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Abstract Information-centric sensor networks (ICSNs) are a
paradigm of wireless sensor networks that focus on delivering
information from the network based on user requirements, rath-
er than serving as a point-to-point data communication net-
work. Introducing learning in such networks can help to dy-
namically identify good data delivery paths by correlating past
actions and results, make intelligent adaptations to improve the
network lifetime, and also improve the quality of information
delivered by the network to the user. However, there are several
factors and limitations that must be considered while choosing
a learning strategy. In this paper, we identify some of these
factors and explore various learning techniques that have been
applied to sensor networks and other applications with similar
requirements in the past. We provide our recommendation on
the learning strategy based on how well it complements the
needs of ICSNs, while keeping in mind the cost, computation,
and operational overhead limitations.

Keywords Information-centric sensor networks . Cognitive
node . QoI . Reinforcement learning

1 Introduction

Wireless sensor networks (WSNs) have evolved from simple
sensing and tracking applications to being an integral and
essential part of the Internet of things paradigm. This means

that sensor networks have to deal with large amounts of data,
support requests from multiple users, and support information
extraction from the network rather than serving as point-to-
point communication networks that transmit data from a
source to sink. To enable WSNs to easily integrate with, and
adapt to the IoT environment [1], we propose the use of learn-
ing, as an element of cognition in the network. Cognition
refers to the ability to be aware of the environment, be able
to learn from the past actions, and use it to make future deci-
sions that benefit the network [2]. Learning is one of the ele-
ments of cognition that can achieve different goals in different
systems. In robotic chess, learning can be used to planmoves
based on opponents’ actions; in aircraft autopilot systems,
learning can be used to control the plane’s navigation; and in
cognitive networks, learning can be used to improve decision
making that improves network management and its overall
performance. Whatever be the system’s goal, the performance
of the learning technique depends on three main tasks: (1)
observations made from current activities in the environment,
(2) feedback from past actions, and (3) how this information is
used to achieve the system’s goals. An information-centric
sensor network (ICSN) has specialized nodes called cognitive
nodes that are capable of performing all these tasks by
implementing major cognition elements. These major ele-
ments are the learning, reasoning, and knowledge
representation. Figure 1 represents these three major elements
for cognitive nodes in ICSN, and associate them with their
respective functions. These elements of cognition, when in-
corporated in the network nodes of a WSN, help in providing
better understanding and catering for the end user require-
ments. Our expectation from the cognitive elements would
be to cater to the following objectives. On the short term, to
observe current network behavior and respond adaptively to
changing network dynamics. And on the long term, to learn
from the previous behavior and plan better for the future so as
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to make predictions and decisions that positively impact the
network survivability and application QoI during its lifetime.
Using these elements, a conceptual architecture of the cogni-
tive node can be illustrated as detailed in Fig. 2.

This cognitive sensor network framework is mainly
targeted towards application such as smart cities and smart
outdoor monitoring in IoT era. In these applications, the goal
for the learning algorithm is to dynamically adapt routing
decisions to improve the quality of information (QoI) deliv-
ered to the user [3] and improves the network lifetime. This
can be achieved by using a learning algorithm that can corre-
late the impact of past decisions on the current network be-
havior, based on end user’s requirements. But these are chal-
lenging applications for the learning algorithm due to the large
scale of the network, changing network topology due to node
deaths and varying channel conditions, and heterogeneous
traffic flows generated as a result of changing user requests
in the IoTapplication domain. For the learning algorithm to be

successful in such a dynamic environment, it must occur in-
crementally and span over multiple episodes [4]. Only then
will it be able to adapt to the irreversible changes in the envi-
ronment and contribute towards delivering QoI-aware data to
the end user over the network’s lifetime. In this paper, we
explore the different classes of learning techniques and iden-
tify what works best for large-scale information-centric sensor
networks in IoT applications.

The remainder of the paper has been organized as fol-
lows: In section II, we look at some WSN design issues in
IoT applications, and summarize the design changes re-
quired for integration of WSNs with IoT. In section III,
we explore artificial intelligence and learning used by
WSNs, to better analyze their suitability for ICSN appli-
cations. Subsequently, we delve into the details of ICSNs
as a hybrid solution platform for integration of WSNs in
IoT using a learning paradigm in section IV. We also
identify a suitable learning strategy in this section, before

Fig. 1 Cognitive node and its elements

Fig. 2 Cognitive node conceptual architecture
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discussing some open issues and concluding the paper in
section V.

2 WSN design issues in IoT applications

In this section, we take a brief look at the various design issues
that need to be addressed to seamlessly integrate WSNs in IoT
applications.We categorize the design issues into two parts: (i)
expectations of the users from the network, which includes
feature requirements of the sensor network’s interface with
the access network (future internet) and (ii) adaptations and
changes required within the sensor network to cater to user
requests while managing network resources. Each of these
design issues will be explored in the sub-sequent sections,
and we will see why these issues need to be handled differ-
ently from existing WSN applications.

2.1 User expectations from the network

Traditional WSNs were designed for specific applications
such as target tracking, temperature monitoring in a building,
and movement of goods in a supply chain, to name a few.
Users accessed the network only when they needed a particu-
lar type of sensed value, such as temperature, pressure, or
humidity for instance. However, in the IoT era, sensor nodes
have become heterogeneous and are capable of supporting
multiple types of sensors. This way the sensor network can
be expected to support multiple applications and provide users
with a variety of data as supported by the type of sensor nodes
used. Thus, WSN applications should evolve from supporting
application-specific deployments to providing an application
platform that users can access to gather a variety of data [5].

2.1.1 Multi-user application platform support

The basic idea behind developing an application platform is
to provide a flexible, generic infrastructure that can lead to
easy adoption of WSNs into a variety of IoT applications.
For example, a sensor network deployed in a city should be
capable of providing data for the following applications: (1)
air pollution monitoring; (2) daily weather monitoring (tem-
perature, humidity, UV index); and (3) park and garden
irrigation management. Such an application platform and
its associated services would also support the conceptual
ubiquitous sensor network (USN) used in large-scale sensor
network deployments [6, 7]. This would invite more num-
ber of users to simultaneously access the network, which
makes the WSN design even more complex. The underly-
ing sensor network will have to support heterogeneous traf-
fic flows generated as a result of simultaneous access from
multiple users, which is a very challenging task for the
resource-constrained sensor network.

2.1.2 User requirement—aware request classification

In a large-scale deployment of sensor networks that allows
multiple users to access it, different users may have different
requirements on the desired quality of experience (QoE) [8],
and the network may have its own limitations on the quality of
service (QoS) it is able to support [9–11] . While the user
requirements may evolve over time, the sensor network gra-
dually decays in terms of its energy capacity, and it also in-
volves dynamic changes in the link conditions and node avail-
ability. In addition, the user’s expectations from the attributes
associated with delivered data also vary based on the applica-
tion and type of request. Hence, there is a need to monitor data
attributes from the user requirements perspective directly, a
skip level from the application interface, as shown in Fig. 3.
Latency, reliability, accuracy, relevance, and robustness are
some of the attributes that can collectively provide an estimate
of the quality perceived by the user based on the information
received at the user-end from the network. This is referred to
as the quality of information (QoI) metric, and it may provide
information about the success of the network in satisfying the
evolving user requirements, while simultaneously saving
valuable network resources such as bandwidth and energy
[12]. Thus, it becomes necessary for the underlying sensor
network to be aware of user requirements and be able to clas-
sify user requests to deliver data in compliance with the de-
sired QoI. While there has been research in the area of QoI
assurance based on changes in the phenomena observed in the
network [13], there has not been much work on the user inter-
face side for request classification based on changing user
requirements.

2.1.3 Internet access interface between user and WSN

ZigBee-based address-centric sensor networks facilitate the
integration of WSNs with the Internet, as both the networks
are address-centric and point-to-point. However, recent ad-
vances in the future internet research suggest that an
information-centric approach to data delivery is favored over
the address-centric approach. This is because researchers be-
lieve that it will become increasingly difficult to handle the
growing IP address space that serves billions of users in the
near future. Information-centric network (ICN) is one of the
promising architectures for the future internet paradigm [14].
It proposes an information-centric approach to data access

Fig. 3 QoI-aware data delivery
in WSNs for IoT applications
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where users look for named data objects instead of looking up
IP addresses to find data they are interested in. The architec-
ture is set up to support data storage at strategic locations in the
network, typically the edge of the network, so that requests do
not have to be propagated deep into the network to access the
required information. If the user had to request for data
through such an information-centric interface, then the net-
work interface would also have to be modified to ease the
flow of information. Hence, for IoT applications to be able
to adapt to changes of the future internet paradigm, changes
would be required in the way requests are made at the user
access interface and also at the sensor network interface.

2.2 Adaptations at the network level

In this section, we move from the issues at the user interface,
to the design issues at the network level to identify the adap-
tations required to enable WSNs for IoT applications.

2.2.1 Energy considerations and resource management

Large-scale platform-based sensor network deployments that
are accessed by multiple users tend to benefit more from a
data-centric approach than an address-centric one. For in-
stance, a user may request for information such as: tempera-
ture readings from all regions in the network where value is
greater than 25 °C. In such a scenario, there is no specific
address that the user is requesting data from. Instead, the query
is information-centric and requires information from the entire
network. This could be very energy intensive if appropriate
query dissemination and data delivery techniques are not iden-
tified. In their work on energy conservation schemes in
WSNs, Anastasi et al. have extensively explored data-driven
techniques, broadly classified into data reduction and energy
efficient data acquisition approaches [15]. Several researchers
have also established the energy conserving nature of data-
centric sensor networks [16–18]. However, previous research
has only considered networks of a few hundreds of sensor
nodes. In IoT-based applications, there may be thousands of
sensor nodes to gather information from, which adds to the
complexity of the energy conservation problem. Although a
data-centric approach can provide valuable energy savings in
the network, further research is required to device techniques
to manage information flow in such a large-scale, energy-
constrained network.

2.2.2 Query dissemination and data delivery

WSNs can be broadly classified into address-centric and data-
centric networks. This classification is based on how query
dissemination, data gathering, and routing happen in the net-
work. Address-centric sensor networks are built on top of the
more recent ZigBee protocol [19] that provides a service-

oriented framework for implementing WSN applications.
Data is routed using the tree-based hierarchical topology
consisting of router and coordinator nodes, while sensor nodes
are the sources of information. Routers off-load the sensor
nodes by carrying forward their data to the sink, thus bringing
considerable energy savings to the battery-operated sensor
nodes. However, WSNs are essentially information extraction
networks. They were originally developed as data-centric sen-
sor networks (DCSNs) that did not make use of node ad-
dresses. Instead, their focus was on the attributes of the re-
quested information, which was gathered from wherever it
was available in the network, and delivered to the sink.
Handling query dissemination and delivering the gathered da-
ta is a very challenging task in large-scale sensor networks.
This is because of (1) the ad hoc nature of the wireless chan-
nel, (2) dynamic topology changes in the network due to node
deaths and their changing associations, and (3) due to the
nature of node distribution in the network. Hence, choosing
the right approach for handling data flows in a very critical
design decision, this must be made keeping in mind the inter-
face access network (the future internet paradigm).

In addition, IoTapplications have multiple users requesting
for different types of data with different service requirements.
For example, while request for periodic data may relax the
service requirements on latency, on-demand data needs to be
provided quickly, and should be relevant. On the other hand,
emergency reporting must be done accurately, reliably, and
quickly, with minimal delay. Thus, the way the network is
setup itself will have to be modified, to minimize energy con-
sumption during each of the phases of query dissemination,
data gathering, and data delivery. Sensor node scheduling also
becomes an important issue to be addressed, so that data is
available when user requests for it. Moreover, planned sched-
uling of sensor node wake-up and sleep cycles will add to the
energy savings and prolong the network lifetime. In addition,
planning the deployment of router nodes to increase the multi-
hop communication range is another aspect that needs to be
considered during network design and deployment. Since the
complexity of the tasks to be handled by WSNs in the IoT
paradigm is quite high and multi-dimensional, it seems appro-
priate that the design changes consider the addition of ad-
vanced nodes [20] that can maintain connectivity in the net-
work and carry data over long distances in these applications.

2.3 Summary of WSN design change requirements

Thus far in this section, we have seen the various design
change requirements in existing WSNs to make them adapt
to IoT applications. We summarize these requirements as
follows:

& Multi-user application platform support
& Classification of user requests to deliver QoI-aware data
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& Modification of the communication to make it compatible
with the future internet paradigm—ICN

& Incorporate specialized nodes that can observe/learn from
the interactions/feedback in the network and manage sen-
sor node scheduling to prolong the network lifetime

& Plan the deployment of router and specialized nodes to
maintain network connectivity and enable multi-hop data
transmission over the large-scale network

& Consider energy efficient query dissemination and data
delivery, and dynamic traffic management due to chang-
ing network conditions and user requests

Figure 4 summarizes all the design change requirements in
the form of a conceptual design for the future IoT paradigm
that supports multiple users and integrates ICN-based internet
access, and the large-scale data-centric sensor network. We
call this an information-centric sensor network (ICSN)
[21–24]. Comparing DCSN protocols with the information-
centric networking (ICN) approaches [25, 26] for future inter-
net, we can see that DCSNs already implement two major
features of the ICNs. Firstly, the naming schemes, or named
data objects for referencing requested data instead of using
node addresses, and secondly, storage of collected data in
nodes for ease of access.We take these two features as a strong
indication of the need to shift to data-centric sensing schemes
for WSNs, but with ZigBee and the information-centric

approach to adapt to the advanced applications in the IoT era
[27]. Although the data-centric approach will help to better
manage the network at each of the interfaces: user, access
network, and sensor network, the authors do think that a sim-
ple integration of different technologies will not be adequate
to manage the complexity of the tasks at the sensor network
level. To improve adaptations beyond the limitations of tradi-
tional cross layer design, we look to the tools of artificial
intelligence to support the ICSN paradigm.

3 Artificial intelligence and learning in WSN

Various artificial intelligence (AI) techniques have been
applied to WSNs to improve their performance and
achieve specific goals. We look at AI techniques as a
means of introducing learning in the WSN. Learning is
an important element in the observe, analyze, decide,
and act (OADA) cognition loop [28, 29], used to im-
plement the idea of cognitive wireless networks [30,
31]. In this section, we broadly classify AI techniques
as computational intelligence (CI) techniques, reinforce-
ment learning (RL) techniques, cognitive sensor net-
works and multi-agent systems (MAS), and context
aware computing as shown in Fig. 5.

Fig. 4 Conceptual design of an ICSN for IoT applications
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3.1 Computational intelligence

CI techniques are a set of nature-inspired computation meth-
odologies that help in solving complex problems that are usu-
ally difficult to fully formulate using simple mathematical
models. Examples of CI techniques include genetic algo-
rithms, neural networks, fuzzy logic, simulated annealing, ar-
tificial immune systems, swarm intelligence, and evolutionary
computation. In a learning environment, CI techniques are
useful when the learning agent cannot accurately sense the
state of its environment. In WSNs, CI techniques have been
applied to problems such as node deployment planning, task
scheduling, data aggregation, energy-aware routing, and QoS
management. Kulkarni et al. have provided an extensive sur-
vey of CI techniques applied toWSNs [32]. They elaborate on
various CI techniques and associate each with typical problem
domains they can solve in WSNs. From their observations,
swarm intelligence applied to solving the routing and cluster-
ing problem has drawn the most research attention in recent
times. However, a major drawback of this methodology is that
it can be computationally intense and may require some form
of model-based offline learning to deliver to the requirements
of the application scenario. Techniques such as ant colony
optimization can cause an undesirable increase in communi-
cation overhead in WSNs [33] too. Apart from these draw-
backs, none of the CI algorithms have been applied to solving
problems of data representation, aggregation, and delivery in a
distributed, decentralized setup, under dynamic communica-
tion constraints, as is the case in IoT applications. Next, we
evaluate reinforcement learning strategies used in WSNs. We
separate them from other CI techniques, because they are the
most widely applied learning techniques in WSNs and do not
categorically fall under nature-inspired learning.

3.2 Machine learning

Machine learning can be classified into supervised, unsuper-
vised, and reinforcement learning. Supervised learning would
be more compute intensive and requires a training sequence.
Additionally, accuracy of the learning algorithm would then

be defined by this training sequence. In the unsupervised
learning approach, the learning is from the environment being
observed and no training sequence is required. Reinforcement
learning (RL) is a reward-based technique that emphasizes on
learning while interacting with the environment, without rely-
ing on explicit supervision or complete model of the environ-
ment. It is a method of automating goal-directed learning and
decision making. Since it is advantageous to be aware of, and
learn the changes in the environment in WSN-based applica-
tions, RL would be an appropriate choice as the learning strat-
egy. In WSNs, RL has been successfully applied in network-
ing tasks such as adaptive routing, identifying low cost and
energy-balanced data delivery paths [34, 35], and in informa-
tion processing tasks involving data aggregation and inference
[36]. In the sub-sequent sections, we explore the different
types of RL methods as reward-based strategy [37].

3.2.1 Model-based reinforcement learning

A learning agent (LA) inmodel-based RL collects experiences
and builds a model from that. The actions can be chosen
randomly or heuristically and observe the impact on a model
and the reward (where s is the current state, a is the actions,
and s’ is the next state). This means, by taking action a, how
often would the LA end up in the state s’ if it started from state
s and estimating a probability by counting the number of times
triple occurs over the sample space. With this information, the
LA builds an estimate of the model and the reward by esti-
mating probabilities based on the number of trials (or epi-
sodes). Once an estimate of the model and rewards are ready,
the LA can plan its actions. A good plan can be found from
policy iterations or value iterations. But for model-based RL,
the hardest part is knowing the right policy to start out with, so
we can build a good model.

3.2.2 Model-free reinforcement learning

In model-free reinforcement learning, the agent is free to
learn from the environment by exploring it completely on
its own. Agent learns from positive reinforcement it gets
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Context Aware 
Computing Machine Learning

Reinforcement 
Learning

Support Vector 
Machines
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Networks
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Learning in WSNs using  

Artificial Intelligence techniques

Fig. 5 Learning techniques used in WSNs
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for moving towards a goal and negative reinforcement for
moving away from the goal. Q-learning is a form of
model-free RL in which the learning agent converges to
an optimal policy even if it were acting sub-optimally.
This is called off-policy learning. This is the most exten-
sively used form of RL, as it is easy to implement and a
relatively low-cost solution. However, Q-learning has its
limitations too. The agent has to explore enough and has
to eventually make the learning rate small, but not de-
crease it too quickly, so that it has a large enough state
space that covers all possible actions and policies. In the
context of the ICSNs, we are not interested in finding the
optimal policy. Rather, we are interested in any sub-
optimal solution that does not take much time to converge
and can act faster. It does not even matter how the action
is selected, and a heuristic choice could work well too.
This way, an even more simplified version of RL can be
applied to ICSNs. We will discuss this in more detail in
section IV.

3.2.3 Support vector machines

Support vector machines (SVMs) are a class of ML algo-
rithms that were originally formulated for binary classifica-
tion. They can be applied to complex, highly non-linear
problems in a consistent and structured manner and have
been successfully applied to intrusion detection and securi-
ty problems in WSNs [38]. This technique has not been
applied to any other design problem in WSNs, but has
proved very effective in small-scale sensor networks of
about 50 sensor nodes randomly deployed in a 100-m ×
100-m area. This class of ML algorithms has great potential
to be applied to security in IoT-based applications, especial-
ly if the interface becomes information centric, with gate-
way nodes lying within the sensor network itself. As sensor
network becomes more vulnerable to attack in the ICSN
setting, SVM techniques can be further explored to secure
large-scale networks in IoT applications.

3.3 Cognitive framework and multi-agent systems

Cognitive networks are built around the idea of having
sensor networks evolve around user requirements. It is
about taking a step towards developing intelligent net-
works that do not limit themselves to point-to-point com-
munication within the network. Instead, they enable the
network to perceive user requirements and deliver data
using distributed intelligence in the network. To implement
distributed intelligence, multi-agent systems (MAS) are
typically used. The agents in these MAS are called cog-
nitive agents. They may interact to achieve information
fusion and retrieval and may also be able to predict data
for future use. Typical applications include medical

monitoring, intelligent transport, and smart environment
monitoring [39]. Such a distributed approach to introduc-
ing intelligent behavior in the network will be very bene-
ficial in WSNs deployed for large-scale IoT applications.
Some examples of successful software implementations of
cognitive agents in sensor networks include AUTOMAN
[40] and MONSOON [41].

3.4 Context aware computing

In large-scale sensor networks, a huge amount of data is
generated. In order to derive useful information from raw
data, context of the data plays an important part. Context
awareness is even more important in the IoT era, as it
enables the network to deliver relevant, user-requested da-
ta. While doing so, network resources are also conserved
by extracting only meaningful information that is relevant
to the requests, from the network. There are various as-
pects to context aware computing. They are the following:
acquiring the context, context modeling, context reasoning,
and context distribution [42]. Since we are more interested
in the learning aspect as applicable to sensor networks, we
delve a little deeper into the context reasoning aspect.
Both CI- and RL-based techniques can be used to imple-
ment context learning, in addition to ontology-based and
probabilistic logic models. The information obtained from
these learning models can be exploited to infer informa-
tion from stored data. Context awareness is very important
and valuable in IoT applications, as it can add value to the
large amount of data available from their applications.

All the learning techniques discussed in this section have
been summarized in Table 1. We identify the limitations of
existing techniques and provide the details of the solution
platform based on ICSNs for IoT applications in the next
section.

4 A hybrid solution platform: learning in ICSN

In this section, we will identify what the learning algorithm
should actually learn, in order to support the information-
centric nature of ICSNs. Table 2 presents three broad classes
of solutions RL problems and classifies their features based on
their relevance to learning in ICSNs.

4.1 What should the ICSN learn?

To identify what the ICSN should learn, let us identify
what information is already known to the learning agent
nodes. First, from our work in [22] and [43], we know
that there is the upper bound on the maximum communi-
cation range for all the network nodes—sensor nodes,
relay nodes, and the nodes that implement learning as a
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part of cognition, the cognitive nodes. We will be refer-
ring to the learning agents as cognitive nodes (CN) from
this point forward. So, the CNs need to be aware of the
network topology changes only within their own commu-
nication range. The target area’s coverage is taken care of
at the time of deployment of nodes in the network. Thus,
learning about the topology changes in its local
neighborhood will help the CNs adapt their transmit pow-
er and choose a data delivery path that best manages the
nodes energy consumption. Prolonging the CNs lifetime
will in turn contribute towards increasing the network’s
longevity. Second, cognitive nodes store information in
their knowledge base regarding the QoI performance of
paths used in previous data delivery rounds. Routing ta-
bles are built and updated based on the information in the
knowledge base. Unlike traditional routing tables that
store static, end-to-end routing paths from source to des-
tination nodes (usually the sink node), routing tables in
ICSNs are not designed to be static. In fact, they are not
even end-to-end paths, but are paths that show the net-
work’s current adaptation to the changes in topology and
user requests. They store information about the most re-
cent path used to deliver data from the CNs to the sink or
other CNs or relay nodes. This means that the contents of
the routing table at each cognitive node have to be up-
dated on a regular basis to ensure they store the latest and
best QoI paths. Thus, the important learning goal for the
cognitive node from an application QoI perspective is to
learn the data delivery paths towards the sink that provide
the best QoI values for each of the different types of user
requests. There is no one best path that is always used to
route data. Instead, the routing choice depends on the
current network topology, nature of the user request (pe-
riodic, intermittent-user specific, or emergency data), and
volume of traffic generated in response to the request. If
the routing table is viewed as cache storage, then as ef-
fective cache replacement strategy is required to replace
old and redundant routing information with more recent
and relevant information. These learning goals can be
achieved in the following ways as represented in Fig. 6:
(i) learning from feedback on current actions, (ii) learning
by exploring the changes in the network topology, and
(iii) learning (drawing inference) from past actions by

Learning 
in ICSNs

Monitoring feedback 
of current action from 

the network   

Drawing inferences from 
correlation of past actions 

with observations

Learning proactively by 
interaction with network 

environment

Fig. 6 Learning in sensor networksT
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using the information stored in a knowledge base. Once
the learning converges and knowledge base updates are
complete, the routing tables can be updated using infor-
mation from the knowledge base. Thus, we identify two
main goals of learning: Firstly, to improve network lon-
gevity and maximize the duration for which the ICSN is
able to provide relevant data to the end user; and second-
ly, to increase the network’s ability to provide QoI-aware
data to the end user during its lifetime. For ICSNs, we
define the network lifetime as the time after which none
of the one-hop cognitive nodes to the sink are able to
deliver the user’s requests for information to the network,
nor are they able to deliver the gathered data from the
network back to the user, is called end-of-life of the
ICSN.

4.2 Choosing the learning strategy

The goal of learning in ICSNs is to improve the QoI delivered
to the end user and maximize the duration over which this can
be maintained. In other words, learning should contribute to-
wards maximizing the network lifetime while ensuring QoI-
aware data delivery during this period. Based on these require-
ments, we identify the following factors that influence the
choice of learning strategy in ICSNs:

& Learning should occur incrementally over time as network
conditions change.

& It should support episodic learning [44] to acquire infor-
mation from new events and update the knowledge base.
This will let the system make decisions and act based on
the observed changes.

& Learning should be distributed and occur locally when
implemented in large-scale ICSNs. However, the goal of
learning should be common across all the cognitive nodes.

& The learning algorithm must be light-weight and of low
complexity to support episodic learning. Moreover, it
must not cause too much data/control overhead in the
network or negatively interfere with other nodes’
functions.

& The learning algorithm should preferably be rewards
based, as supervised learning would become very com-
pute intensive for the ICSNs

& Finally, the learning algorithm must be able to con-
verge quickly enough to be support the network’s
learning goals in a timely manner. It should not cost
the network too much in terms of its resources (en-
ergy and time) either.

Based on these recommendations, we explore heuristically
accelerated reinforcement learning techniques for use with
ICSNs in the next section.

4.3 Heuristically accelerated reinforcement learning

Since both model-based and model-free RL have their limita-
tions, we will look towards modified forms of RL solutions.
We look at the possibility of using heuristics (rules of thumb)
to choose a sub-optimal action instead of trying to converge at
an optimal policy. The advantage of combining heuristics with
RL is that RL is eventually going to converge to an optimal
possible policy, but it takes time. Heuristic only attempts to
make the decision choices quickly. Therefore, it will not deter
the RL process, but will only enhance it to arrive at some sub-
optimal solution faster, but it will not be incorrect as observed
by Atkeson and Santamaria [45].

In this section, we look at the use of heuristic functions to
accelerate RL algorithms. These heuristic evaluation functions
called valuation functions are computed by stochastic sampling
and dynamic programming updates [46]. The model-free meth-
od is suitable for problems that do not involve large state spaces.
In contrast, the domain-independent, model-based heuristic
methods can be used for solving problems with a large state
space and hundreds of actions. The fast and frugal heuristics
proposed by Gigerenzer [47, 48] are not only generic but are
also low polynomial time and applicable to all problems that fit
a given model. Another aspect to consider is that learning hap-
pens while the system is running. This makes it important to
reduce the exploration space of the learning agent. In the
CICSN framework, we can use the information stored in the
knowledge base as a case base to choose an action that provides
a close solution to the RL agent’s problem.

But the choice of the case that matches the given decision
problem must be chosen in a way that helps the RL algo-
rithm to converge quickly [49, 50]. This way we can limit
the exploration space by making use of the knowledge base,
and use heuristics to choosen a sub-optimal action that will
help the algorithm converge faster. Heuristically accelerated
RL (HARL) and case-based HARL have been recently ex-
plored by Bianchi et al. in the context of robotic soccer [51,
52]. We extend this idea of accelerating RL by using heu-
ristics and an available case base to the ICSN framework. In
our application, the case base is replaced by a knowledge
base that is built upon the foundation of representing knowl-
edge in attribute-value pairs. The BRepresentativeness
Heuristic^: According to this heuristic, the more similar
something is to a prototype, the more likely it is to belong
to that prototype’s category [53]. This heuristic is based on
the fact that we tend to judge how likely something is to be
true is based on how representative it is of a particular cat-
egory. Thus, we conclude this section with the suggestion
that heuristically accelerated RL techniques that make use of
the information stored in the knowledge base of the cogni-
tive nodes will potentially serve as low complexity solution
to the learning problem in ICSNs, and might be viable in
terms of the computational overhead too.
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4.4 Learning in the ICSN framework

In the previous sub-section, we identified a learning strategy
for ICSNs based on the network requirements and from the
analysis of different learning strategies. Now we will identify
how the ICSN must be set up so that the learning strategy can
be implemented in this framework.We assume a deterministic
deployment of relay and cognitive nodes, and number them
for ease of representation.

We start with a broad classification of the type of request
that an ICSN should be able to serve. We divide the requests
into one of three types: type I: periodic, type II: on-demand,
and type III: emergency request. Each of these requests will be
associated with different QoI values on the delivered data, as
desired by the user.We identify latency (L), reliability (R), and
throughput (T) as the three attributes, whose combined value
will decide the QoI associated with the delivered data. Energy
efficiency is another important parameter that affects the net-
work’s performance and impacts the network lifetime, and we
will considered it while making decisions in the network, es-
pecially when related with choosing a data delivery path. We
will not use absolute values of these attributes in deciding the
QoI value. Instead, we will associate priorities with each of
these attributes for every request type, and let these priorities
decide the importance of the absolute value of the attributes.
Thus, each request type is classified according to the priorities
associated with QoI attributes of L, R, and T, and the impor-
tance of considering energy efficiency in making a decision
choice in the network, as shown in Table 3.

The QoI attributes are monitored from feedback in the net-
work. When a data packet is transmitted from a CN to its one-
hop neighbors, the QoI attribute values are piggy-backed along
with the acknowledgement it receives from these nodes. These
values will be stored in a knowledge base (KB) and used in
deciding themost appropriate next hop for sub-sequent requests
arriving at that CN. This way, decisions about data delivery
paths are dynamic and always based on both the user require-
ments and the network conditions at any point. The advantage
ofmaking these decisions at CNs is that it helps in decentralized
decision making. Moreover, only local, one-hop neighborhood
information needs to be monitored and stored. This means that
the size of the KB to be maintained remains reasonable and can
be easy to update and maintain.

Table 3, shows the association of QoI attribute priorities
with each request type. The numbers in the table indicate the
priority associated with the attribute. Number 1 indicates top
priority and number 3 indicates least priority. The Bx^ in
Table 3 indicates a Bdon’t care^ condition. This means that
there are no strict requirements on the value of the QoI attri-
bute marked with an Bx,^ and its value does not impact the
decision making.

Next, we look at the structure of the KB, where all
the information gathered from observations in the net-
work, and learnt from feedback is stored. The KB thus
stores all the relevant and useful information that the
learning and cognitive decision making algorithms can
use. It also serves as a case base which the learning
heuristic can use to map a given problem with and
decides on the best course of action for the future.
Table 4 represents the KB at a cognitive node and has
a sample of the information stored in it as attribute-
value pairs. Attribute-value pairs are one of the tech-
niques used for knowledge representation. Information
is represented in a way that the user can derive useful
information from it, by drawing inferences about how
the values are connected [54]. The inferences drawn
could be based on rules, or heuristics based on learning
from observations and feedback in the network. In
Table 4, a recursive representation of attribute-value
pairs has been used. That is each entry in the value
field can be another attribute-value pair. What makes
this representation effective beyond the attribute-value
association is that information can be derived by read-
ing the values along the column too, except for the field
containing sensor data. For example, in the Attribute’
field BNode type^ is associated with three values:
BSink,^ BRN,^ or BCN.^ RN represents relay nodes that

Table 4 Sample of a knowledge base and its contents at the cognitive
node

Attribute Value

1-hop neighbors Attribute’ Value’

Node type Sink RN CN

Distance 400 m 250 m 350 m

Remaining battery ∞ 200 300

QoI Request type I II III

Node RN3 RN6 SINK

QoI attributes L =α1

R =β1

T = γ1

L =α2

R =β2

T = γ2

L =α3

R =β3

T = γ3

Sensor data Temperature 25

Humidity 20

UV index 5

Carbon monoxide 250

Table 3 Priority of QoI attributes for different request types

QoI attributes

Request type Latency Reliability Energy Throughput

Type I: periodic x 3 1 2

Type II: on-demand 1 2 4 3

Type III: emergency 1 1 x 2

Ann. Telecommun. (2017) 72:3–18 13



the CN is connected with, and CN represents other cog-
nitive nodes that the given CN is connected with in the
ICSN. The BDistance^ field corresponds with the values
in the BNode type^ and represents the separation be-
tween the CN housing the KB and the Sink, RN, and
CN, respectively. Tracking the remaining battery level at
each of the one-hop nodes helps the CN take energy-
aware decisions in choosing the data delivery path. The
next major attribute we have used is BQoI.^ It has in-
formation about the BRequest Type^ (as described by
Table 3) that the node has served, next hop BNode^ that
can best serve each request, and the values recorded for
each of the BQoI attributes^ of latency (L), reliability
(R), and throughput (T) during the previous communi-
cation. These values could be different between any
pairs of nodes and are thus represented by α*, β*,

and γ*. It should be noted however, that this table is
only a representation of how information can be stored
in the KB. In actual implementation, details of the se-
mantics will have to be worked out to make the repre-
sentations shorter and effective. In the proposed ICSN
framework, we even segregate the routing table from
the KB to keep routing decisions simple. Routing tables
at the CNs store information only about reaching the
one-hop neighbors, not the end-to-end paths, as shown
in Table 5. These entries are derived from the KB of
Table 4. In Table 5, the BPossible next hops^ field sug-
gests the best next hop node for cognitive node 2
(CN2) to transmit data, based on the BRequest type.^
It shows that CN2 is directly connected to the Sink,
connected to four RNs that are linked with the Sink,
and is also connected to two other CNs. CN-CN paths
are not preferred and are represented by the hyphens in
the BRequest type^ column. This is due to the high cost
in terms of energy consumption, and the possibility of
running into loops without reaching the Sink. These
tables can be updated every time the learning algorithm
identifies better paths for each request type, based on
the changing network dynamics as reflected from the
KB. In addition, a reasoning algorithm to help the

learning agent in making cognitive decisions must be
identified. These are still open research issues that need
to be addressed in the future.

5 Use-case and performance evaluation

In this section, we provide some performance evaluation of
the different learning techniques in improving large-scale
ICSNs for Cloud- and/or IoT-based applications. As de-
scribed in the context of cognitive psychology [49], the
learning heuristics will be used as strategies that ignore a
part of the information to make decisions faster, and some-
times more accurately compared to more complex methods
[25]. We utilize an online version of the A* heuristic search
algorithm, which learns from the information available in
the knowledge base of the cognitive nodes. We call this
learning data delivery A* (LDDA*) algorithm. The heuris-
tics will be used to make approximate decision choices, as
opposed to optimal decision choices. We compare this with
a cumulative-heuristic accelerated learning (CHAL) tech-
nique that accumulates the heuristic values at each state
(relay and cognitive nodes) and makes use of as much
information as possible from observations made in the net-
work before making the data delivery path choices. It also
uses negative heuristic weights to punish poor next hop
node choices, such as revisiting a node along a data deliv-
ery path. This way, LDDA* and CHAL will differ in the
heuristic weights accumulated by the learning process.
Since learning is typically used to improve the decisions
made by reasoning engine in cognitive networks, we im-
plement LDDA* and CHAL in a network that uses an
analytic hierarchy process (AHP)-based reasoning technique
at the cognitive nodes to make data delivery decisions.
(The details of AHP-based data delivery (AHPDD) have
been described in our previous work [21]). Performance
of the heuristically accelerated learning techniques
LDDA* and CHAL are compared against the non-
learning AHPDD in terms of the QoI observed at the
Sink where data is delivered at the end of each transmis-
sion round. The algorithms will also be compared in terms
of the rate of successful data delivery and the energy con-
sumed during the data delivery process at the end of net-
work’s lifetime. The knowledge of the deterministic deploy-
ment of the RNs and CNs, and the knowledge accumulated
in the knowledge base (KB) of the cognitive nodes, will be
used to update the weight of the heuristics during network
operation. We evaluate and compare the performance of the
aforementioned algorithms using MATLAB simulations. In
the following, a brief description of the simulation setup
and targeted metrics/parameters in evaluating the perfor-
mance of the algorithms. Simulations results and a detailed
analysis of the results are also presented in this section.

Table 5 Routing table at
the CN Routing table for CN 2

Possible next hops Request type

Sink III

RN6- > Sink II

RN7- > Sink II

RN2- > CN1 I

RN3- > CN3 I

CN1 –

CN3 –
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5.1 Simulation setup

The network is setup as described in Fig. 7, with ran-
domly deployed sensor nodes and fixed deployment of
relay and cognitive nodes. Simulation parameters are as
described in Table 6. Energy deductions at the local
cognitive nodes (LCNs) and relay nodes (RNs) during
data transmission are as represented in Table 7, based
on the transmit powers. The transmit power at RNs is
fixed at 3 dBm, and it can be adapted at the LCNs to
improve the probability of successful transmission as
described in [21]. Data delivery paths from source
LCNs in the network are initially established based on
AHP analysis of paths along next hop-neighboring RNs.
Heuristic learning is introduced in this simulation to
increase the average success rate of data delivery to
the sink, irrespective of the randomness with which
the requests for different traffic types are generated in
the network.

The following are the three performance evaluation metrics
that will be used to compare the performance of the aforemen-
tioned three algorithms:

1. Network lifetime: number of transmission rounds till all
one-hop nodes to GCN/Sink node are dead (including
RNs and LCNs)

2. Success rate (ρ): it is defined as the ratio of the number of
successful transmissions s to the sink over the total num-
ber of transmission rounds T during the network’s life-
time. This is represented by Eq. (1) as follows:

ρ ¼ s
T
*100 ð1Þ

3. Failure rate (ϕ): it is the ratio of the number of failed
transmissions f to the sink over the total number of trans-
mission rounds T during the network’s lifetime. This is
represented by Eq. (2) as follows:

∅ ¼ f
T
*100 ð2Þ

4. eQoI: effective QoI or eQoI is the heuristics estimate of the
QoI associated with data delivered to the sink at the end of
successful transmission round. In other words, a heuristic
estimate of the value of the QoI at the last hop that deliv-
ered the information to the sink.

5.2 Simulation results and analysis

Simulation results for the aforementioned three techniques are
summarized in Table 8.

As shown in the above table, results from the simulation
using AHP analysis (AHPDD) suggests that during an
average lifetime of 78 transmission rounds, the average
success rate is 63 %, and the average failure rate is 37 %.
However, during the worst case, transmissions can fail for
over 50 % of the requests, as suggested by the worst case

Table 7 Transmit power
consumption Ptx (dBm) Lifecycle reduction (units)

3–5 2

5–7 3

7–9 4

≥10 5

3–5 2

5–7 3

Table 6 Simulation parameters

Parameter Value

Targeted area 1050 m × 1050 m

Number of nodes SNs: 1500

RNs: 16

LCNs: 8

Transmit power (dB) SN: <3

RN: 3

LCN: {3, 5, 7}

Communication range (m) SN: 175

RN: 250

LCN: 350

GCN: 500

Application payload size 121 bytes

Per node offered load 0–1400 bits per second

Fig. 7 Use-case scenario setup for simulations
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failure rate. With the cumulative-heuristic accelerated
learning (CHAL), it was found that the average success
rate increased to 84 %, and the worst case failure rate
was as low as 19 %. The best case success rate was
90 %, which was only 6 % off from the average success
rate. This shows that the heuristics performed consistently
well under various traffic loads and request arrival pat-
terns. The performance of CHAL was matched very close-
ly by the LDDA* heuristic search algorithm, which pro-
vided an 88 % data delivery success rate, but a slightly
higher failure rate of 22 % in the worst case scenario when
compared with CHAL. Since it is more desirable to have a
higher success rate in smart IoT applications, we further
compare the performance of LDDA* and CHAL tech-
niques in terms of their effective QoI (eQoI) as observed
at the Sink to identify the best heuristic of the two. Figure 8
shows the result of the comparison of the eQoI values for
LDDA*, and CHAL, with AHPDD, which does not use
any form of learning at the LCNs. In general, we observe
that using some form of learning at the LCNs improves the
eQoI of the data delivered to the Sink. Of the learning
techniques, we observe that LDDA* performs the best in
terms of consistently delivering data with higher eQoI at
the sink, even towards the end of the network’s lifetime.
Now, this eQoI is the hop-over-hop value of QoI associated
with the data delivered to the sink with respect to latency,
reliability, and throughput. Apart from the hop-over-hop
latency, the cumulative delay in receiving a response from

the network for a request is reflected by the number of hops
taken along the path from source to sink. Thus, we can
conclude that of the two proposed techniques, LDDA* is
capable of delivering data to the sink with a higher average
success rate, and better eQoI. Either of these techniques
may be used for data delivery in the cognitive ICSN for
IoT applications, based on the application and end user
requirements (i.e., eQoI), rate of successful data delivery,
and cumulative delay from source to sink.

6 Conclusion and open issues

In this paper, we have approached WSNs as information-
centric networks, which enable retrieving more information
than just the data in attribute-value pairs from the network.
We reviewed some routing protocols in DCSNs and presented
our views on how learning could have been used to improve
their performance. Then, we went on to see the various learn-
ing techniques available in the AI domain and found that RL
methods are more suitable for use with sensor networks. This
is because reinforcement learning involves learning while
interacting with the environment which is important in WSN
environments where network dynamics change due to chang-
ing channel conditions, node deaths, and changing traffic con-
ditions, to name a few. We explored some more RL tech-
niques, and analyzed what the ICSNs should learn, before
arriving at a suitable technique for implementing learning in
WSNs. Network lifetime and quality of information are the
primary features that must be improved by the use of learning
algorithms. This work presents a preliminary assessment of
the potential advantages of introducing learning in WSNs. A
detailed assessment of the best way to do so, and comparison
with other techniques with respect to their impact on ICSN
lifetime and QoI awareness will provide a more accurate eval-
uation of the benefits of introducing learning in sensor net-
works. Thus, we open up the ICSN paradigm as a research
area with interesting possibilities. This study opens the door to
develop application-/domain-specific ontologies for better
knowledge representation at a higher level. The creation of
such domain ontologies contributes towards the development
of an enterprise architecture framework that can be applied to
different application domains using the same underlying cog-
nitive sensor network platform. More functions could beFig. 8 eQoI as observed at the Sink over the network lifetime

Table 8 Summary of simulation
results Method Lifetime

(rounds)
Average
success rate

Average
failure rate

Best case
success rate

Worst case
failure rate

AHPDD 78 63 37 79 52

CHAL 59 84 16 90 19

LDDA* 56 88 12 92 22
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incorporated at the sink to integrate it with the next generation
networks constituted of cognitive radio enabled nodes, work-
ing in cognitive network setup. The expansion of the sink
node functions to a cognitive gateway node can be considered.
The cognitive gateway node would then be able to take re-
quests directly from different wireless users such as cell phone
users, wireless access points and base stations. Furthermore,
the idea of Bcognitive elements^ shall be used in the interme-
diate routers of the future internet to provide on-demand
content to users quickly.
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