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Abstract Dependability is one of the highly crucial issues
in cloud computing environments given the serious impact
of failures on user experience. Cloud computing is a com-
plex system based on virtualization and large scalability,
which makes it a frequent place for failure. In order to
fight against failures in a cloud, we assure dependability
differently from the common way where the focus of fault
management is on the Infrastructure as a Service and on the
cloud provider side only. We propose a model that integrates
dependability with respect to three dimensions according
to The Open Group Architecture Framework principles.
These dimensions involve various cloud actors (consumer,
provider, and broker). They take into consideration the
interdependency between the cloud service models (Infras-
tructure as a Service, Platform as a Service, and Software as
a Service) and the different architecture levels (contextual,
design, logical, procedural, and operations). DMD proves
an enhancement of dependability attributes compared to
classically designed and executed cloud systems.
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1 Introduction

Cloud service behavior mainly in dependability terms is
nowadays a highly requested feature given the serious
impacts of failures in these environments on user experi-
ence [1]. Failures are frequent in cloud environments [1, 2]
and they take place even within well-renowned cloud
providers [3]. In order to overcome this problem, tremen-
dous efforts were devoted to implement dependability in
cloud computing. They focused on dependability integra-
tion on Infrastructure as a Service (IaaS) and implemented
its mechanisms on the cloud provider side [4]. However,
faults still occur in cloud computing. Consequently, we
need to understand the current weaknesses of its imple-
mentation. Actually, in cloud computing, failures are not
originated from the infrastructure level solely. They may
happen at the platform and application levels. Moreover,
failures should better be managed by other actors than the
cloud provider such as the broker and the consumer because
they participate in end-user service delivery.

Therefore, the key solution for failures in cloud com-
puting is to integrate dependability coherently. In this
regard, we propose a three-dimensional model that takes
into consideration the cloud actors that influence depend-
ability integration and all the cloud service’s models. Our
proposed three-Dimensional Model for Dependability inte-
gration in cloud computing (DMD) defines three layers to
design dependable cloud actors’ architectures. DMD model
also specifies three cornerstone dimensions for dependabil-
ity integration that structure the interactions between the
cloud actors’ architectures in the cloud environment. Addi-
tionally, DMD model generates architectural artifacts that
guide dependability integration and enable its traceability
all over the cloud system. DMD model is used during the
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cloud actors’ architecture design and operation. The design
of these architectures should be aligned with the models
detailed in the layers of DMD. Their communications are
managed according to DMD dimensions during operation.

This paper is organized as follows: in Section 2, we
explore the main works dealing with dependability imple-
mentation in the three cloud service models. In Section 3,
we present our proposed model and its design based on prin-
ciples, layers and dimensions. In Section 4, we execute and
evaluate our model in terms of three dependability attributes
in comparison to classical cloud systems. Finally, we con-
clude the paper in Section 5 and cite our perspectives for
future work.

2 Related work to dependability integration
in cloud computing

Dependability is the ability to deliver a service that can jus-
tifiably be trusted [5]. Practically, it is an aggregation of
essentially four attributes: availability, reliability, safety, and
maintainability. It has its common mechanisms of imple-
mentation, which are fault management mechanisms. In
this section, we explore related works to dependability
integration in cloud computing service models.

2.1 Fault management in IaaS

Fault management in IaaS service model encompasses fault
tolerance and fault forecasting.

2.1.1 Fault tolerance in IaaS

Fault tolerance mechanisms in IaaS are classified into two main
categories that are error processing and fault treatment [6].

Error processing methods of IaaS are categorized into
proactive policy and reactive policy [7]. On the one hand,
the proactive policy is applied through Software Rejuve-
nation and Live Migration techniques. On the other hand,
reactive policy is applied through Checkpointing/Restart
and Replication techniques [7].

Software rejuvenation treats transient failures and soft-
ware aging which affects hypervisors and upper cloud
applications [6, 8–10]. The most adopted method for
software rejuvenation is a transient software termination
followed by a cleaning of the internal state of the system [8].
Cleaning the internal state of the system encompasses free-
ing the resources of the operating system, suppressing the
accumulated error conditions, and reinitializing the internal
data structures [11]. In the literature, there are measurement-
based approaches that monitor the resource usage statistics
in order to predict the optimal time to schedule rejuvenation [11].

Rejuvenation of the hypervisor leads to the transient shut-
down of the virtual machines that it manages. Therefore,
migration of these virtual machines is necessary during
rejuvenation. Virtual machines’ migration is divided into
two types: cold migration and hot migration (also known
as live migration). Cold migration powers off the virtual
machines before moving them to a new physical machine.
However, live migration moves the virtual machines to
another physical machine without interrupting the running
applications [12].

In live migration, the virtual machine is suspended tran-
siently. Then, its memory content and its local file system
are sent to the new physical machine. Finally, the virtual
machine is resumed in the new physical machine [13]. Live
migration is undertaken when the servers are overloaded
[14]. It improves online maintenance and load balanc-
ing. In the literature, several live migration techniques are
adopted such as pre-copy and post-copy besides some other
ones [13, 15]. Some performance metrics of live migra-
tion were evaluated. For instance, live migration has an
important overhead for applications with strict requirements
in availability. Additionally, live migration causes degrada-
tion in performance of the processes running in the virtual
machines [13].

Checkpointing is the process of saving system states
periodically during its healthy execution [7]. In case of fail-
ure, the system executes a rollback to the latest checkpoint
and restarts from the last stored state. On the one hand,
check-pointing mechanisms can be classified into full or
incremental mechanisms. Full mechanisms store the whole
system running states periodically. In regard to incremental
mechanisms, the first checkpoint stores the whole system
running states, whereas the following checkpoints store only
the modifications. On the other hand, checkpointing mech-
anisms can be classified into local and global. Referring to
local mechanisms, checkpointing data is stored in a local
storage platform. However, checkpointing data is stored in a
global storage platform in global mechanisms. Local mech-
anisms treat transient failure whereas local mechanisms
treat permanent failure. Checkpointing mechanisms can be
combined all together or selectively combined [2].

Replication is the process of replicating data that is fre-
quently accessed. The number of data replicas is set to three
or less [2]. Replication adds redundancy to the system [13].
It defines two types of components: active redundant com-
ponents and cold standby components. In cloud computing,
there are primary virtual machines used for the main work
and secondary virtual machines used as backup. The sec-
ondary virtual machines are used after all the primary virtual
machines fail or when their performance decreases [16].

Replication can be semi-active, semi-passive, or passive
[17]. The semi-active replication assigns task execution and
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provides data state to primary as well as secondary virtual
machines. However, only the result obtained by the pri-
mary virtual machines is sent to the end user. The result
obtained by the primary virtual machines is saved to the log
by the hypervisor. In case of failure of the primary virtual
machines, the secondary virtual machines take over tasks’
execution. The semi-passive replication assigns task execu-
tion to the primary virtual machines. The secondary virtual
machines take only the state of data from the primary virtual
machines. In case of failure of the primary virtual machines,
the secondary virtual machines are initiated and updated to
the last data state. This engenders a reasonable period of
downtime. In regard to the passive replication, data state is
saved regularly in the secondary virtual machines. In case
of failure of the primary virtual machines, the secondary
virtual machines are initiated with the stored data state.

Replication can be deployed according to three forms
[17]. First, we find “multiple machines within a cluster”
replication form where an application is replicated in two
hosts within the same cluster. This deployment form has
better latency and bandwidth but suffers from failure depen-
dency. Second, there is also the “multiple clusters within a
data center” replication form where an application is repli-
cated in two hosts located in different clusters within the
same data center. This deployment form still has a good
latency and bandwidth and presents a better failure depen-
dency. Finally, the “multiple data centers” replication form
replicates an application in two hosts located in different
clusters within different data centers. Authors in [2] and [7]
mention that reactive policy is the most used given the sim-
plicity of its implementation. However, proactive policy is
more efficient for systems with high availability require-
ment [7, 9] advocates implementing recovery mechanisms
that are aware of the granularity of failure in order to per-
fectly contain it besides reducing execution time and cost
for recovery. Moreover, it highlights the importance of the
dynamic nature of cloud computing as a challenge for fault
tolerance implementation in these environments.

2.1.2 Fault forecasting in IaaS

Traditionally, fault forecasting takes place by evaluating
the system tendency for failure. There are two approaches
used for fault forecasting: signature-based approaches and
anomaly-based approaches. On the one hand, signature-
based approaches detect the faulty behavior of the moni-
tored system and reveal them during the system execution.
On the other hand, anomaly-based approaches detect the
correct state of the monitored system and deduce the abnor-
mal behavior during the system execution [18].

There are several works that have been interested in
failure forecasting in IaaS. Guan et al. in [19] used the

Bayesian method as a statistical learning approach for
failure forecasting. Capelastegui et al. proposed in [20] an
Online Failure Prediction architecture that operates on pri-
vate IaaS environments. The proposed architecture works
over two levels: virtual level and physical level. The vir-
tual level is composed of virtual machines and the physical
level is composed of physical machines. It is integrated
within a monitoring system. It comprises the following ele-
ments: data collectors, prediction servers, and monitoring
servers working hand in hand with the managers defined for
infrastructure and applications.

2.2 Fault management in platform as a service

For Platform as a Service (PaaS), the existing works have
been proposed regarding failover and resilience of applica-
tions integrated on these platforms.

For instance, in [21], Sharma et al. proposed Reloc: a
session state management architecture for the applications
that are deployed in PaaS platforms. Reloc performs failover
when the application handling the session goes down trans-
parently to the end user. It also scales according to the
required workload. Reloc assures these properties thanks to
propagating the session states through a message queuing
backbone.

Liang and Lee in [22] fought against failures originated
by the dynamicity of application constraints on resources
and compatibility. Thus, they proposed a time-stamped
approach based on graph structure in order to design cloud-
based application in PaaS platforms.

Kozmirchuk et al. [23] presented an architecture of a
service broker implemented in PostgreSQL. This service
broker provides backup and data recovery to the database
management systems (DBMS) of the PaaS Cloud Foundry.
The offered backup storage can be local (for temporal
storage) or external (long-term storage).

Celesti et al. [24] proposed a PaaS platform whose design
is based on two overlay network layers: the Signaling Over-
lay Network (SON) and the Computing Overlay Network
(CON). The computing overlay network contains a single
component, which is the computing component. The signal-
ing overlay network comprises five components that control
the computing component. The fault-tolerance component,
which is a signaling component, recovers the workflow in
case 2 of failure event by asking for a new node from the
infrastructure for task execution.

In [25], authors proposed a multi-cloud PaaS for building
distributed applications. High availability is achieved through
balancing the workload and forwarding it to the healthy
nodes besides offering redundancy in all cloud levels.

Addo et al. [26] proposed an architecture to improve high
availability of PaaS based on the infrastructure of multiple
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cloud providers. This architecture implements an automatic
failover solution that treats Disaster Recovery and High
Availability scenarios. The adopted solution replicates data
between the cloud providers. In case of failure within a cur-
rent cloud provider, the failover is initiated towards another
cloud provider. A failback solution is also enabled in the
proposed architecture in order to resume delivery from the
first cloud provider when it is consistent again.

2.3 Fault management in software as a service (SaaS)

In literature, dependability in Software as a Service (SaaS)
was treated according to its relationship with key character-
istics of SaaS such as scalability and multi-tenancy.

For instance, authors in [27] treated fault tolerance and
recovery as a factor altering scalability. A node failure
implies a system capability to scale down and a node
recovery needs a system capability to scale up.

Su et al. in [28] focused on availability analysis in a
multi-tenant architecture (MTA) of SaaS. They started with
modeling a MTA of SaaS using the Markov model. Avail-
ability analysis shows that a single-tenant SaaS is similar
to a multi-tenant SaaS in normal delivery cases. However,
after failure happens, availability is dramatically affected by
multi-tenancy.

WeiTek et al. in [29] state that the majority of cur-
rent SaaS solutions have their own mechanisms of redun-
dancy and recovery. SaaS mechanisms for recovery and
redundancy are more specific to SaaS nature concerning
multi-tenancy.

Authors in [30] proposed an algorithm to checkpoint the
meta-data of SaaS’s tenants separately. The whole system
state is saved through multiple operations of checkpointing,

tenant by tenant. In the same way, rollback of the system
happens gradually, tenant by tenant to enable the correc-
tion of the faulty tenants and set priorities between tenants.
Authors evaluated this algorithm in [31] and compared its
performance in terms of delay with classic checkpointing
techniques. They demonstrated that the proposed algorithm
outperforms the classic checkpointing techniques analyti-
cally and empirically.

Goel et al. [32] proposed an approach to detect silent
failure in SaaS. Silent failures don’t have any trace of evi-
dence in the failure logs or in the console. In order to detect
them, the authors combine violation checking with finite
state machine representing the running states of the applica-
tion. This approach was tested for nine months and detected
36 silent failures.

Stavrinides and Karatza [33] mentioned the application-
directed checkpointing. These applications are responsible
for storing their own state progress periodically. Authors
use various scheduling algorithms to schedule the processes
of the application-directed checkpointing. The goal is to
provide resiliency for transient failures.

3 The three-dimensional model for dependability
integration in cloud computing design

We have endorsed DMD design with TOGAF [34] frame-
work’s principles and paradigms. In this way, DMD model
designs the cloud architecture for dependability while tak-
ing into consideration all the interactions and interdepen-
dencies of the architecture levels. Using TOGAF enables
building a coherent, efficient and effective cloud system and
services.

Fig. 1 DMD model design
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Fig. 2 The cloud actors model

Cloud Consumer

DescribeRequestedService()
DescribeRequirements()

Cloud Broker

DiscoverService()

Cloud Provider

ExposeService()

Negociates

Delegates ComposeService()
DeliverService()

DMD, depicted in Fig. 1, consists of three layers (the
cloud actor layer, the dependability management layer, and
the cloud service layer) and three dependability integra-
tion dimensions (the deployment dimension, the end-to-end
dimension, and the inductive dimension). In this section, we
detail DMD layers and their cooperation after defining the
principles that they should respect.

3.1 DMD model principles

DMD model exposes a set of design principles that are used
to design a coherently dependable cloud system architecture.
The DMD model defines the three following principles:

• Principle 1: Our model has to consider internal and
external cloud actors.

• Principle 2: Our model must consider failure in all
cloud service models i.e. IaaS, PaaS and SaaS.

• Principle 3: In our model, dependability in cloud com-
puting must be subject to traceability.

3.2 DMD model layers

From DMD abstract principles, we extract three opera-
tional layers that endorse dependability integration in the

cloud. These layers distinguish between the actors affect-
ing dependability integration in the cloud, the needed policy
for dependability management and the cloud service model
to be considered for dependability integration. It is possible
also that cloud actors deal with cloud services without
involving dependability management. DMD model defines
the three following layers:

3.2.1 The cloud actors layer

In the cloud actors model, depicted in Fig. 2, we have
designed the main cloud actors necessary to accurate cloud
service discovery and delivery. Namely, these actors are the
cloud consumer, the cloud provider and the cloud broker
[35].

DMD focuses on the cloud broker who is an intermediary
part between the cloud consumer and the cloud provider. He
is responsible for discovering and delivering trusty services
to the cloud consumer.

3.2.2 The dependability management layer

The main role of the dependability management layer is to
define the dependability policy to be applied. Depending on
the service requirement in dependability and on the impact
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Fig. 3 The dependability management model
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Fig. 4 The cloud services
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of the failure, a specific dependability policy is adopted as
illustrated in Fig. 3. The dependability management dis-
tinguishes between catastrophic failure and benign failure.
Depending on the service requirement, a recovery policy is
triggered in case of benign failures and migration towards
a new cloud provider is initiated in case of catastrophic
failure.

3.2.3 The cloud services layer

Three service models have been defined for cloud comput-
ing [35]. They are namely IaaS, PaaS, and SaaS. These mod-
els were thoroughly discussed in chapter one (c.f. chapter 1,
section 1.2.2).

Each cloud service model has its own characteristics and
components. Among these components, there are always
fundamental building blocks as depicted in Fig. 4. Indeed,
IaaS is made up of the processing building block, the storage
building block, and the network building block. PaaS con-
sists of Application Development and Integration building
block, Application Administration and Management build-
ing block, and Infrastructure Provisioning building block.
PaaS can be deployed over its own infrastructure or over
an IaaS. SaaS comprises the logic building block, the pre-
sentation building block, and the data building block. SaaS
applications can be developed and deployed using PaaS.
SaaS can also use the IaaS infrastructure for data storage.

3.3 DMD model dimensions

In order to structure the communications within a sin-
gle DMD layer and the interoperation between the three

Fig. 5 The deployment dimension

DMD layers, we define the three following dimensions for
dependability integration in DMD model:

3.3.1 Deployment dimension

The deployment dimension (cf. Figs. 1 and 5) encompasses
dependability integration in the cloud service layer all over
the cloud service models. This is due to the interdependency
that exists between the cloud service models.

It is necessary that dependability be integrated in every
service model separately and be handled between the cloud
service models. The interdependencies between the cloud
models are illustrated in Table 1:

In this regard, dependability in SaaS is linked to depend-
ability in PaaS and IaaS. SaaS should implement a depend-
able data connection with IaaS and a dependable logic
connection with PaaS. Similarly, dependability in PaaS is
linked to dependability in IaaS through resource provi-
sioning from IaaS infrastructure. PaaS has to implement a
dependable resource-provisioning module.

3.3.2 End-to-end dimension

The end-to-end dimension (cf. Figs. 1 and 6) embraces
dependability integration in the cloud actor layer. This
dimension takes into consideration the most involved actors
in dependability implementation and modification.

The end-to-end dimension delineates each actor role for
dependability integration and tracks its responsibility and

Table 1 Dependency between cloud service models

Interdependency between Connection

SaaS and PaaS Logic tier

SaaS and IaaS Data tier

PaaS and IaaS Infrastructure provisioning



Ann. Telecommun. (2017) 72:371–384 377

Fig. 6 The end-to-end dimension

accountability in case of failure occurrence as illustrated in
Table 2.

3.3.3 Inductive dimension

The inductive dimension (cf. Figs. 1 and 7) undertakes
dependability integration coherently in the three layers of
DMD. It constitutes the linking dimension between DMD
layers. It generates an inductive dependability architecture
made up of four levels.

These levels are built based on the development phases
of the TOGAF Architecture Development Method (ADM)
[34]. They are concretized with architectural artifacts gener-
ation to describe the obtained architecture. In the following
subsections, we develop the artifacts of each level in the
inductive dependability architecture of DMD.

• The dependability contextual level and its artifacts

The dependability contextual level is a description of the
context on which the dependability cloud system is devel-
oped. This level is built during the “Preliminary phase” and
the “Architecture Vision” phase of ADM method.

In the preliminary phase, the needed dependability arti-
facts are defined based on discussions with the key actors of
the cloud system. In the architecture vision phase, depend-
ability related cloud actors and their requirements for a
dependable architecture approval are identified. The DMD
model ensures to provide final artifacts and deliverables
that address the dependability concerns of these actors
appropriately.

The main generated artifacts in this level are described in
Table 3:

Table 2 Responsibility for dependability integration in cloud comput-
ing per cloud actor

Cloud actor Dependability integration responsibility

The cloud provider – Implements dependability mechanisms in

his service model

The cloud consumer – Specifies dependability requirements

– Monitors his consumption from the cloud

service model

– Negotiates dependability attributes with

the cloud provider

The cloud broker – Establish dependability as a term in the SLA

– Guarantees dependability delivery to the

cloud consumer

Fig. 7 The inductive dimension

• The dependability design level and its artifacts

The dependability design level is an analysis of the cloud
system vulnerabilities by the cloud actors. Responsibilities
for dependability integration are defined for the participat-
ing cloud actors. This level is built during the Business
Architecture phase of ADM method. The main generated
artifacts in this level are described in Table 4:

• The dependability logical level and its artifacts

The dependability logical level consists of logical depend-
ability services made up of dependability mechanisms such
as fault tolerance, fault forecasting and fault removal. These
services are offered by the cloud provider and delivered by

Table 3 The generated artifacts in the contextual level

Generated artifact Role

The dependability – Captures the architecture principles that
principles catalog describe a dependable solution or architecture

– These principles are used to evaluate and agree
an outcome for architecture

– DMD principles have been already defined
The dependability – It comprises the drivers that require
drivers catalog dependability integration in the cloud system

– These drivers are specified basically by the
cloud consumer

The dependability – Consists of the dependability related
actors catalog cloud actors whose approval of a final

dependable architecture is compulsory
– In DMD model, these actors are the cloud
provider and the cloud consumer
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Table 4 The generated artifacts in the design level

Generated artifact Role

The Dependability – Distinguishes between assets of different

Domain Model (DDM) dependability levels

– It classifies the assets with the same

dependability requirements into the

same group

– Defines the actors who influence

dependability integration in the cloud

The Actor/ Dependability – Delineates their responsibilities in

Role Matrix dependability integration in the cloud

– In DMD, this matrix has been defined in

the end-to-end dimension

the cloud broker. They depend on the logical policy defined
by the dependability management layer. This level is devel-
oped during the Information Systems Architecture phase of
ADM method. The main generated artifact in this level is
described in Table 5:

• The dependability procedural and operations level and
its artifacts

The dependability procedural and operations level incor-
porates the dependability procedures (e.g., checkpoint and
live migration) that implement dependability services spec-
ified in the dependability logical level. These procedures
depend on the logical policy defined by the dependability
management layer. This level is built during the Technology
Architecture phase of ADM method. The main generated
artifact in this level is described in Table 6:

4 DMD experimentation and results

In this section, we execute our DMD and evaluate the intro-
duced improvement of three dependability attributes based
on on Reliability Block Diagram Method (RBD) [5] and
Semi-Markov Process (SMP) [36]. RBD is used to assess
reliability given the decomposition of cloud environments
into parallel and series elements. SMP is used to assess

Table 5 The generated artifacts in the logical level

Generated artifact Role

The dependability – It presents the offered dependability services

services catalog composed with cloud service

– It is mapped to the principles and drivers

determined in upper dependability levels to

provide traceability and justification

Table 6 The generated artifacts in the dependability procedural and
operations level

Generated artifact Role

The dependability – Includes the dependability procedures that

Procedures catalog are applied on the cloud service models i.e.

SaaS, PaaS and IaaS in order to fulfill

logical dependability services

maintainability and safety because it is able to deal with the
dynamicity of the cloud.

4.1 DMD execution

DMD execution generates the inductive dependability archi-
tecture. It starts with building the dependability contextual
level until reaching the dependability procedural and oper-
ations level. At each level, there are generated artifacts as
outputs. They are used as inputs by the lower levels. Figure 8
depicts the main steps and exchanges between DMD layers
and inductive dependability levels.

First, the communication (1) starts between the cloud
actors and the dependability contextual level. This leads to
the generation of the required artifacts in the dependabil-
ity contextual level (2). Then, these artifacts are entered as
inputs to the dependability design level in (3). Via the inter-
action with the cloud actors (4), the dependability design
level generates the dependability domain model. This arti-
fact is used by the dependability logical level in (6) to trans-
late the contextual policy for dependability into a logical
policy. The dependability logical level can construct, then,
the dependability services catalog in (7). Afterwards (8),
the dependability services catalog is sent to the dependabil-
ity procedural and operations level. This latter corresponds
the logical dependability services with the physical pro-
cedures (9) in order to build the dependability procedures
catalog (10). Finally, the dependability procedures catalog
is applied to the three cloud service models SaaS, PaaS, and
IaaS, respectively, in (10), (10’), and (10”). If SaaS is the
service required by the cloud consumer (10), supplementary
requests are triggered on PaaS (11) and IaaS (12). If PaaS is
the service required by the cloud consumer (10’) though, a
supplementary request is triggered on IaaS (11’).

The exchanged messages between DMD layers and
dependability levels are detailed in Fig. 9. The messages are
exchanged within a single dependability level and between
the adjacent levels.

First, the development of the dependability contextual
level begins with the interaction between the actors of the
cloud actor layer. The cloud provider starts the instantiation
of its service model (0.1) then, the cloud consumer initiates
the process by asking for a cloud service from the cloud
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Fig. 8 DMD model execution exchanges

broker (1.1). The cloud broker discovers the required ser-
vices from different cloud providers (1.2). In the meantime,
the cloud consumer establishes his drivers for dependability

integration (2.1). Consequently, the contextual policy is set
based on these drivers. They are sent as an artifact to the
dependability design level (3.1).

Fig. 9 Collaboration diagram of DMD model mechanisms



380 Ann. Telecommun. (2017) 72:371–384

Second, the development of the dependability design
level begins. The cloud consumer, based on his dependabil-
ity drivers, requires dependability in cloud service among
other Quality of Service parameters (3.2). The cloud broker
asks for the service catalogs afforded by the cloud providers
to compare the different offers (3.3). In order to prepare
service catalog, the cloud provider assesses accurately the
vulnerabilities of his/her system (4.1). Afterwards, he sends
the service catalog to the cloud broker with the dependabil-
ity level of his service (4.2). Then, the cloud broker maps
the required level of dependability by the consumer ser-
vice to the offered level by the cloud provider service (4.3).
Next, he initiates the establishment of the design policy by
the dependability management layer (5.1). It generates the
dependability domain model artifact (5.2) and establishes
the SLA with the cloud provider (5.3). SLAs are sent to the
cloud consumer (5.4) and the dependability domain model
is sent to the dependability logical level (6.1).

Third, the development of the dependability logical level
begins. The dependability management layer sets the log-
ical policy (6.1). Subsequently, the policy is matched to
the corresponding logical dependability services (e.g. fault

tolerance, fault forecasting, etc.) (6.3). This leads to the gen-
eration of the dependability services catalog (7) which is sent
to the dependability procedural and operations level (8.1).

Finally, the development of the dependability procedural
and operations level begins. The dependability services cat-
alog is used to establish the procedural and operations policy
(8.2). The dependability management layer maps each log-
ical dependability service with the required dependability
procedure. This leads to the generation of the dependability
procedure catalog (9). This catalog is sent to the cloud ser-
vice layer in order to be applied on the cloud service models
SaaS (10), PaaS (10’), and IaaS (10”).

Figure 10 illustrates the obtained inductive architec-
ture built according to DMD principles for dependability
integration in cloud computing.

4.2 Results and analysis

In order to evaluate DMD, we are considering three depend-
ability attributes: reliability, maintainability, and safety. We
have only focused on the dependability contextual level
where the cloud consumer has diversity of cloud providers
thanks to the intermediation of the cloud broker.
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Fig. 11 The RBD of the
considered cloud systems E SCloud 
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4.2.1 Reliability

Reliability is reached through eluding tolerable or non-
catastrophic failure. Reliability is enhanced when the Mean
Time between Failures is reduced. It is reached thanks to the
provider diversity that the cloud broker has.

We adopt a qualitative method for dependability evalua-
tion, which is the Reliability Block DiagramMethod (RBD)
[5]. We consider two cases for cloud service delivery. The
first one is not based on DMD’s cloud actor model. The
cloud consumer asks a unique cloud provider for the service
delivery. The second case, contrarily, uses DMD cloud actor
model. The cloud broker is intermediated in the delivery. We
assume that failure events are independent for cloud actors.
We get the RBD illustrated in Fig. 11. Based on the above
RBD, we compute the reliabilities of both cloud systems.

In the first case, the classic cloud system is a series sys-
tem. The computed reliability R1for the RBD is given by
the following equation:

R1 = RCloudP rovider (1)

In the second case, the cloud system with DMD is a par-
allel system. The computed reliability R2 for the RBD is
given by the following equation:

R2 = RCloudConsumer × RCloudBroker

×
∑

ContractedP roviders

RCloudP rovider (2)

Assuming that:

RCloudConsumer = RCloudBroker = 1 (3)

because they are dependable.
We get:

R2 =
n∑

i=1

RCloudP rovideri (4)

Therefore,

R2 > R1 (5)

4.2.2 Maintainability

Maintainability is reached through decreasing the neces-
sary time for failure recovery. In this regard, DMD shortens
unnecessary recovery time in case of catastrophic failure
and triggers migration as a dependability policy.

In order to evaluate maintainability improvement thanks
to DMD, we adopt the analysis method proposed in [36].
We model SMP of a classical cloud system and SMP of a
cloud system designed according to DMD in Fig. 12. Each
model consists of four states: ready (RE), undergoing a safe
failure (S), undergoing a non-recoverable failure (NR), and
undergoing catastrophic failure (C). The transition probabil-
ities between these different states in both SMPs is denoted
by Pi/0 < i < 8.

Fig. 12 SMPs of a classical cloud system and a cloud system with DMD



382 Ann. Telecommun. (2017) 72:371–384

We notice that the main difference between the two SMPs
is the state C, which is absorbing for the classic cloud sys-
tem (c.f. Fig. 12a). This is due to the inability of classic
cloud system to recover catastrophic failures. In DMD, C
state is transient and offers the possibility to go back to RE
state (c.f. Fig. 12b).

Given the above models and parameters, the transition
probability matrices are given by P1 and P2:

Transition probability matrix Transition probability matrix
of a classical cloud system (1) of a cloud system with DMD (2)

P1 =

⎛

⎜⎜⎝

0 p1 p2 p3
p4 0 p5 0
0 0 0 1
0 0 0 1

⎞

⎟⎟⎠ P2 =

⎛

⎜⎜⎝

0 p1 0 p2
p3 0 p5 0
0 0 0 1
1 0 0 1

⎞

⎟⎟⎠

According to [36], maintainability is evaluated through
the Mean Time To Maintainability Failure (MTTMF). For
maintainability failure, we consider a set of transient states
and a set of absorbing states. We also take into considera-
tion the sojourn time in transient states RE and S denoted,
respectively, by hRE and hS . MTTMF is given by the
following equations [36]:

MTTMF of a classical MTTMF of a cloud system
cloud system (1) with DMD (2)

MT T MF1 = hRE + hS

1 − p1
MT T MF2 = hRE + hS

1 − p1

= hRE + hS

p2 + p3
= hRE + hS

p2

Since p2 and p3 are probabilities p2 ≥ 0 and p3 ≥ 0, we
have: p2 + p3 > p2.

Hence

1

p2 + p3
<

1

p2

Given that hRE and hS are sojourn times, hRE > 0 and
hS > 0, we get: hRE + hS > 0.

Consequently

hRE + hS

p2 + p3
<

hRE + hS

p2

We conclude that

MT T MF1 < MT T MF2 (6)

4.2.3 Safety

Safety is achieved through avoiding catastrophic failure
through migration. According to the related work, catas-
trophic failures are not avoided through migration of cloud
services.

In order to evaluate safety improvement thanks to DMD,
we adopt the same SMP of the classical cloud system
and of the cloud system with DMD. According to [36],
safety is evaluated through the Mean Time To Safety Failure
(MTTSF). For safety failure, we consider a set of transient
states Xt = {RE, S, NR} and a set of absorbing states
Xa = {C} . We take into consideration also the sojourn time
in transient states RE, S, and NR denoted, respectively,
by hRE, hNR , and hS. MT T SF is given by the following
equations [36]:

MTTSF of a classical MTTSF of a cloud system
cloud system (1) with DMD (2)

MT T SF1 = hRE + hS + hNR

1 − p1
MT T SF2 = hRE + hS + hNR

1 − p1

= hRE + hS + hNR

p2 + p3
= hRE + hS + hNR

p2

Since p2 and p3 are probabilities p2 ≥ 0 and p3 ≥ 0, we
have: p2 + p3 > p2.

Hence,

1

p2 + p3
<

1

p2

Given that hRE , hS and hNR are sojourn times, hRE > 0,
hS > 0 and hNR > 0 we get: hRE + hS + hNR > 0.

Consequently,

hRE + hS + hNR

p2 + p3
<

hRE + hS + hNR

p2

We conclude that

MT T SF1 < MT T SF2 (7)

5 Conclusion and future work

In this paper, we have proposed a three-dimensional model
for integrating dependability in cloud services. Our pro-
posed three-Dimensional Model for Dependability integra-
tion in cloud computing (DMD) is based on The Open
Group Architecture Framework (TOGAF) principles and
paradigms. It is comprised of three layers, which are namely
the cloud actor layer, the dependability management layer
and the cloud service layer. All over these layers, we
have defined three dimensions for dependability integra-
tion, which are the end-to-end dimension, the deployment
dimension, and the inductive dimension. We have focused
on the development of the inductive dependability architec-
ture since it assures the inter-operability between the three
layers and fulfills the three dimensions integration. Finally,
we have evaluated DMD through reliability-building dia-
grams and semi-Markov process formalism. DMD proved
an enhancement of dependability attributes compared to
classically designed and operated cloud systems. In future
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work, we are going to implement DMD through a cloud
broker architecture. This architecture implements the four
level of the inductive dimension. It adopts the two policies
defined in dependability management layer to treat failures.
It considers also dependability’s integration in the three
cloud service models.
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