
problem is formulated as Eq. (10) where RRy f

represents

the requested rate of FUE yf.

Fig. 2 a Subbands. b Mini-subbands in each subband when the size of
mini-subbands is the same as subbands 2–7. c Mini-subbands in each
subband when the size of mini-subbands is half of the size of subbands
2–7. d Mini-subbands with different sizes
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maxSB:MSB Ctotalð Þ
s:t: ∑y f ∈ f log ∑k∈Kτ

k
y f : f

Ck
y f : f

SB:MSBð Þ
� �

≥∑τky f : f
log RRy f

� �
: ∀ f ∈F

ð10Þ

3.3 Learning automata

As mentioned before, FAPs are installed and managed by
users. Therefore, it is necessary to have self-organized
mechanisms to allocate radio resources to FAPs with the
aim of improving spectral efficiency while providing user
demand. In this paper, to solve the optimization problem
of Eq. (10) in a distributed manner, the stochastic learning
automata method is used by each FAP. In this case, the
femtocell network is considered as a learning automata
team. The learning automata team has already been used
to solve similar problems such as relaxation labeling and
graph coloring [28].

In general, the stochastic learning automata (Fig. 3) is
defined as LA = {α . β . p} where α = {α1 . α2 . … . αr} is
the set of actions (here, subbands as well as the possible
combinations of mini-subbands) and r is the number of
actions. Also, β = {β1 . β2 . … . βr} is the set of environ-
ment feedbacks for each action which is a set of continu-
ous values in the range [0,1] according to the S-model
environment [29] (here, the quality feedbacks from FAP
users and MBS as denoted by βfemtoSB and βmacroSB).
Finally, the action selection probability vector is repre-
sented by p = {p1 . p2 . … . pr} [30] (in the first stage of

the proposed methods, the action probability vector is
denoted by PSB while in the second stage, it is denoted
by PMSB).

The action selection probability vector is updated ac-
cording to environment feedbacks from chosen actions
during the training of LA. Linear update methods are used
in this research. Linear methods are categorized as linear
reward-inaction ( LR − I), linear reward-penalty ( LR − P),
and linear reward-ε-penalty ( LR − εP). As shown in Eqs.
(11) and (12), the algorithms update the values of the
probability vector based on received feedback, βi(n) after
performing action i. The reward and penalty coefficients
are denoted as constants a and b, respectively, and n rep-
resents the time step. The type of the learning algorithm is
related to the values of these coefficients. When b = 0,
i.e., the penalty coefficient is zero, the algorithm is named
the LR − I scheme, while if the values of the coefficients
are the same (a = b), the update algorithm is called LR − P.
When the value of the penalty coefficient is too small
compared to the reward coefficient (b ≪ a), the algorithm
is represented by LR − εP [29]. In LR-I, since it is possible
for one of the elements of the action probability vector to
converge to one (consequently, all others converge to ze-
ro), it may not be suitable for dynamic conditions.
However, the LR-P and LR-εP update algorithms converge
in distribution and, thus, are better for dynamic condi-
tions. Here, the LR-P scheme is used by the proposed
methods [28].

pi nþ 1ð Þ ¼ pi nð Þ þ a∙ 1−βi nð Þð Þ∙ 1−pi nð Þð Þ−b∙βi nð Þ∙pi nð Þ ð11Þ

pj nþ 1ð Þ ¼ p j nð Þ−a∙ 1−βi nð Þð Þ∙pj nð Þ þ b∙βi nð Þ∙ 1

r−1
−pj nð Þ

� �
;∀ j j≠i ð12Þ

3.4 Two-stage LA-based channel allocation

The first proposed method, namely two-stage LA-based
channel allocation (TSLACA), is a distributed resource
allocation method that consists of two stages where one
LA structure is used in each stage to train the subband and
mini-subband selection probabilities respectively, as
shown in Fig. 4. In the first stage, each FAP uses an LA
to select the best subband according to the feedbacks re-
ceived from MBS (βmacroSB) and its FUEs (βfemtoSB). For
this purpose, in each time step, each MBS calculates its
user feedback (βmacroSB) per each subband and sends the
feedback vector (one entry per subband) to the underlying
FAPs. Then, each FAP merges βfemtoSB and βmacroSB to
attain an aggregate feedback (called βSB) for each
subband with regard to its region of presence (in the
OSFFR scheme) according to Eq. (13).
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Fig. 3 Stochastic LA-based channel allocation team
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βSB ¼ βfemtoSB: if subbandFAP∉ subbandregBS

	 

Coef f � βfemtoSB þ Coef m � βmacroSB: otherwise

�

ð13Þ

In this equation, if the FAP’s selected subband is
different from the subbands that the MUEs can use in
that region (i.e., subbandregBS

	 
 Þ, βmacroSB does not af-
fect the overall feedback. Otherwise, the weighted sum
of the feedbacks is used as the overall feedback. To
give more priority to the MUEs, Coefm is given a
higher value than Coeff. βSB is used to update the
subband probability vector as in Eqs. (11) and (12). In
fact, the main purpose of the first stage is not only to
improve the spectral efficiency of the FUEs but also
select the appropriate subband with respect to MUE
satisfaction feedback.

Calculating FUE feedback, each FAP evaluates the to-
tal capacity attained by its users (Cxm ) and calculates
βfemtoSB on its basis. For this purpose, the log-scaled ag-
gregate capacity that is achieved by the FUEs (AchievedR)
is compared to their aggregate log-scaled requested rates
(TotalRR) as demonstrated in Eqs. (14, 15, 16). In these
equations, Dy f

and cy f
are the requested and allocated

rates for FUE yf, respectively. It is noteworthy that in
calculating feedback, βfemtoSB = 0 shows the most favor-
able response, while the closer βfemtoSB to 1, the more
unfavorable the response.

TotalRR ¼ ∑ y f ∈ f log Dy f

� �
ð14Þ

AchievedR ¼ ∑ y f ∈ f log cy f

� �
ð15Þ

βfemtoSB ¼
0: if AchievedR > TotalRR

1−
AchievedRð Þ
TotalRRð Þ : otherwise

8<
: ð16Þ

Subsequently, LA updates its action selection vector,
PSB, using feedback and selects the best subband ac-
cording to it. In each time step, the selected subband
is used as the input for the second stage of the pro-
posed method.

Furthermore, to improve the resource utilization of
the femtocells, the proposed method employs the second
learning stage to choose a portion of the subband (in
terms of some mini-subbands). In this learning stage,
only FUE feedbacks and demands and the selected
subband from the first stage are used. This stage learns
which mini-subbands should be selected with regard to
the requested data rate of the FAP users. For this stage,
the FAP maintains distinct LAs per each subband to
learn the mini-subband selection strategy per each
subband, independently. As shown in Fig. 5, LAi is
the LA structure used to choose the appropriate mini-
subbands from subband i. Regarding the selected
subband from the first stage, the set of possible actions
of each LA is different, and the size of the action set
depends on the number of mini-subbands (NMSBiÞ that
constitute that subband (i.e., the size of the action set is

2NMSBi−1 ). The set of actions is modeled by integers,

i.e., αi ¼ 1:2:…:2NMSBi−1
	 


: where the location of the
jth bit in the binary representation of each integer shows
that the jth mini-subband has been selected. For in-
stance, for a selected subband with two mini-subbands,
the action set is defined as {1, 2, 3} with binary equiv-
alents {01, 10, 11} that represent the selection of the
first, second, or both mini-subbands. Note that the ac-
tion 00 is removed from action set. Each LA (LAi) has
a probability vector, i.e., Pi

MSB: for selecting mini-
subbands. Initially, the probabilities of all the actions
are the same and are equal to (1/NMSBi ). In each time
step τ, each FAP autonomously selects subband i with
regard to PSB. Then, each FAP chooses one or more
mini-subbands from the selected subband according to
Pi
MSB and allocates them to its users according to the

round-robin scheduling algorithm. Subsequently, accord-
ing to the quality of user feedbacks, Pi

MSB is updated
(using Eqs. (11) and (12)).

The First Learning Stage 

The Second Learning Stage

Select subband  based on 

Allocate the mini-subbands to FUEs based on 
Round Robin scheduling algorithm 

Obtain feedbacks from FUEs  
Calculate the reward using Eq. (16)  
Update  using Eq.(11) and (12) 

Get feedbacks from FUEs and MBS  
Calculate the reward using Eq. (13)  
Update  using Eq.(11) and (12) 

Initialize probability vectors  and  with equal 
probability for all actions 

Select mini-subbands based on 

Fig. 4 The flowchart of two-stage LA-based channel allocation
(TSLACA)
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3.5 Enhanced two-stage LA-based channel allocation

In this section, an extended version of TSLACA, namely en-
hanced TSLACA (ETSLACA), is proposed to further im-
prove spectral efficiency and convergence speed. In this meth-
od, the second learning stage is different from that of
TSLACA. As mentioned in the previous section, the second
stage of TSLACA considers one LA per each subband, the
action set of which includes all possible combinations of mini-
subband selection. However, for wide subbands (such as the
first subband in Fig. 2), this action space is large and lowers
convergence speed. In ETSLACA, each FAP has a group of
learners with a smaller action set per each subband. As a
result, convergence speed rises and performance improves
especially in fast varying network conditions.

Here, for each subband i, each FAP maintains independent
learners for different states that are separated based on the
aggregate demand of its users. In each time step, each FAP
estimates the number of required mini-subbands according to
its users’ requested bit rate. Then, the FAP selects one of the
learners with regard to this estimation. The action set of the
selected learner (LAi

j) includes all possible combinations that

have an estimated number of mini-subbands (j mini-
subbands). If the number of the required mini-subbands is
bigger than that of the available mini-subbands, then the LA
that is relevant to the number of the latter is used. Therefore,
actions are represented by integers, where the integers that
constitute an LA action set have the same number of 1s in
their binary representation. Therefore, the size of the action
set for learner j (i.e., LAi

jÞ is equal to NMSBð jÞ. In other

words, each FAP contains a series of LAs with a different
number of actions (i.e., NMSBð 1Þ: NMSBð 2Þ:… NMSBð
NMSBÞ actions). Figure 6 shows the flowchart of the second
proposed method.

For example, if the selected subband from the first stage is
SBi with nine mini-subbands and the total requested band-
width of the FAP is two mini-subbands, the FAP uses the
second LAwith the action setα = {3.5 . … . 384}.The binary
representation of all integers in set α contains two 1s that
indicate the selected mini-subbands. For instance, if the

selected action were 5, the FAP could use only the first and
third mini-subbands. Restricting the action set to a limited
number of mini-subbands makes the convergence faster.
Figure 7 shows the action set of all second stage learners,
assuming the scheme in Fig. 2c.

4 Simulation results

This section evaluates the proposed methods through several
simulation scenarios where the performance metrics are utili-
zation, the average of the log-scaled data rate of all users
(given by Eq. (17)), and outage probability (as shown in Eq.
(18)). In Eq. (17), MUEtotal and FUEtotal represent the total

Allocate mini-subbands to FUEs based on 
Round Robin scheduling algorithm 

Initialize probability vectors  and  with equal 
probability for all actions 

==? 

LA

Action set=A1 

LA

Action set=A2

LA

Action set= A

LA

Action set=Aj

2 j

Obtain feedbacks from FUEs  
Calculate the reward using Eq. (16)  
Update  using Eq.(11) and (12) 

Get feedbacks from FUEs and MBS  
Calculate the reward using Eq. (13)  
Update  using Eq.(11) and (12) 

1

The Second Learning Stage  

The First Learning Stage

Select subband  based on 

Fig. 6 The flowchart of enhanced TSLACA method

subband i that is selected from the first stage

SBi == ?

A1 = {1.2.… .2 }

= {1/2 .… . 1/2 }

A2 = {1.2.… .2 }

= {1/2 .… . 1/2 }

A7 = {1.2.… .2 }

= {1/2 .… . 1/2 }

…

1SB
2SB

7SB

Fig. 5 Independent learners in
the second stage of TSLACA
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number of macrocell and femtocell users, respectively. In Eq.
(18), the outage probability is defined as the probability of the
instantaneous SINR of the user falling below the threshold, γ
It is clear that Poutage depends on SB and MSB.

Cavg ¼ Ctotal

.
MUEtotal þ FUEtotalð Þ ð17Þ

Poutage ¼ Pr SINR < γð Þ ð18Þ

The downlink communication is considered in an OFDM-
based HetNet with nine cells (Fig. 8) which has been simulat-
ed at link level in MATLAB. Simulation parameters are given
in Table 2. The proposed methods are evaluated under fixed
and dynamic network conditions compared to strict FFR and
OSFFR schemes. All simulation results are the average of ten
simulation runs with different seeds.

In the simulation scenarios, the MBSs are located in
the center of the cells. However, femtocells are randomly
distributed in the cell area. The number of femtocells in
each cell is a function of the normal distribution with
parameters (μFAP . σFAP.( Moreover, macro/femto users
are randomly distributed in the cell area. Similarly, the
number of MUEs and the number of FUEs are a func-
t ion of the normal distr ibution with parameters

(μMUE . σMUE(and)μFUE . σFUE(respectively. Each user re-
quests a random number of subchannels based on normal
distribution function with an average of three subchannels
and standard deviation of 1. In the following subsections,
we evaluate the performance of the proposed schemes for
NMSB = 11 and NMSB = 21, under fixed network conditions,
under network condition change at the 1000th time step,
and under iterative changes of network conditions.

4.1 The simulation results under fixed network conditions

In this section, the simulation results of the proposed methods
are compared to strict FFR and OSFFR under fixed network
conditions (i.e., fixed number of users with constant demand).

Stage 1 result +
resource demand

SB1

LA

LA ,

LA ,

LA

LA

LA ,

LA

LA

LA ,

SB2

LA

LA ,

SB3

LA

LA

SB4

LA

LA

SB5

LA

LA

SB6

LA

LA

SB7

LA

LA

Fig. 7 The learners and their action sets for the second stage of
ETSLACA (assuming the scheme of Fig. 2c)

Fig. 8 Simulated network (including MBSs, MUEs, FAPs, and FUEs)

Table 2 Simulation parameters

Parameter Value

Radius of a femtocell 30 (m)

MBS transmit power 1.742 (w)

FAP transmit power 0.02 (w)

Average number of MUEs in a macrocell (μMUE) 50

Standard deviation(SD) of the number of MUEs
in a macrocell (σMUE)

10

Average number of FAPs in a macrocell (μFAP) 30

SD of the number of FAPs in a macrocell (σFAP) 5

Average number of FUEs in a femtocell (μFUE) 3

SD of the number of FUEs in a femtocell (σFUE) 1

Channel bandwidth 1.5 (MHz)

Number of subchannels 100

Subcarrier spacing (ΔB) 15 (KHz)

White noise power spectral density) N0) −174 (dBm/Hz)

Learning parameter (a) 0.1

εp 0.5
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As shown in Figs. 9 and 10, using the proposed methods,
utilization and log-scaled average available capacity for
each UE (Cavg) improve during the learning stages, and
the average (over multiple runs) is higher than that of
conventional strict FFR and OSFFR schemes. The results
show that for the configuration with NMSB = 11, both pro-
posed methods demonstrate better results while strict FFR
has the worst results.

Moreover, the results show that the second proposed meth-
od is better than the first. In fact, selecting the appropriate
learner with regard to user requirements leads to better utili-
zation of radio resources. Note that for the second proposed
scheme with NMSB = 11, Cavg and utilization are the best.
Besides, the second proposed method with NMSB = 21 shows
considerable improvement compared to the first. In fact, the
ability of the second proposed method in better utilization of
radio resources leads to higher performance when the quanti-
zation of frequency fractions is finer.

Figure 11 compares the methods regarding expectation
from outage probability, i.e., E(Poutage). As demonstrated,
using the proposed methods, E(Poutage) decreases over the
learning steps. The values of E(Poutage) for both methods un-
der NMSB = 11 and NMSB = 21 are very close to each other and
are near to zero while strict FFR has the worst results.

4.2 Simulation results under random changes
at the 1000th time step

Here, we evaluate the proposed schemes over 2000 time steps
with network condition changes at the 1000th time step. In
this time step, UEs turn off with the probability p = 0.1 and the
FAPs without any connected UEs are consequently turned off.
In addition, some new UEs and FAPs are turned on randomly.
As demonstrated in Figs. 12 and 13, the utilization and log-
scaled average available capacity of the UEs (Cavg) increase
over time. However, by random changes in the 1000th step,
both utilization and Cavg fall and begin to rise again by the
following learning steps. Note that the results of the proposed

Fig. 10 Comparison of log-scaled average link capacity of UEs under
fixed network conditions over 1000 time steps

Fig. 9 Utilization comparison under fixed network conditions over 1000
time steps

Fig. 11 E(Poutage) comparison under fixed network conditions over 1000
time steps
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methods are better than those of both strict FFR and OSFFR.
With NMSB = 21, the results of the second proposed method
are better than those of the first. Also, the results of both
proposed methods with NMSB = 11 are close.

Furthermore, as shown in Fig. 14, E(Poutage) rises very little
in the 1000th step and, by following the learning process,
decreases again. The results of the proposed methods for both

subband quantization levels are very close and are much better
than those of strict FFR and OSFFR.

4.3 Simulation results under continuous network changes

Finally, we evaluate the performance of a network with fre-
quent changes. As shown in Figs. 15 and 16, utilization and

Fig. 13 Log-scaled average capacity comparison over 2000 time steps
assuming random network changes at the 1000th time step

Fig. 14 E(Poutage) comparison over 2000 time steps assuming random
network changes at the 1000th time step

Fig. 15 Utilization comparison under continuous network changes

Fig. 12 Utilization comparison over 2000 time steps assuming random
network changes at the 1000th time step
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Cavg in the proposed methods are higher and improve over
time compared to strict FFR and OSFFR. The first proposed
scheme has the best utilization and Cavg under NMSB = 11 and
the results of the second proposed method are close those of
the first. Every 200 time steps once, random changes occur,
and utilization and Cavg fall. However, following the learning
process, these values increase again.

Moreover, the proposed methods have the best E(Poutage)
compared to the strict FFR and OSFFRmethods. As shown in

Fig. 17, the worst E(Poutage) belongs to strict FFR. However,
in the proposed methods, as random changes occur,
E(Poutage) rises a little, and by following the learning process,
its value decreases again.

4.4 Comparison of convergence speed

In this subsection, the number of time steps required for the
proposed methods to converge to a stable condition is evalu-
ated. To this aim, the standard deviation of the log-scaled
average data rate is evaluated once every ten time steps and
the number of time steps required to reach a specified standard
deviation is calculated.

As shown in Fig. 18, the best convergence speed belongs to
the second proposed method with 21 mini-subbands, i.e., 300
time steps under fixed network conditions. Also, after random
changes at the 1000th time step, the number of time steps
required for the second proposed method to reconverge is less
than that of the first. Assuming LTE networks where each
Transmission Time Interval (TTI) is 1 ms, we need two TTIs
per each learning time step, namely the first TTI as the time of
making the decision and the second as the time of allocating
resources, which leads to 2 ms per each time step. As a result,
the convergence time of the second proposed method is less
than 1 s which is reasonable for common network changes.

5 Conclusion and future work

This paper presents two distributed resource allocation mech-
anisms for femtocell networks based on the stochastic learning
automata structure. These methods employ a two-stage learn-
ing process for the selection of appropriate radio resources. In
the proposed methods, each FAP selects the best fraction of
frequency resources without any previous information about

Fig. 17 Outage probability comparison under continuous network
changes
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Fig. 18 The number of the time steps for convergence

Fig. 16 Log-scaled average data rate comparison under continuous
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network conditions and based only on the demand of its UEs,
their received feedbacks, and MBS quality feedbacks.
Simulation results show that the proposed methods display
better spectrum utilization and outage probability under fixed
and dynamic network conditions compared to strict FFR and
OSFFR. Moreover, the results show that the second proposed
method is better than the first in terms of convergence speed.
Extending the proposed methods by employing learning tech-
niques in MBSs as well as learning the size of different fre-
quency fractions can be addressed in future work.
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