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Abstract The pervasive use of smart objects is encourag-
ing the development of the Internet of Things (IoT) vision,
where even the most common and simple object is expected
to acquire information from the surrounding ambient and to
cooperate with other objects to achieve a common goal . In
such a heterogeneous and complex scenario, optimal alloca-
tion of resources to application tasks (e.g., available energy,
computing speed, storage capacity) is paramount to fairly
distribute them and not overload some objects. In this paper,
we focus on finding the optimal assignment to the physical
devices that can perform the same task needed by the run-
ning applications. To this, we rely on the technologies that
have been already developed around the notion of Virtual
Object (VO), which is the digital counterpart of the physical
object and is used to augment its functionalities with the use
of virtualization technologies. Our contribution is twofold.
Firstly, we extend the current functionalities of VOs to make
them capable of implementing a distributed strategy for the
allocation of tasks among objects: the information model is
enhanced to include the Quality of Information (QoI) notion
and the possible different architectural solutions are pre-
sented. Secondly, we propose a distributed algorithm where
VOs negotiate to reach a consensus on resources alloca-
tion, in order to distribute the workload among the objects
that can cooperate to the same task and to ensure that the
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QoI requirements are fulfilled. Simulation results show that,
compared to a static frequency allocation, the algorithm
enhances the performance of the system with an average
improvement of 27% in network lifetime and confirms the
compliance to QoI requirements.
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1 Introduction

The Internet of Things (IoT) [2] is characterized by a huge
number of objects that dynamically cooperate and make
their resources available, with the aim of achieving a com-
mon objective. Thanks to the pervasive spread of smart
objects, the IoT is expected to offer amazing improvements
in collecting, processing and distributing information [6].
Context awareness provided by IoT elements is going to
improve users’ knowledge, their relationship with nature
and their lifestyle. Furthermore, not only will the IoT
technology enable users to communicate with objects: the
objects themselves, including the most common and sim-
ple, will have the ability to communicate with each other
and gain the intelligence to provide information on their
status or acquire data from other objects. This ability will
be also fostered by the widespread adoption of cloud com-
puting technologies [8], along with the introduction of the
Virtual Object (VO) concept [16]. The VO represents the
virtual counterpart of one or more IoT-related physical
entities, called Real World Objects (RWOs). The VO vir-
tualizes the RWOs it refers to, by semantically describing
their resources, capabilities, functionalities, and collected
data. Major functionalities implemented by the VO are
caching and provisioning of relevant data also when the
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physical device is not reachable, implementing different
interfaces and languages to extend the range of scenarios
the objects can take part to, implementing complex secu-
rity mechanisms, optimizing the management of the object
battery.

One of the major issues in IoT scenarios is that of
resource allocation management. Indeed, it may happen that
more than one RWO is capable of performing the same task
(e.g., temperature sensing of a given geographical area).
Therefore, tasks need to be efficiently assigned to RWOs,
so that their resource usage is optimized (e.g., energy, pro-
cessing capabilities, communication bandwidth, storage),
provided that task’s required quality conditions are still
satisfied.

This issue is addressed in this work, which proposes
a resource allocation mechanism that takes advantage of

Fig. 1 The considered cloud-based IoT architectural model and pro-
posed framework. RWOs are Real World Objects. VOs are Virtual
Obects. a Reference architecture. b Proposed VO level framework

the features offered by the VOs. Accordingly, herein, we
provide two major contributions, as depicted in Fig. 1,
(i) we extend the current functionalities of VOs to make
them capable of implementing a distributed strategy for the
allocation of tasks among objects and (ii) we propose a
new distributed algorithm where VOs negotiate to reach a
consensus on resources allocation. Specifically, we extend
the VO information model to include the features that are
needed in a distributed task allocation scenario, including
the Quality of Information (QoI) that measures the char-
acterization of the information provided by the objects.
Such model is defined so that the VOs can act as the core
components in the distributed algorithm following different
possible architectural scenarios. As to the proposed dis-
tributed algorithm, we have defined it so as to distribute
the workload among the objects that can cooperate to the
same task and to ensure the QoI requirements are fulfilled.
The proposed solution is based on the consensus algorithm,
which has the advantage of making a group of distributed
peers to reach a common target even in the case they may
not be connected during the whole convergence process.
This is indeed the case of IoT objects that may opportunisti-
cally take part to the deployment of IoT applications without
assuring a fixed level of participation. In our specific case,
the objects agree on a common lifetime and accordingly
modify the level of participation to the application till a con-
vergence is reached. Simulation results show that, compared
to a static frequency allocation, the algorithm enhances the
performance of the system with an average improvement of
27% in network lifetime and confirms the compliance to
QoI requirements.

To contextualize the work and the ideas developed, in
Section 2, some previous studies on the concept of virtual-
ization in IoT are presented. Section 3 provides a functional
analysis of the reference architecture and the problems
related to the allocation of tasks focused on QoI achieve-
ment. Section 4 tackles the description of the resource
allocation model developed. The implemented solutions
have been tested using real devices on an application sce-
nario specifically modeled. Simulations and experimental
results will be presented in Section 5. Finally, conclusions
and future works are presented in Section 6.

2 Preliminaries

2.1 Reference architectural model

Most of the cloud-based IoT platform implementations rely
on the use of a virtualization layer, which is used to imple-
ment some functions that augment the capabilities of the
physical devices. In this work, we specifically rely to the
concept of Virtual Object (VO), which consists in the virtual
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counterpart of the physical devices (i.e., the Real World
Objects, RWOs) [16, 22, 28]. This is a software module
running typically in the cloud, which speaks for the phys-
ical counterpart and introduces some functionalities that
could not be taken by the real world objects, such as decid-
ing when and how to take part to the IoT applications,
caching of data already generated by the physical devices,
supporting its discovery from external systems, as well as
making the inter-objects communications possible by trans-
lating the used dissimilar languages. Any other functionality
that may make the physical device smarter can be imple-
mented here, leaving to the physical counterpart just the
sensing and actuating activities. Clearly, the VOs are imple-
mented in the virtual layer, as depicted in Fig. 1a. These
communicate directly with the physical devices implement-
ing all the types of communications protocols and APIs
that the later are capable to understand. On top of the vir-
tualization layer, an additional layer is implemented where
services that rely on the composition of different VOs
are implemented. For instance, the combination of sensed
data from different devices to provide the crowd view
about a given magnitude is implanted at this layer. On top
of this layer is where the applications are deployed and
executed.

Typically, there is one process that implements all the
functionalities of a single VO, which is associated to a single
physical device. Accordingly, the VO is the view provided
about a physical device to the external world. However,
there are cases where one VO could be associated to dif-
ferent physical counterparts of which then it combines the
different sensing and actuating capabilities. Vice versa, it
may happen that different VOs are associated to the same
physical device, as each one of these VOs provides differ-
ent access rights and different views. In the following of the
paper, without losing of generality, we refer to the 1-to-1
case to make things simpler to explain.

Following this architecture, RWOs are virtualized and
represented as VOs by the VO level, i.e., they are semanti-
cally described in terms of their functional characteristics,
status, location, and potential uses, in accordance with a
template that should match the type of RWO it is associated
to (e.g., embedded device type, smartphone model). Fur-
thermore, VO supports discovery and mash up of services,
improving the objects’ energy management efficiency, as
well as addressing heterogeneity and scalability issues. Vir-
tualization not only allows collecting a set of information
but also provides RWOs with additional intelligence given
by the cooperation with other RWOs and the awareness of
the context in which they operate, so that they are trans-
formed into entities that can be used to supply services and
applications.

An implementation of a cloud-based IoT platform that
follows this architectural model has been carried out at

the University of Cagliari [7].1 This has been used for the
definition of the proposed solution.

2.2 Past works

2.2.1 Virtual objects

With a thorough comparative analysis between Cyber Phys-
ical Cloud (CPC), Cloud of Sensors (CoS), and IoT, the
authors in [24] show how these three technologies exploit
Cloud Computing potentialities, and how much they are
related in the objective of linking digital and real worlds.
They base on the concept of object virtualization, accord-
ing to which the physical components of an object can be
abstracted and made available as virtual resources. Virtual-
ization allows the higher layers of the IoT architecture to (i)
interface with devices; (ii) provide device with the required
commands, adapted to their native communication protocol;
and (iii) monitor their activities and connection capabilities.
A VO is the virtual counterpart of one or more real objects,
and as such, it inherits all their functionalities, character-
istics, and acquired information [18]. Since virtualization
is such a fundamental component of the IoT, many well-
known middlewares, such as SENSEI [25], IoT-A [11] and
iCore [22], are based on it.

Combining virtualization with context-awareness, the
IoT system is able to achieve a clear knowledge of the
resources and functionalities made available by its objects.
Since the IoT is characterized by scarce resources, they need
to be managed and orchestrated in an efficient way. The pro-
cess of detecting the most appropriate IoT objects’ resources
that are able to fulfill the applications’ requirements needs
to be accomplished in a distributed and automatic way, in
order to cope with the dynamic nature of the IoT.

In the literature related to the VO technologies, the prob-
lem of dynamic assignment of tasks to the physical devices
is only superficially treated. Specifically, the following two
elements are missing: an information model that allows for
representing the changing context in which the physical
devices are operating so as to better manage their involve-
ment in the deployment of the different IoT applications;
implementation of the dynamic allocation of tasks to the
physical devices through the VOs as the components that
can better take the burden of implementing the logic so as
not to deplete the physical devices batteries.

2.2.2 Resource allocation

Resource allocation has been extensively studied in Wire-
less Sensor Networks (WSNs), particularly with reference
to network lifetime. In [20], a distributed task allocation that

1http://www.lysis-iot.com/
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focuses on the reduction of the overall energy consumption
and task execution time into a heterogeneous WSN is pro-
posed, with attention to nodes’ residual energy. In [21], a
dynamic distributed allocation mechanism based on gossip
has been proposed, where the required sensing frequency is
entirely assigned to the nodes that correspond to the high-
est network lifetime. A similar approach is studied in [26],
where a distributed algorithm based on particle swarm opti-
mization is proposed. In [15], the issue of energy saving in
Wireless Cooperative Networks is addressed. The algorithm
proposed in this paper aims to find a trade-off between effi-
ciency and fairness, by using a game-theoretic approach.
Since the main criticality of wireless networks is their life-
time, all these algorithms mainly focus on maximizing this
resource.

The last cited papers are some representative works for
task allocation in WSNs. However, the focus of our work
is different as we consider the more complex IoT scenario.
The main difference when moving fromWSNs to IoT is that
objects can be grouped opportunistically because they are
found to be able to provide collaborative services and then
they have to find the way to act in a coordinated way. This
introduces much more heterogeneous scenarios with respect
to the case of WSN networks where objects are managed by
the same system and have similar characteristics. Addition-
ally, different objects able to perform the same task can be
found available (e.g., measurement of the traffic in the same
street, the measurement of the humidity and/or the temper-
ature in a room, the detection of moving objects/persons in
a given environment, the monitoring of the luminosity in a
public square) and then, it is necessary to decide to which
one allocate the needed tasks [29]. This can be done exclu-
sively or assigning part of the task to each of the available
peers depending on a defined objective. To this, the use of
VOs for the description of the objects and their potentiali-
ties become necessary. This should represent the context of
the RWO that dynamically changes and should be used to
find the candidates for task assignments.

Accordingly, as far as IoT networks are concerned,
resource allocation is an open issue. Most of the existing
studies on resource allocation for IoT are focused on IoT
service provisioning, such as in [9] and [27]. In these stud-
ies, the aim is to allocate the resources that enable service
execution, which consists in finding the available nodes that
can perform the needed task. However, they do not focus on
finding the best configuration that corresponds to an opti-
mal resource allocation. None of the works found in the
literature tries to find the optimal resource allocation asso-
ciated to the lowest impact of the application assigned to
the network. However, as highlighted in [14], when resource
allocation is considered, a central broker is used, which
is aimed at deciding which objects should be involved in
the required task execution, which brings to a centralized

solution and that cannot completely benefit from the oppor-
tunistic participation of the objects to the IoT platforms.
For instance in [13], the authors propose the allocation
of tasks among objects taking into account the available
resources with particular attention to an urban-scale IoT
environment. In this case, the proposed solution is a service
resource allocation approach which minimizes data trans-
missions between users’ mobile devices, which has been
transformed into a variant of the degree-constrained mini-
mum spanning tree problem and applied a genetic algorithm
to reduce the time needed to produce a near-optimal solution
in a centralized node.

As to the QoI, it has only been partially considered in
this context. This is defined as the characterization, in terms
of some salient attributes represented in the form of meta-
data, of the goodness of the data collected, processed and
flowing through a network. In [3], the authors highlight and
extend upon past work in the areas of QoI and then refine a
taxonomy of pertinent QoI and VoI (Value of Information)
attributes anchored around a simple ontological relationship
between the two. They also introduce a framework for scor-
ing and ranking information products based on the basis of
QoI/VoI. Some examples of QoI requirements are data sam-
pling rate, precision, and provenance [30]. In [5], the authors
have investigated the QoI maximization problem by jointly
optimizing the data rate and transmit power again only for
the case of lifetime-constrained wireless sensor networks.
In this specific case, the QoI at the sink node is character-
ized by the virtue of the network utility, which quantifies the
aggregated value of the data gathered from different sensor
nodes. [12] is one of the few works where the authors extend
the problem to the IoT scenario and consider the chal-
lenge of maximizing the quality of information collected to
meet decision needs of real-time IoT applications. A novel
scheduling model is proposed, where applications need mul-
tiple data items to make decisions, and where individual
data items can be captured at different levels of quality. The
optimization is then performed in a centralized way at the
service layer. Differently, we assign the job of allocating the
tasks to the VOs that consider the current RWOs context and
address the problem with a distributed approach. We present
a first attempt in resource optimization [4], where, however,
QoI was not taken into account.

3 Proposed strategy

Following the reference architectural model previously
described, when a user requests an application, this applica-
tion is subdivided by the Service Level into services or tasks,
which are then dynamically mapped to the appropriate VOs,
which take in charge their execution by involving the rel-
evant RWOs. To this, we propose a strategy to be adopted
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when more VOs are found that can trigger physical devices
that can perform the same task. Indeed, at this point, there
is the need to decide which device really to select or how to
distribute the burden to more than one. The proposed strat-
egy starts by considering the Quality of Information (QoI)
constraints, necessary to correctly execute the application,
which comes with the service execution request.

For each service execution request, the resource alloca-
tion approach proposed in this paper finds the VO template
instances that best suit the required functionalities and
QoI requirements. Once these services are mapped to the
appropriate VOs, a consensus algorithm is run by them in
order to negotiate the most appropriate workload distribu-
tion, with the aim of extending RWOs lifetime, based on
their residual energy and already assigned services. The
major blocks of the proposed strategy are shown in Fig. 1b,
where though the information stored in the templates the
appropriate VO instances are selected and the relevant VOs
start the negotiation following a distributed consensus-based
algorithm.

In the rest of this section, we describe how the existing
information model for VOs have been extended, how the
selection process works and which are the possible scenar-
ios where this process can be implemented. The algorithm
for the resource allocation is then presented in the following
section.

3.1 The virtual object template and information model

The VO performs the fundamental task of collecting the
varying and changing information of the real world, sup-
ported by mechanisms of learning and self-management,
and exposes it to the digital world. To this end, a model
that ensures the interaction among VOs in a generic way

is needed. Indeed, VOs need to expose an interface to
their characteristics and functionalities that are easily and
straightforwardly accessible by the VO level. In addition to
providing access to real-world data, it is necessary that VOs
perform a coordination function, allowing multiple requests
from the higher level to be addressed to the same object
in a synchronized way. Furthermore, since the IoT objects
ecosystem is made by fixed and mobile objects, the con-
text where objects operate may change. For this reason, the
model needs to be dynamically updated after its creation.
All these features are provided by the VO template.

The VO template enables the creation, search and selec-
tion of VOs in an automated way. It is closely associated
with a particular type of object that becomes part of the IoT
system and thus must be mapped into the virtual world.

In order to implement templates that will be instanced
to describe VOs, an information model that encodes all the
information used for the appropriate involvement of VOs in
the IoT application deployment and delivery is used. The
information model that inspired the one proposed in this
work is based on the iCore FP7 Project [22].

However, to make the iCore model more effective for
our target, we extended it taking into account the mobil-
ity of objects, their temporal features and their QoI-related
characteristics. This enhancement is meant to improve the
VO search, discovery, and selection processes that enable
the tasks assignment to the most appropriate VOs, with
a QoI-oriented perspective. Figure 2 shows the new ele-
ments in dashed border boxes. Note that in this figure
there is a distinction between ICT (Information and Com-
munications Technologies) and non-ICT objects. This is to
highlight that among the RWOs, there are objects that are
realized with ICT technologies and then can directly take
part to the IoT without additional components; this is the

Fig. 2 VO Information Model
used. Solid border boxes
correspond to elements included
in the iCore VO Information
Model. Dashed border boxes are
new elements introduced by the
proposed architecture
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case of, e.g., smartphones, laptops, sensors, and TV set-top-
boxes. Others are referred to as non-ICT objects as they
don’t use natively these technologies and then need to be
associated with ICT objects to take part to the IoT. These
can include buildings, rooms, streets, bicycles, and people,
among others. The following are new introduced elements
in the model:

a) Indoor location: It is particularly useful in cases of
indoor environments. It is used only if the VO is located
indoors, and describes the place where it is located
in terms of type of location (e.g., room, hall, house)
and identification number or string. This could be an
element that enhances the scalability of the system. It
enables the model to be used not only in large-scale
distributed environments (metropolitan areas or neigh-
borhoods), but also in small size environments and
internal locations (such as buildings or structures in
which a geo-localization of the nodes is not enough).

b) Temporal features: The use of the temporal feature,
both in terms of date and time range, allows knowing
the activity phases of a device associated with its VO.
Knowing the date and time in which a mobile device
is located in a given place, helps the association pro-
cess among ICT and non-ICT object. It also ensures the
ability to know in advance when a particular resource is
available, when it is possible to refer to it, and how long
it has not been updated.

c) QoI parameters: The information model, on which
the selection processes are based, includes a field ded-
icated solely to the QoI parameters. The values in this
field are named uniquely based on RWOs characteris-
tics. In addition, it introduces their descriptive aspects,
that enable their identification. The parameters stored
in this field will therefore be examined in the selection
phase and allow an optimized choice of the resources
to use. QoI parameters take into account issues such
as network characteristics (e.g., latency, bandwidth),
device characteristics (e.g. energy consumed, waste
energy, memory, processor), and applications require-
ments (e.g. precision, reliability, latency).

According to this information model, templates are cre-
ated, assuming that the VOs that they represent will be
part of the system in the future. Templates reside in the
Cloud, in dedicated repositories, and are used at the moment
of instancing a new VO. When a new VO needs to be
instanced, typically because a new RWO has joined the sys-
tem, the selection of the more suitable template is made. The
deployment of the VO occurs by loading the desired tem-
plate from the Cloud. The RWO associated to the VO must
contain the drivers necessary to abstract the hardware and
interface with the rest of the system. The template fields are
then filled in with the information associated to the new VO.

3.2 The virtual object selection process

The goal of this work is to achieve a resource allocation
optimization mechanism that takes into account QoI poli-
cies, according to the applications required by the upper
levels of the architecture. It is necessary that requests from
the service level are related to a series of QoI parameters.
In this way, the processes of search, selection, and activa-
tion of the VO instances can be performed. Requests from
the service level must contain, in addition to the VO func-
tional, spatial, and temporal search parameters, those related
to QoI.

The process of resources allocation starts from the VO
level, where service requests are processed. The request
contains all the parameters that ensure a research refine-
ment and allows the execution of optimization processes for
resource allocation. Based on it, the VO level, among the
available VOs, looks for the VO template instances that ful-
fill all the service requirements, both from the functional
and the QoI point of view. The RWOs associated with the
selected VOs are chosen to cooperate for the execution of
the service. However, before the service execution is started,
the available resources are evaluated by the resource opti-
mization process, so that the workload is fairly distributed
among the RWOs.

In order to explain the process more clearly, we introduce
an explanatory example, to which we refer in the following
as theHVACmanagement example. We suppose that the ser-
vice level receives a request to evaluate, every 10 min, if the
heating, ventilation, and air conditioning (HVAC) system of
office A inside the building located at coordinates {x,y} has
to be turned on, based on the mean temperature computed
every 10 min of the temperature values collected every
minute, and on the mean presence of someone in the office,
computed every 5 min on the presence monitoring values
gathered every 30 s. The error has to be no higher than 80%.
The service level analyses the application and subdivides it
into tasks. The list of tasks is summarized in Table 1. The
service level then sends the requested tasks to the VO level,
which analyses them and determines the VO templates that
can respond. Hence, the VO level starts searching for VO
instances characterized by a template with the appropriate
parameters. Taking, for example, task 1, the selected VO
instances have a template with parameters equal to those

Table 1 List of tasks for the HVAC management example

Task 1 Temperature sensing collected every minute

Task 2 Mean temperature computed every 10 min

Task 3 User presence sensing collected every 30 s

Task 4 Mean user presence computed every 5 min

Task 5 Evaluation to change HVAC status computed every 10 min
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described by Fig. 3. Suppose that the VO level finds three
VOs that match the queried one, which correspond to the
following RWOs, each equipped with a temperature sensor:
a smartphone, a smart watch and a digital thermometer. The
fact that the same service can be provided by such hetero-
geneous devices is completely transparent to the VO level,
which can manage all of them simply by managing their
VOs and related attributes. At this stage, the VO level sends
a request for temperature measurement to one of the VOs,
including also the required frequency F ref = 1/60 Hz. The
VOs can then start reaching consensus using the approach
described in Section 4.2, regardless of their localization with
respect to their related RWO. After the first task has been
assigned, the same process is used to allocate the following
tasks.

3.3 Possible scenarios

As previously described, in the IoT scenario, we refer to the
VO level that deploys the execution of services to RWOs.
Typically, the VO consists in software modules that run in
the cloud or edge of the network infrastructure. However,
the fact that RWOsmay be intelligent objects capable of per-
forming complex operations suggests that some VO level’s
functionalities can be moved from the cloud to the objects
themselves, provided that they have the skills to perform
them. Accordingly, there are different scenarios that are pos-
sible and depend on the specific RWO characteristics. The
closer is the VO to the physical device the lower the delay
in taking some actions due to the interaction between the
virtual and the physical counterparts.

Starting from this remark, we detected three possible sce-
narios, as depicted in Fig. 4. Note that here Lysis is the name
of the cloud-IoT platform used for the proposed solution [7].
The first scenario (see Fig. 4a) relates to the case in which
the resource selection process concerns a limited number
of RWOs that are able to communicate with each other
using short-range technologies and that are characterized by

sufficient computational power and energy. The optimiza-
tion process can be distributed on RWOs, in such a way
that the management of resources is as near as possible to
the point where they are used. The optimization mechanism
does not pass through the Internet network, i.e., the RWOs
do not have to send information about their changes on the
context to the cloud as the VOs are running locally. Then,
the amount of communications to the Internet is reduced,
limiting the relevant energy consumption. Additionally, the
algorithm is faster as once the decision is taken it is directly
implemented by the devices.

The second case (Fig. 4b) refers to situations where
the lack of resources by RWOs do not guarantee the pos-
sibility of a distributed optimization. In this case, if the
devices are located in a limited area, it is possible to exploit
the gateways of local networks. Thanks to the fact that
devices are connected to local networks, gateways can take
charge of VOs’ functionalities and run the optimization
process, involving all the RWOs interested in the connec-
tion. Clearly, this is possible if the gateway implements the
services to run processes when required by the cloud.

The third scenario is depicted in Fig. 4c. This is the
one related to the case in which the devices selected to
perform the task are not in the same area, but they are
located in different places and at a great distance so that
their communication can take place only through the Inter-
net. In this case, the optimization process is carried out in
the cloud and then it is centralized. This scenario is also the
one related to the case where the objects don’t have suf-
ficient computational capacity to perform the optimization
process, whether they are close and can communicate using
short-range technologies or are far each other.

It is important to highlight that the overall procedure is
always controlled by the management functionalities of the
IoT platform that is running in the cloud, which should con-
trol the deployment of VOs in the cloud, gateway or in the
RWO depending on the changing conditions and determined
case-by-case.

Fig. 3 VO Informaton Model
required to respond to the query
for task 1 coming from the
Service Level, in the HVAC
management example



422 Ann. Telecommun. (2017) 72:415–429

Fig. 4 Location of the proposed
algorithm into three typical IoT
scenarios with reference to
objects’ resource allocation. a
Distributed optimization. b
Local optimization. c
Centralised optimization

4 The resource allocation model

In this section, the resource allocation algorithm is pre-
sented. More specifically, the algorithm proposed in the
following focuses on lifetime optimization, but it can be
easily extended to focus on other objects’ resources differ-
ent from the residual energy, such as storage capacity or
processing speed.

In Section 3.3, three possible different scenarios have
been described. Since the more complex to be treated is the
first one, i.e., the one that is characterized by a distributed
optimization, in the following the discussion will only focus
on this particular scenario. Nevertheless, note that the same
optimization can be performed by gateways (see Fig. 4b) or
by the cloud (see Fig. 4c) using the same equations, but in a
centralized fashion.

4.1 Consensus-based resource allocation optimization

The resource optimization strategy proposed in this paper
relies on a consensus-based algorithm where VOs decide
the amount of resources to allocate to a task, in order for
the workload to be fairly distributed, so that their lifetime is
optimized.

As defined in [31], the lifetime of a node is the time until
it depletes its battery. The lifetime of the RWO associated to
VO i at time t is expressed as

τi(t) = Eres
i (t)

∑
kP

c
ik(t) + P o

i (t)
= Eres

i (t)
∑

kE
c
ik · fik(t) + P o

i (t)
(1)

where Eres
i (t) is its residual energy, P c

ik(t) and Ec
ik are the

power and energy consumed by the RWO associated to VO
i to perform task k, fik(t) is the frequency at which VO i

performs task k, and P o
i (t) is the offset power consumed by

the other activities of the node (e.g., tasks that are assigned
directly by the user).

We base on the assumption that optimizing the network
lifetime is equivalent to adjusting the VOs’ power consump-
tion so that their associated nodes reach the same lifetime.
This means that, if we consider two VOs i and j that
received an activation request for task k, at time tc when the
algorithm converges, τi(tc) = τj (tc). Therefore,

∑

k

αik(tc)fik(tc)+ P o
i (tc)

Eres
i (tc)

=
∑

k

αjk(tc)fjk(tc)+
P o

j (tc)

Eres
j (tc)

(2)
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where αik(t) = Ec
ik/E

res
i (t). Defining the total amount

of power consumption contributions with the exception of

task k as δik(t) = ∑
l �=k αil(t) · fil(t) + P o

i (t)

Eres
i (t)

, from Eq. 2

follows that

fjk(tc) = αik(tc)

αjk(tc)
· fik(tc) + δik(tc) − δjk(tc)

αjk(tc)
(3)

According to accuracy constraints provided by the higher
layers, the collaborative completion of a task is required to
be performed at a reference frequency F

ref
k = ∑

j fjk(tc).
Using Eq. 3 in this identity, after some simple computations
and multiplying and dividing by the number Nk of VOs
involved in task k, we obtain

αik(tc) · fik(tc) = ϕ̄k

β̄k(tc)
+ γ̄k(tc)

β̄k(tc)
− δik(tc) (4)

with

ϕ̄k = F
ref
k

Nk

β̄k(tc) = 1

Nk

·
∑

j

1

αjk(tc)

γ̄k(tc) = 1

Nk

·
∑

j

δjk(tc)

αjk(tc)

It is easy to notice that they represent mean values evaluated
over all the VOs that are able to perform task k. This fact,
along with the consideration that, in the scenario described
by Fig. 4a, nodes that are assigned to the same task are
located close to each other, and thus they can communi-
cate directly without passing through the cloud, leads to the
conclusion that their value can be estimated in a distributed
way using an average consensus algorithm.2 We assume to
have a system where nodes may not be connected during the
whole convergence process. For this reason, in this paper,
the consensus algorithm proposed in [19], which is robust
against topology changes, is used.

Since variations of α and δ are negligible over the time
needed by the algorithm to converge (as it will be clarified
in the experiments), in the following we consider them con-
stant and omit their dependence from time. Nevertheless, if
substantial variations of them are experienced, the algorithm
needs to start again.

4.2 Lifetime optimization algorithm

As soon as VO i receives an activation request for task k

from the VO layer, it verifies if it is able to satisfy the min-
imum level of QoI required by the higher levels. If it is not,

2As defined in the introduction of this section, note that Eq. 4 can as
well be used to evaluate the optimal frequency values in a centralized
fashion

it sets fik to 0 and informs the VO layer about it. Other-
wise, it initializes its local values ϕik = ϕ0

ik , βik = β0
ik and

γik = γ 0
ik . As far as ϕik is concerned, only one VO receives

the reference frequency F
ref
k from the VO layer and sets ϕ0

ik

to it. The other VOs set it to 0. The initial local values are
set as follows:

ϕ0
ik =

{
F

ref
k if F

ref
k is given

0 otherwise

β0
ik = 1

αik

(5)

γ 0
ik = δ

αik

and starts the consensus with its neighbors. Whenever VO i

receives an update from one of its neighbors j , it computes
the following updates:

ϕ+
ik = ϕik−λ

ϕ
1

∑

j

(ϕik−ϕjk)−λ
ϕ
2

∑

j

sgn(ϕik−ϕjk) (6a)

β+
ik = βik−λ

β

1

∑

j

(βik−βjk)−λ
β

2

∑

j

sgn(βik−βjk) (6b)

γ +
ik = γik−λ

γ

1

∑

j

(γik−γjk)−λ
γ

2

∑

j

sgn(γik−γjk) (6c)

τ+
i = β+

ik

ϕ+
ik + γ +

ik

(6d)

f +
ik = 1

αik

·
(

1

τ+
i

− δik

)

(6e)

where λ
ϕ
1 , λ

β

1 , λ
γ

1 , λ
ϕ
2 , λ

β

2 , and λ
γ

2 are tuning parameters that
affect the convergence time and steady-state accuracy [19],
and that will be better explained in the following subsection.
If f +

ik > 0 and if its value has changed after the update, the
VO sends the updated value of ϕ+

ik , β
+
ik and γ +

ik to its neigh-
bors. It may happen that f +

ik ≤ 0. In this case, the VO cannot
participate into executing task k. Therefore, it sets fik to 0
and informs its neighbors, which restart the consensus pro-
cess. The algorithm can be considered converged when fik

does not change consistently after the updates.

4.3 Convergence time and steady-state accuracy

As it is specified in [19], the tuning parameters of the update
functions need to be set to

0 ≤ λ
ϕ
1 , λ

β

1 , λ
γ

1 ≤ 1

Nk

λ
ϕ
2 , λ

β

2 , λ
γ

2 ≥ 2T · 	

ε
+ μ2, μ �= 0 (7)

where Nk is the number of VOs involved in the consensus, ε
and T are positive constants, and T is a horizon time inter-
val such that the involved VOs are connected at least for an
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ε amount of time (ε ≤ T ); 	 and μ are weight parame-
ters. Appropriately choosing the tuning parameters affects
the accuracy of the solution of the algorithm, as well as the
convergence time, as follows:

Accuracy = [2 · (T − ε) + ξ ] · 	

Convergence time ≤
(

T

εμ2

)

· max
i,j

|x0
i − x0

j | (8)

where ξ > 0 is an arbitrary infinitesimally small parame-
ter, and xi(0), xj (0) are the initial values for VOs i and j of
the generic consensus variables, which in our case are those
specified by Eq. 6. These conditions ensure that the algo-
rithm converges to a solution in a finite time, and with an
accuracy that depends on the tuning parameters.

Supposing that T = ε, i.e., the VOs are always connected
during the consensus process:

Accuracy = ξ · 	

Convergence time ≤
(

1

μ2

)

· max
i,j

|x0
i − x0

j | (9)

5 Performance analysis

The proposed resource allocation mechanism has been
implemented and tested on a realistic scenario that focuses
on the home healthcare/assistance of a patient with minor
health problems. These are the application functionalities
that need to be provided: the patient vital signs need to be
constantly monitored; the patient needs to occasionally visit
a primary care physician for regular checks, not necessarily
for severe problems; after the visit, the patient needs to go
to the pharmacy to buy the medicines that he takes daily.

The main devices involved in this scenario are (i) sen-
sors, e.g., temperature, humidity, brightness, presence, gas,
and smoke; (ii) wearable devices for vital sign monitoring;
and (iii) intelligent devices, e.g., smartphones, tablets, and
laptops.

The complexity of the scenario is due to three factors:

– the objects’ heterogeneity: efficient cooperation needs
to be ensured among sensors, controllers, actuators and
smart objects, which have different capabilities and
likely adopt different communication standards and are
produced by different manufacturers;

– the need to obtain homogeneous data from heteroge-
neous sources (different data formats and precision);

– the same object is used to provide different services at
the same time, and thus coordination is needed.

The implementation of the algorithm has been performed
on Arduino Mega 2560 [1] boards, which microcontroller
is a ATmega 2560. The local network was created through
XBee S1 802.15.4 modules, by Digi International [10].

These modules use the IEEE 802.15.4 networking proto-
col for fast point-to-multipoint or peer-to-peer networking.
The XBee modules are ideal for low-power and low-cost
applications. The XBee modules have been connected to
Arduino via serial port, using Xbee USB serial adapters by
DF Robot [23].

Several tests were run to validate the proposed frame-
work and the presented reference scenario. Each test
involves the activation of a variable number of services,
ranging from 1 to 10, and different configurations of the
devices that could simultaneously perform the required ser-
vices. For each configuration, we simulated the behavior
of the heterogeneous RWOs described above, with differ-
ent values of residual energy, consumed energy for single
service, provided QoI levels, and different reference fre-
quencies for the service execution were used. We compared
the results obtained with the Optimal Resource Allocation
algorithm proposed in this paper, to which we refer as ORA
in the following, with three approaches:

– EqF: static allocation mechanism where the reference
frequency assigned to the VOs is equally divided by the
number of VOs that can perform the task;

– TAN: dynamic distributed allocation mechanism based
on game theory proposed in [20], where the whole refer-
ence frequency is assigned to the node with the highest
utility, which is proportional to the ratio between energy
consumption and residual energy;

– DLMA: dynamic distributed allocation mechanism
based on gossip proposed in [21], where the refer-
ence frequencies are entirely assigned to the nodes that
correspond to the highest network lifetime.

In order to describe the algorithm’s behavior, the HVAC
management example has been tested. We assumed to have
4 RWOs: a smartphone, a smart watch, a digital thermome-
ter, and an infrared presence sensor. Not all the RWOs can
perform all the tasks that have been described in Section 3.2
(see Table 1). The correspondence between tasks and RWOs
is reported in Table 2. Figure 5 shows how the four RWOs
reach consensus for the five different tasks. A different line
style is associated to each device. The plots show the behav-
ior of the consensus local update values ϕik , βik and γik

described in Section 4 (Fig. 5a, b, c) and the lifetime τi

Table 2 Correspondence between RWOs and tasks for the HVAC
management example

Task 1 Task 2 Task 3 Task 4 Task 5

Smartphone X X X X X

Smart watch X X X X X

Digital thermometer X X X

Presence sensor X X X
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Fig. 5 HVAC management example plot for algorithm convergence,
a ϕ parameter. b γ parameter. c β parameter. d RWO’s lifetime τ
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Fig. 6 Node lifetime changes in HVAC management example using
different approaches. a ORA approach. b EqF approach. c TAN
approach. d DLMA approach
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Fig. 7 Example of the ORA
algorithm’s behavior when the δ

value increases for node 4 while
reaching consensus over a task
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(Fig. 5d) as a function of the algorithm’s step number. It is
possible to see how, when a task is activated, the values of
the local updates related to each device converge in a few
steps. Every time a new task has to be allocated, the con-
sensus algorithm starts with the initialization of the local
update values, corresponding to the peaks in the figures (at
time steps 2, 6, 11, 16, and 21). After each initialization,
the local update variables start to converge, as the reference
frequency is distributed in a fair manner, and the device life-
time converge to the same value. For each task, the steady
state is obtained at step numbers 5, 10, 15, 20, and 25. Since
not all the nodes are able to perform the same tasks, there are
some nodes that do not take part to every convergence pro-
cess. This is the case, for example, of node 3, which cannot
perform tasks 3 and 4. This can be also proved by Fig. 5d,
where the lifetime of node 3 remains unchanged, while the
other three nodes converge to a lower lifetime because they
have to take charge of a greater workload. However, when
the fifth task, which all the nodes can perform, is assigned,
node 3 reach consensus with the other nodes, and their life-
time converge again to the same value. It is reasonable to
suppose that, with reference to task 5, node 3 takes charge
of a higher workload than the other nodes, since it did not
take part to the previous two tasks, and thus its lifetime is
higher. Indeed, it is possible to see from Fig. 5d that the life-
time value for nodes 1, 2, and 4 does not change much after
the assignment of task 5.

The HVAC management example has been also tested
using EqF, TAN, and DLMA approaches. Results are shown
in Fig. 6. It is possible to note that, although the other

Fig. 8 Average values of percentage improvements in network life-
time for a number of devices equal to 5

approaches may results in higher lifetime values for some
nodes, the ORA approach is the only one that corresponds to
a higher network lifetime, i.e., it is less likely that one node
depletes its battery before the others, as all the nodes expe-
rience a fair resource allocation. Indeed, the lowest lifetime
observed is higher than that of the other approaches.

The proposed algorithm’s behavior has been also tested
with reference to substantial changes in its modeling param-
eters’ value. Figure 7 shows an example of 10 nodes that
started consensus for a task. In this example, we assume
that the δ value, which accounts for any possible power con-
sumption coming from other activities, suddenly increases
for node 4. In this case, the lifetime of node 4 decreases
so much that it cannot participate to the task anymore, and
thus the consensus algorithm is started again by all the other
nodes excluding node 4.

To analyze the benefits of the ORA algorithm, we com-
pared lifetime values using the four different approaches:
ORA, EqF, TAN, and DLMA. Results are shown for differ-
ent numbers of tasks and involved devices. Figure 8 shows
the results for five assigned tasks, when the number of
involved devices changes, with a 95% confidence interval.
The data analysis shows that ORA brings in all cases to an
improvement of the network lifetime. The graphs show that
the best results are obtained for a lower number of assigned
tasks. Indeed, the average improvement of network lifetime
decreases as we assign more tasks.

We also tested the lifetime improvement experienced for
a variable number of devices, when they reach a consensus
on five tasks. From results shown in Fig. 9, it is possible to

Fig. 9 Average values of percentage improvements in network life-
time for a number of tasks equal to 5
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Table 3 Average values of percentage improvements in network life-
time with respect to the EqF approach, for a number of tasks equal to 5,
for different values of reference frequency per task F ref and different
number of devices

Lifetime Number of devices

improvement [%]

2 3 4 5 6 7 8 9 10

F ref 1 24 29 30 25 24 21 17 16 15

2 28 35 40 36 35 33 32 30 28

3 26 36 38 47 45 43 40 38 34

4 25 37 42 45 46 45 44 42 41

5 25 36 43 43 49 49 48 48 47

see a constant increase in lifetime improvement for a num-
ber of devices from 2 to 5 or 6, followed by a low decrease
for higher numbers of tasks. This is consistent with the fact
that when the number of devices increases, the workload
per single devices decreases, and the ORA algorithm gets
more efficient into appropriately allocating the workload to
the single nodes, with respect to the other approaches. Nev-
ertheless, at a certain point, the workload per single device
gets so low that the efficiency of the ORA algorithm starts
to decrease. This is also proved by Table 3, where life-
time improvement results for different values of reference
frequency per task are reported for the EqF comparison.
Similar behavior is reported for the TAN and DLMA com-
parisons. From the table results, it is possible to infer
that, as the workload increases (i.e. the reference frequency
increases), the number of devices for which the efficiency
of the ORA algorithm starts to decrease gets higher. It has
to be noted that, although the ORA algorithm’s efficiency
decreases a bit when the number of devices increases, it is
always more efficient than the other considered approaches.

The behavior of the algorithm was also evaluated from
the time performance point of view. The convergence times
measured during the testing phase have been analyzed and
represented in Fig. 10, as a function of the number of
assigned services. It goes from 533 msec when only one
task is assigned to 2.03 sec when 10 tasks are assigned.

Fig. 10 Average values of convergence time

Table 4 Convergence time for different numbers of tasks and devices

Convergence Number of tasks

time [sec]

2 4 6 8 10

Number of devices 2 0.60 0.87 1.21 1.52 1.84

4 0.63 0.92 1.24 1.62 1.95

6 0.74 1.21 1.35 1.85 2.04

8 0.80 1.22 1.61 1.83 2.18

10 0.84 1.43 1.76 2.25 2.54

Furthermore, Table 4 summarizes the convergence time val-
ues obtained for 2 to 10 tasks and for 2 to 10 devices. As
it is possible to notice, convergence time increases when
the number of tasks and the number of involved devices
increases. Nevertheless, from 2 to 10 devices it increases no
more than 27%, while from 2 to 10 tasks its highest increase
is 67%.

We further tested the algorithm for different values of
λ1 and λ2 parameters (see Section 4.3), to understand
how their changes affect the obtained results. Figures 11
and 12 show how convergence time and steady-state accu-
racy change when assigning 5 tasks to 5 nodes, comparing
results when the well-known consensus algorithm in [17]
is used, i.e., for different values of λ1 when λ2 = 0

Fig. 11 Convergence time and error and error on steady-state accu-
racy for different values of λ1 when the algorithm in [17] is used
(λ2 = 0), a convergence time. b error
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Fig. 12 Convergence time and error on steady-state accuracy for dif-
ferent values of λ2 when the algorithm in [19] is used, for a fixed value
of λ1 = 0.2, a convergence time. b error

(Fig. 11), and when the algorithm in [19] is used, for dif-
ferent values of λ2 when λ1 = 0.2. Note that the values
λ2 = {0, 0.001, 0.01, 0.1, 1, 10} are able to overcome noise
percentages of {0, 0.5, 2, 2.5, 8, 50%} with respect to the
correct data values. When λ2 = 0, the consensus algo-
rithm in [19] corresponds to the one proposed in [17]. We
observed that, when [17] is used, it is always preferable that
λ1 is equal to its highest limit, which in this case is 0.2, both
in terms of convergence time and accuracy. On the other
hand, when [19] is used, it would be preferable that λ2 is set
to its lowest limit, but this is not always possible, as in noisy
conditions the algorithm might not be able to reach conver-
gence. In such situations, λ2 needs to be set to a value that
is higher than 0, so that convergence is surely reached, as
discussed in Section 4.3. Nevertheless, its value should be
set to the lowest possible, in order to prevent convergence
time and error on steady-state accuracy from increasing too
much. Note that for λ2 = 10 the convergence time decreases
with respect to the case where λ2 = 1. This is due to the fact
that the error is so high that the result is unreliable, and thus
it can be reached in a shorter amount of time.

6 Conclusions

The analysis of the issues related to the identification and
selection of resources through the use of VOs has allowed
to implement a process of optimization of the allocation

of tasks, which improves the QoI offered by the object
resources in an IoT scenario. The consensus-based algo-
rithm on which the process is based uses the parameters
measured on the physical resources and shares among the
VOs the frequency of tasks’ execution required by the appli-
cation, so as to provide the best possible QoI. The modeled
scenario ensures the validation of the proposed framework
and the improvement of its performance. In all the tests per-
formed, the simulation results have demonstrated an average
improvement of 27% in network lifetime.

The optimization process implemented has the goal to
select VO instances that would guarantee the minimum QoI
level and improve the lifetime of objects. Future develop-
ments will focus on the study of a multi-objective algorithm
that will also take into account other resources, such as
storage capacity and processing speed.
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