
Ann. Telecommun. (2016) 71:323–336
DOI 10.1007/s12243-016-0519-6

Receipt-free remote electronic elections
with everlasting privacy

Philipp Locher1,2 ·Rolf Haenni1

Received: 29 June 2015 / Accepted: 28 April 2016 / Published online: 12 May 2016
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Abstract We present a new cryptographic voting proto-
col for remote electronic voting that offers three of the
most challenging features of such protocols: verifiability,
everlasting privacy, and receipt-freeness. Trusted authorities
and computational assumptions are only needed during vote
casting and tallying to prevent the creation of invalid bal-
lots and to achieve receipt-freeness and fairness, but not to
guarantee vote privacy. The implementation of everlasting
privacy is based on perfectly hiding commitments and non-
interactive zero-knowledge proofs, whereas receipt-freeness
is realized with mix networks and homomorphic tallying.

Keywords Verifiable elections · Everlasting privacy ·
Receipt-freeness · Zero-knowledge proofs

1 Introduction

Voter coercion and vote buying are two serious threats in
electronic elections. They have not newly emerged with the
introduction of Internet elections, but they have reached a
new dimension regarding their scalability. While both sell-
ing the right to vote and voting in someone else’s name is
usually regarded as a serious disruption of the normal voting
process and may therefore imply severe legal consequences
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to both the seller and the buyer, the voting system should
at least not encourage the practice of vote buyers paying
rewards to voters for providing sufficient evidence that they
voted in a particular way.

Benaloh and Tuinstra first remarked the important dif-
ference between concealing a vote and not revealing a vote
to a third party [7]. A polling both in the traditional setting
achieves both by physical measures. But this is not auto-
matically the case in remote electronic voting. To achieve
verifiability, many existing systems provide a receipt to vot-
ers, which allows them to verify the inclusion of their vote in
the final result, but also to reveal their vote to someone else.
Consequently, such systems are prone to vote buying and
coercion. Receipt-freeness is therefore an important aspect
of vote secrecy when the voter is dishonest.

In a system offering vote privacy, neither the system
nor a third party can link a plaintext vote to a particu-
lar voter. If this property is not based on computational
intractability assumptions, like the impossibility of comput-
ing discrete logarithms or factoring large numbers, nor on
the availability of trusted authorities, then the privacy is
called everlasting in a information-theoretical sense. Ever-
lasting privacy is a desirable property to avoid vote privacy
violations by much more powerful adversaries far in the
future.

1.1 Contribution

The contribution of this paper is a new cryptographic
voting protocol for verifiable electronic elections offering
receipt-freeness and everlasting privacy. The protocol is a
continuation of the one described in [28], which offers ever-
lasting privacy without the need of trusted authorities but
not receipt-freeness. In the new protocol, trusted authorities
are needed to guarantee receipt-freeness and fairness, but
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not for privacy. Consequently, if all trusted authorities col-
lude and publish their private values, then voters are able to
obtain a receipt, but the privacy of the vote is still given. The
same applies to computational intractability assumptions.
They are only needed to prevent the creation of invalid bal-
lots during vote casting and to prevent voters from creating
a receipt, but not to protect privacy in the long run.

The core of the protocol is a combination of a set mem-
bership proof [6] and a proof of known representation of a
committed value [4]. When casting a vote, the voter pro-
vides a non-interactive zero-knowledge proof of knowledge
of the representation of one of the registered public voter
credentials. The same voter may cast multiple votes, but
what counts at the end is the sum of all valid votes cast. In
this way, precedent votes can be canceled out or overridden.
The votes of a given voter are linked over an encrypted elec-
tion credential, but the links remain hidden to an observer
using a mix-net. The entire voting procedure consists of four
consecutive steps:

– Registration: Each voter creates a pair of private and
public voter credentials and sends the public credential
over an authentic channel to the election administration.

– Election preparation: The election administration pub-
lishes the list of public voter credentials—one for every
registered voter—on the public bulletin board.

– Vote casting: The voter creates an electronic ballot and
sends it over an anonymous channel to the public bul-
letin board. The ballot consists of the encrypted vote,
a commitment to the public credential, an encryption
of the election credential, and the above-mentioned
composition of zero-knowledge proofs.

– Tallying: The trusted authorities verify the proofs
included in the ballots, shuffle the list of valid ballots
in a mix-net, decrypt the election credentials, and accu-
mulate under encryption the votes for each voter. The
accumulated votes are shuffled in another mix-net and
decrypted into plaintext votes.

This protocol provides everlasting privacy for the same
reasons as its predecessor protocol presented in [28], i.e.,
all the identifying information contained in a ballot is either
a perfectly hiding commitment or a zero-knowledge proof.
Receipt-freeness is achieved by not revealing the number of
votes cast by a single voter. The voter obtains a receipt for
every single vote and can hand them over to the vote buyer,
but the vote buyer will not know if the obtained amount of
receipts is complete. The voter can therefore cheat the vote
buyer by submitting an additional vote that cancels out or
overrides all previous ones. For this to work, vote buyers
must remain passive during the voting period, i.e., they do
not cast votes in behalf of the voters. Generally, our protocol
is not safe against active adversaries running impersonation
or forced-abstention attacks.

1.2 Related work

A considerable amount of research has been conducted on
receipt-free and coercion-resistant voting protocols and on
systems offering everlasting privacy. But to the best of our
knowledge, none of the existing approaches provides both
properties simultaneously.

Benaloh and Tuinstra first mentioned the important dif-
ference between traditional paper-based voting in private
voting booths and remote electronic voting based on a
cryptographic voting protocol [7]. They were the first to
define receipt-freeness and provide an approach for a pos-
sible solution based on an abstract model of a voting booth
and the assumption that such voting booths exist. Based
on a slightly weaker assumption of an untappable chan-
nel, Sako and Kilian described a receipt-free voting protocol
for yes/no votes based on mix-nets [34]. Various other
receipt-free protocols based on untappable channels have
been proposed by different authors [24, 32, 39]. At the time
of writing this paper, Kulyk et al. presented a method for
achieving receipt-freeness in Helios by allowing voters to
submit multiple votes and by considering the sum of all
submitted votes in the final tally [27]. Their basic idea for
achieving receipt-freeness is identical to the one presented
in this paper, but their protocol does not offer everlasting
privacy. The idea that the final counted vote is a composition
of all submitted votes goes back to the non-cryptographic
voting protocol ThreeBallot [33].

Juels et al. introduced an extended definition of coercion-
resistance, which considers general impersonation, random-
ization, and forced-abstention attacks in addition to vote
buying based on receipts [26]. Their solution requires an
untappable channel only for registration. Additionally, the
protocol assumes that voters have access to an anonymous
channel at some point during the vote casting process.
Unlike untappable channels, which require strong physi-
cal assumptions, anonymous channels can be implemented
in practice, for example using mix-nets. Several follow-up
papers have been published to speed up the tallying [2, 3,
15, 35, 36] or to prevent board flooding attacks [23].

With respect to vote privacy, Chaum argued that votes
must be unconditionally secure, meaning that the partial
tally of a group of voters can only be determined by a coali-
tion of all other voters [14]. Moran and Noar introduced
the term everlasting privacy in the context of a traditional
setting, in which ballots are cast in a private polling booth
[29–31]. In their definition, everlasting privacy is a weaker
form of unconditional privacy, which only excludes that an
attacker with unlimited computational power can break vote
privacy. All three protocol are based on trusted authorities.
Demirel et al. proposed several ways of achieving everlast-
ing privacy in the context of remote electronic elections
[10, 18, 19]. While the information published on the public
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bulletin board does not reveal anything about somebody’s
vote, the trusted server could potentially break the ciphertext
votes transmitted over the private channel between voter and
server. The same restriction applies to the method presented
in [17], which uses commitment consistent encryption to
generate a perfectly private audit trail. The first protocol that
offers everlasting privacy without trusted authorities is the
one on which this paper is based [28].

Another important line of related work are the protocols
based on blind signatures [16, 21, 25, 39]. They are also
based on submitting votes over an anonymous channel, but
they achieve everlasting privacy under much stronger trust
assumptions. Their main problem is ballot-stuffing by mali-
cious signing authorities, which cannot be detected. More
generally speaking, protocols based on blind signatures do
not support the verification of the electorate. Other disad-
vantages are the facts that voters need to interact with the
authorities during vote casting and that the authorities learn
who actually voted. To overcome some of the drawbacks
of blind signatures, Canard and Traor introduced a system
based on list signatures [13].

1.3 Paper overview

In the next section, we introduce the cryptographic build-
ing blocks of our protocol. In Section 3, we explain first the
adversary model before we provide a detailed description
of our protocol. We conclude the section with a discussion
of the resulting security properties and possible protocol
extensions. In Section 4, we analyze the running times and
memory consumptions of the different protocol procedures
and present the results from corresponding performance
tests. Finally, we summarize the findings of this paper in
Section 5.

2 Cryptographic preliminaries

Let Gp be a multiplicative cyclic group of prime order p, for
which the discrete logarithm assumption is believed to hold.
Furthermore, let Gq ⊂ Z

∗
p, be a large prime-order subgroup

of the group of integers modulo p, where k = (p − 1)/q
denotes the corresponding co-factor. Finally, suppose that
independent generators g0, g1 ∈ Gp and h, h0, h1, . . . , hn ∈
Gq are publicly known. Independence with respect to gen-
erators of a cyclic group means that their relative discrete
logarithms are unknown.1

1To ensure that generators are independent, they need to be generated
in some publicly reproducible way, for example by deriving them from
a common reference string.

2.1 Homomorphic commitments and encryptions

In our protocol, we use two instances of the perfectly hid-
ing Pedersen commitment scheme, one over Gp and one
over Gq . We distinguish them by comp(u, r) = gr

0g
u
1 for

a commitment to u ∈ Zp with randomization r ∈ Zp

and comq(v, s) = hs
0h

v
1 for a commitment to v ∈ Zq

with randomization s ∈ Zq . In the case of Gq , we write
comq(v1, . . . , vn, s) = hs

0h
v1
1 · · · hvn

n for a commitment to
n values v1, . . . , vn ∈ Zq . Recall that Pedersen commit-
ments are perfectly hiding, computationally binding, and
additively homomorphic.

The protocol also requires two instances of a homo-
morphic encryption scheme such as ElGamal or Paillier.
One of them needs to be additively homomorphic. In our
presentation, we choose ElGamal for its simplicity and com-
patibility with the above setting. We use one instance of
standard ElGamal and one instance of exponential ElGa-
mal, both over Gq and with a common key pair x ∈ Zq and
y = hx ∈ Gq . In our protocol, we will have a shared pri-
vate key x generated in a distributed manner. Corresponding
key shares xi can be used to perform the decryption in a dis-
tributed way. Recall that ElGamal is IND-CPA secure under
the decisional Diffie-Hellman (DDH) assumption. Further-
more, standard ElGamal is multiplicatively and exponential
ElGamal additively homomorphic.

In case of standard ElGamal, we write E =
enc×

y (m, r) = (hr , myr) ∈ Gq × Gq for encrypting a
message m ∈ Gq with randomization r ∈ Zq and m =
dec×

x (E) = ba−x for decrypting a given ciphertext E =
(a, b)with the private key x. To decrypt multiple ciphertexts
E = {E1, . . . , En} using the same private key x, we write
M = dec×

x (E) for the resulting list M = (m1, . . . , mn) of
plaintext messages mi = dec×

x (Ei).
In the case of exponential ElGamal, let E =

enc+
y (m, r) = (hr , hmyr) ∈ Gq ×Gq denote the encryption

of a message m ∈ M ⊂ Zq with randomization r ∈ Zq ,
where M is small enough to conduct an exhaustive search.
The restriction on the message space is necessary to perform
the decryption m = dec+

x (E) = logh(ba−x) of a ciphertext
E = (a, b) efficiently. Again, to decrypt multiple cipher-
texts using the same private key x, we write M = dec+

x (E).
To re-encrypt a given ciphertext E = enc+

y (m, r) with a
new randomization r ′, we use the standard procedure E′ =
reEnc+

y (E, r ′) = E · enc+
y (0, r ′) = enc+

y (m, r + r ′) of
multiplying the ciphertext with an encryption of 0.

2.2 Zero-knowledge proofs

The main cryptographic tools in our protocol are non-
interactive zero-knowledge proofs of knowledge. The voter
uses them to demonstrate knowledge of some secret values
involved in a mathematical statement, but without revealing
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any information about the secret values. One of the most
fundamental type of zero-knowledge proofs of knowledge
is a preimage proof for a one-way group homomorphism
φ : X → Y , denoted by

NIZKP[(a) : b = φ(a)],
where a ∈ X is the secret preimage of a public value
b = φ(a) ∈ Y . Examples of such preimage proofs result
from the above homomorphic Pedersen commitment and
ElGamal encryption schemes, for example NIZKP[(u, r) :
C = comp(u, r)] for proving knowledge of the opening
of a commitment, NIZKP[(m, r) : E = enc+

y (m, r)] for
proving knowledge of the plaintext and randomization of
an exponential ElGamal ciphertext, or NIZKP[(x) : M =
dec×

x (E) ∧ y = hx] for proving knowledge of the private
key used in a batch decryption.

The most common construction of a non-interactive pre-
image proof is the �-protocol in combination with the
Fiat-Shamir heuristic [20]. Proofs constructed in this way
are perfect zero-knowledge in the random oracle model.
Their transcript consists of one or multiple commitments
and one or multiple responses to a challenge obtained from
querying the random oracle with the public inputs and
the commitments. In practice, the random oracle is imple-
mented with a cryptographic hash function. In Section 3,
we will write πi = NIZKP[·] for the transcripts of the
non-interactive proofs used in the voting protocol.

2.2.1 Set membership proof

Let U = {u1 . . . , uM } be a finite set of values ui ∈ Zp and
C = comp(u, r) a commitment to an element u ∈ U . Both
U and C are publicly known. With a set membership proof,
denoted by

NIZKP[(u, r) : C = comp(u, r) ∧ u ∈ U ],
the prover demonstrates knowledge of corresponding values
u ∈ U and r ∈ Zp, but without revealing any information
about them. Such a proof can be constructed by a standard
OR combination of individual preimage proofs for each u ∈
U , but this proof has a size linear to M and is therefore not
efficient. The first set membership proof with a sub-linear
size has been given by Camenisch et al. [11].

As suggested by Brands et al. [9], a general way of
constructing a set membership proof is to compute the poly-
nomial P(X) = ∏M

i=1(X − ui) and to demonstrate that
P(u) = 0. This proof, denoted by

NIZKP[(u, r) : C = comp(u, r) ∧ P(u) = 0],
is a particular case of a polynomial evaluation proof. In a
recent publication [6], Bayer and Groth proposed a poly-
nomial evaluation proof with a logarithmic size, which is

the current state-of-the-art. A summary of the proof gener-
ation and verification using the same formal notation and
cryptographic setting as introduced above is given in [28].

2.2.2 Proof of known representation

In a cyclic group such as Gq with generators h1, . . . , hn,
a tuple (v1, . . . , vn) of values vi ∈ Zq is called DL-
representation (or simply representation) of u ∈ Gq with
respect to values (h1, . . . , hn), if u = h

v1
1 · · · hvn

n [8]. Note
that the general definition of DL-representation does not
require the values h1, . . . , hn to be generators, nor do they
need to be independent or distinct. On the other hand,
every opening of a Pedersen commitment is clearly a DL-
representation of the commitment with respect to the given
independent generators.

Let C = comp(u, r) be a commitment to a single value
u ∈ Gq ⊂ Zp and D = comq(v1, . . . , vn, s) a com-
mitment to multiple values v1, . . . , vn ∈ Zq . Both C and
D are publicly known. Following Au et al. [4], a proof
of known representation of a committed value (or simply
representation proof ), denoted by

NIZKP[(u, r, v1, . . . , vn, s) : C = comp(u, r) ∧
D=comq(v1, . . . , vn, s) ∧ u=h

v1
1 · · · hvn

n ],

demonstrates that the tuple of committed values in D is a
DL-representation of the committed value in C. Note that
this is a generalization of proof of knowledge of double dis-
crete logarithms, NIZKP{(v) : C = g(hv)}, by Camenisch
and Stadler [12]. A summary of the representation proof
generation and verification is given in [28].

2.3 Cryptographic shuffling

The input of a cryptographic shuffle is a list Z =
(z1, . . . , zn) of input values zi ∈ Z. The mixer applies a
keyed one-way function fki

: Z → Z to each input value zi

and permutes the results by picking a random permutation
φ : {1, . . . , n} → {1, . . . , n} from the set �n of permuta-
tions of length n. The output of a cryptographic shuffle is
therefore a list Z′ = (z′

1, . . . , z
′
n) of values z′

j = fki
(zi) for

indices j = φ(i). We write

Z′ = shuffleφ
fK

(Z)

for the whole procedure, where K = (k1, . . . , kn) denotes
the list of involved keys. Since the goal of a cryptographic
shuffle is to unlink the output values from corresponding
inputs, the shuffling is usually performed multiple times
in a mix network by independent mixers. The unlinkabil-
ity in such a network is guaranteed as long as at least one
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permutation remains secret. Additionally, each mixer needs
to provide a non-interactive zero-knowledge proof,

NIZKP[(K, φ) : Z′ = shuffleφ
fK

(Z)],
to prove the correctness of the shuffle. There are several
competing techniques for providing such proofs [5, 37].

In our protocol, we need two instances of a cryptographic
shuffle. In the first case, the input values are pairs of ElGa-
mal ciphertexts (Ei, Fi) ∈ (Gq × Gq) × (Gq × Gq). For
random values δ ∈R Zq \ {0} and σi ∈R Zq , the func-
tion fδ,σi

(Ei, Fi) = (Eδ
i , reEnc

+
y (Fi, σi)) is applied to each

input for keys ki = (δ, σi). Note that raising Ei to the power
of δ disconnects both the plaintext and ciphertext from their
original values, whereas re-encrypting Fi only disconnects
the ciphertext. To prove the correctness of the shuffle, the
mixer computes

NIZKP[(δ, σ1, . . . , σn, φ) : Z′ = shuffleφ
f(δ,σ1),...,(δ,σn)

(Z)]
to prove knowledge of K = ((δ, σ1), . . . , (δ, σn)) and φ.

The second instance of a cryptographic shuffle is a spe-
cial case of the first one. The inputs are single ElGamal
ciphertexts Fi ∈ Gq × Gq , which are re-encrypted using
fσi

(Fi) = reEnc+
y (Fi, σi) for random values σi ∈R Zq .

With the corresponding non-interactive proof,

NIZKP[(σ1, . . . , σn, φ) : Z′ = shuffleφ
fσ1,...,σn

(Z)],
the mixer proves knowledge of K = (σ1, . . . , σn) and φ.

3 Receipt-free elections with everlasting privacy

In this section, we present our new protocol for receipt-free
electronic elections with everlasting privacy. We start with a
discussion of the adversary model and the underlying trust
assumptions. Then, we provide a detailed formal description
of the protocol, analyze its security properties, and propose
three protocol extensions.

3.1 Adversary model and trust assumptions

We consider three types of adversaries with different capa-
bilities and goals. An adversary of the first type acts at the
present time, i.e., before, during, or shortly after an election,
whereas an adversary of the second type acts at any point
in the future. We call them present adversary and future
adversary, respectively. The vote buyer is a special case of
a present adversary.

The general goal of present adversaries is to break the
integrity or secrecy of the votes during an election, for
example by submitting votes in the name of someone else
or by linking votes to voters. We assume present adversaries
to be polynomially bounded and thus incapable of solv-
ing the DL or DDH problems in large prime order groups

or breaking cryptographic primitives such as contemporary
hash functions. This implies that present adversaries cannot
efficiently find valid openings of Pedersen commitments or
valid proof transcripts for zero-knowledge proofs of knowl-
edge without knowing the secret inputs. We also assume
that present adversaries cannot control the machines used
for vote casting2 and that voters do not reveal their private
credentials.

The goal of a vote buyer is to manipulate the outcome
of an election by paying rewards to voters if they can prove
that they voted in a particular way. The information required
to convince the vote buyer is called receipt. We assume
that vote buyers pay rewards for such receipts, but not for
obtaining the voters’ private credentials. In other words, we
exclude active impersonation attacks by buying someone’s
right to vote. Vote buyers remain entirely passive during an
election and therefore do not interfere with the vote casting
process.

For a future adversary, the only goal is breaking the
secrecy of the votes of an election that took place at the
present time. To avoid the problem of estimating the avail-
able computational resources far in the future, we simply
assume the strongest possible adversary, one with unlim-
ited resources in terms of computational power and time.
Although contemporary cryptography will be completely
useless in the presence of such an adversary, the secrets hid-
den in perfectly hiding commitments or in zero-knowledge
proofs of knowledge will never be revealed, even if they
were generated today.

From the point of view of the necessary communication
infrastructure, the protocol requires an authentic channel
between voter and election administration during the regis-
tration process. In the basic protocol version of Section 3.2,
voters need to re-register in every new election, but we will
show later how to circumvent this limitation. Furthermore,
the protocol requires a broadcast channel with memory, for
example in the form of a robust append-only public bulletin
board collecting the entire election data. We assume that
the election administration and the trusted authorities have
their own designated areas on the bulletin board for post-
ing their messages. Finally, for sending their votes to the
bulletin board, voters need access to an anonymous chan-
nel. We assume that no adversary is capable of intercepting
and recording the whole traffic over this channel during an
election and storing the data for future vote privacy attacks
[1].

2We are aware that requiring a secure platform is a strong assumption.
We do not explicitly address this problem in this paper, but our protocol
allows voters at least to detect a compromised platform as long as they
can read the bulletin board in a secure way.
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Fig. 1 Summary of the registration phase

3.2 Protocol description

As outlined in Section 1.1, the protocol consists of four con-
secutive phases. We will now present the details of each
phase using the cryptographic primitives and formal nota-
tion introduced in the previous section. Summaries of all
phases are included in corresponding figures at the end
of each subsection. Note that the registration and election
preparation phase are identical to the predecessor protocol
[28], and vote casting is very similar. To achieve receipt-
freeness, complexity has been added mainly to the tallying
phase. At the end of this subsection, we will also give an
overview of the verification process.

3.2.1 Registration

The first step of the protocol is the registration of voters
before an election. To register, voter V picks a private cre-
dential (α, β, γ ) ∈R Zq ×Zq ×Zq at random and computes

the public credential u = hα
1h

β

2h
γ

3 ∈ Gq . Note that the pri-
vate credential is a representation of the public credential
with respect to (h1, h2, h3). Finally, the voter sends u over
an authentic channel to the election administration (Fig. 1).3

3.2.2 Election preparation

After the registration phase, the election administration
defines the list U = ((V1, u1), . . . , (VM, uM)) based on
the electoral roll. Each pair (Vi, ui) ∈ U links a public
credential to the corresponding voter. Next, the list A =
(a0, . . . , aM) of coefficients ai ∈ Zp of the polynomial
P(X) = ∏M

i=1(X − ui) ∈ Zp[X] is computed to allow
voters creating the set membership proof during the vote
casting phase. As the computation of those coefficients is
quite expensive ( 12M

2 multiplications inZp), it is performed
by the election administration, possibly already during the
registration phase in an incremental way. Note that the coef-
ficients can be re-computed and verified by anyone, and

3To ensure that u has been computed from fresh values (α, β, γ ), the
voter could be asked to prove knowledge of (α, β, γ ) by computing
NIZKP[(α, β, γ ) : u = hα

1h
β

2h
γ

3 ]. As this is not an essential step for
our protocol, we omit it in our presentation.

voters can efficiently verify the inclusion of their public cre-
dential u by checking P(u) = 0. Finally, two independent
election generators ĥ1, ĥ2 ∈ Gq are defined in some pub-
licly reproducible way and (U,A, ĥ1, ĥ2) is posted into the
administration’s designated area of the public bulletin board
(Fig. 2).

3.2.3 Vote casting

During the election, voters select their vote by choosing
their preferred election options and encoding them by an
element of the set V ⊆ Zq of valid votes. We assume that
the election options and their encoding in V are publicly
known. Note that nothing prevents the voter from selecting
and submitting an invalid vote v /∈ V. In fact, we explic-
itly allow the submission of arbitrary values v ∈ Zq as a
mechanism for canceling out or overriding votes submit-
ted previously by the same voter. In our protocol, the sum
of all submitted votes is what counts at the end for a sin-
gle voter, and this value must be in V to be included in the
final tally. Therefore, submitting −v cancels out a previ-
ously submitted value v, whereas v′ − v overrides v with
v′.

To cast the vote, the voter computes two commitments
C = comp(u, r) and D = comq(α, β, γ, s) to the public
and private credentials. Next, the voter computes a stan-
dard ElGamal encryption E = enc×

y (û, ρ) of the election

credential û = ĥα
1 ĥ

β

2 ∈ Gq and an exponential ElGa-
mal encryption F = enc+

y (v, σ ) of the vote v. For this,
we assume that the public key y of the trusted authori-
ties is known to everyone. Finally, the voter generates three
non-interactive zero-knowledge proofs. The first proof,

π1 = NIZKP[(u, r) : C = comp(u, r) ∧ P(u) = 0],

is a set membership proof proving that C is indeed a com-
mitment to the public credential of one of the eligible voters
listed in U . The second proof,

π2 = NIZKP[(r, α, β, γ, s) : C = comp(u, r) ∧
D = comq(α, β, γ, s) ∧ u = hα

1h
β

2h
γ

3 ],

Fig. 2 Summary of the election preparation phase
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is a proof of known representation of the committed value
in C. Its purpose is to prevent voters from taking just any
credential from U . The third proof,

π3 = NIZKP[(α, β, γ, s, ρ, v, σ ) :D = comq(α, β, γ, s)∧
E = enc×

y (û, ρ) ∧ F = enc+
y (v, σ ) ∧ û = ĥα

1 ĥ
β

2 ],
is a standard preimage proof showing that D and E have
been generated using the same values α and β and that the
vote contained in F is known to the voter.4

The ballot B = (C, D, E, F, π1, π2, π3) consisting of
the two commitments, the two ciphertexts, and the three
proofs is posted over an anonymous channel to the bulletin
board. The voter may submit multiple such ballots during
the election period. If multiple identical copies of the same
ballot are posted to the bulletin board, we assume that only
one of them is stored (Fig. 3).5

3.2.4 Tallying

At the end of the election period, the ballots submitted to the
bulletin board need to be processed by the trusted author-
ities. We present this process by looking at the group of
trusted authorities as a single entity performing the nec-
essary shuffling and decryption tasks jointly. In reality,
different trusted authorities will perform respective tasks
using their own secret inputs and random values. The cryp-
tographic shuffling is a serial and the distributed decryption
(usually) a parallel process.6

To initiate the tallying process, the trusted authority
retrieves the list B of all ballots from the bulletin board
and verifies the non-interactive proofs π1, π2, π3 for each
ballot B = (C, D, E, F, π1, π2, π3) ∈ B. Ballots with
invalid proofs are dropped. Then the two ElGamal cipher-
texts (E, F ) are selected from all ballots with valid proofs.
We denote the resulting list of such pairs by EF =
((E1, F1), . . . , (EN, FN)). The validity of the proofs guar-
antees that each (Ei, Fi) ∈ EF originates from an eligible
voter with valid private credentials. Clearly, two distinct
pairs (Ei, Fi), (Ej , Fj ) ∈ EF originate from the same eli-
gible voter, whenever Ei and Ej contain the same plaintext.

4At first sight, it may appear that π2 and π3 are very similar proofs,
but a subtle difference disallows π2 to be implemented as a standard
preimage proof. The subtlety lies in the fact that u and û are both ele-
ments of Gq , but to use u as input of comp : Zp × Zp → Gp , it needs
to be interpreted as an element of Zp . As a consequence, comp is not a
group homomorphism with respect to (α, β, γ ), i.e., the preconditions
for constructing a preimage proof are not satisfied.
5The bulletin board could also accept multiple copies of the same bal-
lot, which then need to be eliminated in the tallying phase. But this
makes preventing replay and board flooding attacks more complicated.
6Shuffling and decrypting a list of ciphertexts can be performed in a
single serial process [38]. This is an optional implementation variant
of our protocol, which we do not pursue here.

Fig. 3 Summary of the vote casting phase

In the next step, the trusted authority performs a cryp-
tographic shuffle on the list EF. The two ciphertexts of
each element (Ei, Fi) of the input list are treated differ-
ently: Ei is disguised by raising it to the power of a single
random value δ ∈R Zq \ {0}, whereas Fi is disguised by re-
encrypting it using an individual random value σi ∈R Zq .
Therefore, the trusted authority applies the keyed one-way
function

fδ,σi
(Ei, Fi) = (Eδ

i , reEnc
+
y (Fi, σi))

to each input (Ei, Fi) ∈ EF, where ki = (δ, σi) represents
the individual key. By selecting a random permutation φ ∈R

�N and applying it to the resulting list, the trusted authority
generates a new list

EF′ = shuffleφ
f(δ,σ1),...,(δ,σN )

(EF)

of shuffled ciphertext pairs. Note that EF′ inherits from EF
the property that two distinct pairs (E′

i , F
′
i ), (E

′
j , F

′
j ) ∈ EF′

originate from the same eligible voter, whenever E′
i and E′

j

contain the same plaintext.
To collect the votes that originate from a single voter,

the trusted authority selects E′
i from every (E′

i , F
′
i ) ∈ EF′

and decrypts the resulting list E′ = (E′
1, . . . , E

′
N) into

H = dec×
x (E′). Each plaintext H ∈ H is a value of the form

H = dec×
x (E′

i ) = ûδ = (ĥα
1 ĥ

β

2 )δ = (ĥδ
1)

α(ĥδ
2)

β , where

ĥδ
1 and ĥδ

2 are unique values for the current election and
(α, β) belongs to some voter’s private credential. In other
words, all (E′

i , F
′
i ) ∈ EF′ satisfying H = dec×

x (E′
i ) for

some H ∈ H originate from the same voter, which implies
that FH = ∏

F ′
i is an encryption of the corresponding sum

of votes. Recall that this sum is what counts in our protocol
for a particular voter. Let FH denote the list of all values FH

aggregated in this way and N ′ = |FH | ≤ N the size of the
list.
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Before decrypting the aggregated votes, the trusted
authority performs a final cryptographic shuffle on FH , in
which the input values are re-encrypted. For this, random
values σ ′

1, . . . , σ
′
N ′ ∈R Zq are selected to perform the re-

encryption and a random permutation φ′ ∈R �N ′ is selected
for the shuffling. The result is a new list

F′
H = shuffleφ′

fσ ′
1,...,σ ′

N ′
(FH )

of ciphertext votes, which can then be decrypted into a list
V = dec+

x (F′
H ) of plaintext votes. Note that each resulting

plaintext vote is a value from Zq , but not necessarily all of
them represent valid votes. We denote the process of filter-
ing out invalid votes by V′ = V ∩ V.7 The resulting list V′
is the election result.

In addition to the above computational steps, the trusted
authority needs to provide convincing evidence that respec-
tive shuffling and decryption tasks have been performed
properly. The following non-interactive proofs are necessary
for this:

πE =NIZKP[(δ, σ1, . . . , σN , φ) :
EF′ = shuffleφ

f(δ,σ1),...,(δ,σN )
(EF)],

πH =NIZKP[(x) : H = dec×
x (E′) ∧ y = hy],

πF =NIZKP[(σ ′
1, . . . , σ

′
N ′ , φ′) :F′

H =shuffleφ′
fσ ′

1,...,σ ′
N ′

(FH )],
πV =NIZKP[(x) : V = dec+

x (F′
H ) ∧ y = hy].

Byposting (EF,EF′,E′,H,FH ,F′
H,V,V′, πE,πH ,πF ,πV )

to the bulletin board, the trusted authority completes the
tallying process.8

3.2.5 Verification

To verify the election result, the election data must be
retrieved from the bulletin board. It consists of everything
that has been posted to the bulletin board during the election
preparation, vote casting, and tallying phase:

(U,A, ĥ1, ĥ2,B,EF,EF′,E′,H,FH ,F′
H ,V,V′, πE,πH ,πF ,πV ).

The full verification process consists of the following steps:

– Verify the electoral roll U by checking the identities of
all eligible voters.

– Reproduce the list of coefficients A of the polynomial
defined by U.

– Reproduce the election generators ĥ1 and ĥ2.

7By mixing up list and set operations in one expression, we slightly
abuse standard mathematical notation.
8Some lists are implicitly given: EF (follows from B), E′ (follows
from EF′), FH (follows fromH and EF′), and V′ (follows from V). As
such, they need not to be published, but we include them for improved
clarity.

– For each ballot B = (C, D, E, F, π1, π2, π3) ∈ B,
verify the proofs π1, π2, π3.

– Reproduce EF from B.
– Verify the shuffle proof πE relative to EF and EF′.
– Reproduce E′ from EF′.
– Verify the decryption proof πH relative to E′ and H.
– Reproduce FH from H and EF′.
– Verify the shuffle proof πF relative to FH and F′

H .
– Verify the decryption proof πV relative to F′

H and V.
– Reproduce V′ from V.

Verifying the correctness of the cryptographic setting would
be another item in the above list, but usually one can assume
that the setting has been checked by others.

3.3 Security properties

We will now look at our protocol from the perspective of
its security properties. We provide an informal discussion of
how correct election results, everlasting privacy, and receipt-
freeness is achieved. Fairness is achieved in a trivial way by
submitting votes encrypted.

Correctness For a present adversary not colluding with any
of the trusted authorities and not in possession of a private
credential, there are two principle ways of creating a ballot
that will be accepted in the final tally. First, the adversary

may try to find (α′, β ′, γ ′) such that u = hα′
1 h

β ′
2 h

γ ′
3 for

some u in U , but this is equivalent to solving the discrete
logarithm problem. Second, the adversary may try to fake
a proof transcript without knowing such values (α′, β ′, γ ′),
but this is impossible due to the computational soundness of
the proofs π1, π2, and π3.

If the present adversary is an eligible voter in possession
of a valid private credential, then using it for submitting
more than one ballot is explicitly allowed by the protocol
and results in one final accumulated vote. The malicious
voter could try to prevent the vote accumulation by sub-
mitting ballots with different election credentials, but the
soundness of π3 does not allow this. Without using the pri-
vate credential, the voter is not more powerful than any other
present adversary.

A present adversary colluding with one or several trusted
authorities—or even the authorities themselves—may try to
delete, modify, or add votes in the mixing or decryption
steps of the protocol, but this is prevented by the computa-
tional soundness of the proofs πE , πH , πF , and πV . Their
correctness can be verified by anyone.

Everlasting privacy A ballot posted over an anonymous
channel to the bulletin board contains no information for
identifying the voter. Clearly, the future adversary will be
able to determine the private key x and use it to decrypt
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E into û = ĥα
1 ĥ

β

2 , but this value is perfectly hiding with

respect to both α and β. Similarly, u = hα
1h

β

2h
γ

3 is perfectly
hiding with respect to α, β, and γ . Therefore, knowing x

does not establish a link from E = enc×
y (û, ρ) to u. Since

the proofs π1, π2, and π3 are zero-knowledge and therefore
of no additional help, even a future adversary is unable to
break vote privacy.

Receipt-freeness A voter may send multiple ballots with
valid proofs during the vote casting phase, and all of them
will count in the final tally. By disclosing the randomiza-
tions used in the encryptions F , the authorship of a single
ballot can be proven and its plaintext vote can be revealed.
However, it is impossible to prove that every other ballots
was cast by somebody else (this would mean to prove not
knowing corresponding randomizations). As a single addi-
tional ballot can cancel out or overrule all precedent votes,
proving the authorship of one or multiple ballots does not
give a conclusive receipt.

In case the voter reveals the encryption randomizations
for some (but not all) ballots to the vote buyer, the link to
the voter’s other ballots must remain hidden during tally-
ing. By disclosing the randomization of E in addition to
the randomization of F , the voter can also reveal the elec-
tion credential û = ĥα

1 ĥ
β

2 . In the first shuffle, by raising
E = enc×

y (û, ρ) to the power of δ, the elections credentials
are disguised under encryption. Since δ is only known to
the trusted authorities (by holding corresponding shares of
δ), decrypting the resulting value Eδ into ûδ does not reveal
a link to û to anyone not in possession of δ and unable to
compute discrete logarithms efficiently. The outcome of the
first shuffle and the subsequent decryption is therefore not
uncovering the voter’s remaining ballots. This could only
happen if all trusted authorities collude or by someone capa-
ble of solving the discrete logarithm problem, but the trust
assumptions in our adversary model excludes this.

Another potential way of uncovering the ballots of a
given voter during tallying is by marking the submitted
votes with some additional information that the vote buyer
would accept as a receipt. This could be done in three
different ways: by submitting a unique combinations of
annihilating values v ∈ Zq in addition to the real vote, by
submitting a unique total number of votes, or by submitting
a unique valid vote when V is large enough. Each of these
cases would give a conclusive receipt.

– To prevent the first type of receipt, the ciphertext
votes obtained from the first mix-net are not decrypted
directly. Instead, the ciphertext votes are accumulated
and shuffled in a second mix-net. In this way, the
selected combination of annihilating votes remains hid-
den between the two mix-nets, only the sum of all votes
is decrypted.

– Regarding the second type of receipt, the protocol as
described in the previous section does not include any
counter-measures. The voter and the vote buyer could
therefore agree in advance on the total number of sub-
mitted votes. To receive the reward, the voter will then
disclose the same number of encryption randomiza-
tions. If the list H from step 4 contains exactly one
value with again the same number of identical copies,
the vote buyer will accept the disclosed randomizations
as receipt. Because the agreed amount of votes must
be unique for each voter, the scalability of constructing
receipts of this type is limited for a large electorate. In
Section 3.4, we propose a possible protocol extension
to limit the scalability even for a small electorate.

– The third type of receipt is known as the Italian attack.
An Italian attack is always possible if the final votes
are decrypted individually and if V is much larger
than the electorate. The problem is therefore limited to
elections with many options and complex rules or to
elections with a small electorate. The protocol as pre-
sented so far does not include any counter-measures to
prevent the attack in these cases, but we will present in
Section 3.4 an extended tallying procedure that avoids
the decryption of the accumulated votes of individual
voters.

3.4 Extensions

In the basic version of the protocol as presented in
Section 3.2, we have ignored some problems regarding
receipt-freeness and some important practical aspects. The
following discussion of corresponding extensions rounds
off the description of our protocol.

Null votes This extension addresses the problem that voters
and vote buyers may agree in advance on the total number
of submitted votes. The idea is to artificially increase the
number of votes of a given voter by supplying the bulletin
board with additional null votes. This idea has been pro-
posed in [27] for a receipt-free version of Helios, but it needs
to be adjusted to the particularities of our protocol. Gen-
erally, ballots containing additional null votes must satisfy
two properties: (1) they are indistinguishable from regular
ballots; (2) anyone can generate them. To avoid that the bul-
letin board gets flooded with a large amount of null votes,
we propose that only trusted authorities can generate them.
This can be realized by combining an additional proof

π4 = NIZKP[(σ, x) : F = enc+
y (0, σ ) ∧ y = hx]

disjunctively with π123 = (π1, π2, π3). A voter will there-
fore generate π123 and simulate π4, whereas the trusted
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authorities will simulate π123 and generate π4.9 To connect
a ballot containing a null vote to a real ballot from an eli-
gible voter, the trusted authorities copies and re-encrypts
E = enc×

y (û, ρ) from a ballot already published on the bul-
letin board. The remaining problem then is to decide about
the number of submitted null votes. Finding an optimal
strategy that maximizes the obfuscation of the total number
of votes of a single voter, and therefore minimizes to risk
of a vote buying attack based on receipts of this type, is an
open question for further research.

Extended homomorphic tallying To avoid the decryp-
tion of accumulated votes of individual voters, which is
responsible for the Italian attack, we can modify the last
steps of the tallying procedure. Instead of performing V =
dec+

x (F′
H ) and publishing V, the trusted authorities prove

for every F ′
H ∈ F′

H one of the two following proofs:

NIZKP[(x) : dec+
x (F ′

H ) ∈ V],
if F ′

H contains a valid vote, or

NIZKP[(x) : dec+
x (F ′

H ) �∈ V],
if F ′

H contains an invalid vote. The list of these proofs is
published together with F′

H . To obtain the final election
results, all values F ′

H containing a valid vote are accumu-
lated under encryption and the resulting sum of votes is
decrypted in one single step.10 The above proofs can be
constructed in different ways, for example by decrypting
F ′

H into v, encrypting v with a fresh randomization into
F ′′

H , proving the plaintext equivalence of F ′
H and F ′′

H , and
demonstrating the validity (or invalidity) of the vote in F ′′

H

using methods from [22].

Multiple elections If the protocol as presented so far is
used for multiple elections, but without requiring voters to
renew their credentials, then a future adversary will be able
to link the votes from the same voter by finding pairs (α, β)

that match with election credentials from different elections.
This does not provide a direct link to the voters’ identities,
but it allows creating voter profiles which will eventually
leak information. To overcome this problem, the protocol
must be modified to ensure that a pair (α, β) is used for
only one election. This can be achieved by extending the
private and public credentials to (α, β1, . . . , βL, γ ) and u =
hα
1h

β1
2,1 . . . h

βL

2,Lh
γ

3 , respectively, where L is the maximal

9In case x is shared among multiple authorities, the literal y = hx

in π4 can be replaced by a disjunction
∨

j (yj = hxi ), where xi is a
single private key share of an individual trusted authority and yj are
corresponding public values of all trusted authorities. In this way, null
votes can be generated individually by a single trusted authority.
10An additive vote encoding capable of representing all possible
election results is necessary for this.

Table 1 Ballot size as a function of M and K . Elements of Zp and
Gq are counted together

Ballot Elements Elements of Elements of

component of Gp Zp or Gq Zq

C,D 1 1 –

E, F – 4 –

π1 4�logM
+2 3�logM
+3 –

π2 K+1 2K+2 4K

π3 – 5 7

Entire ballot 4�logM
+K+4 3�logM
+2K+15 4K+7

number of elections the credentials can be used for. The cor-
responding commitment to the extended private credential,
D = comq(α, β1, . . . , βL, γ, s), implies that π2 needs to be
extended to a representation proof of size L + 1. Finally,
a modified election credential û = ĥα

1 ĥ
βl

2 and a modified
proof π3 are computed for l = (ε mod L) + 1, where
ε = 1, 2, . . . is the election number published beforehand
by the elections administration.

4 Performance and implementation

Given the complexity of generating and verifying the neces-
sary set membership, representation, and shuffle proofs, we
need to look closely at the computational resources required
by our voting protocol. We will first analyze the generation
of a single ballot during vote casting. Then, we will deter-
mine the cost of the tallying procedure, and finally examine
the verification of an entire election. The subject of our anal-
ysis is the basic protocol version from Section 3.2 without
any extension.

4.1 Vote casting

The size and the cost of generating of a ballot in our pro-
tocol is mainly determined by the sizes of π1 and π2. Note
that π1 depends on the number of eligible votersM , whereas
π2 depends on a security parameter K .11 In Table 1, we
recapitulate the number of group elements for Gp, Zp, Gq ,
and Zq and sum them up for an entire ballot. Since Zp and
Gq share the same modulo p, their elements are counted
together. Similarly, Table 2 recapitulates and sums up the
number of exponentiations in Gp andGq and multiplications
in Zp required for generating a single ballot.

Compared to the complexity analysis for the predeces-
sor protocol as presented in [28], the results given here are
very similar. The only differences come from the encryp-
tions E and F and the proof π3, which require a few more

11The security parameter K determines the soundness of the proof. We
adopt the recommendation of K ≥ 80 from [4].
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Table 2 Number of exponentiations and multiplications required to
generate a single ballot

Ballot Exponentiations Exponentiations Multiplications

component in Gp in Gq in Zp

C,D 2 4 –

E, F – 7 –

π1 8�logM
+4 – 2M�logM

π2 2K+2 4K –

π3 – 11 –

Entire ballot 8�logM
+2K+8 4K+22 2M�logM


exponentiations in Gq and corresponding group elements.
Since K will usually be a value ≥ 80, the estimated ballot
sizes and running times given in [28, Table 2 and 4] do not
change much (for example ten additional exponentiations in
Gq ). We will therefore not repeat the discussion of the anal-
ysis. We only conclude that we expect our protocol to work
reasonably well except for a a very large electorate.

4.2 Tallying

The tallying procedure is what makes this protocol more
complex compared to its predecessor. To analyze its com-
plexity, let N ≥ N ′ be the total number of submitted ballots
and N ′ ≤ M the number of eligible voters submitting at
least one ballot, i.e, N/N ′ is the average number of bal-
lots per voter and N ′/M the voter turnout. We assume that
all submitted ballots contain valid proofs, which implies
N = |EF| and N ′ = |FH |. In Table 3, we show the total
number of group elements generated during tallying and the
number of necessary exponentiations inGq . We assume that
the two shuffle proofs πE and πF are generated using Wik-
strm’s method [37, 38]. The results are given for a single
authority. In case of multiple authorities, the numbers need
to be multiplied accordingly.

Together with the results for the ballot size in Table 1,
which can be multiplied by N to obtain the size of B, we can

Table 4 Size of the election data for different numbers of voters and
parameters K = 80, |p| = 1024, and |q| = 160, and assuming that
M = N = N ′

Eligible Elements Elements Elements of Zq Total size

voters of Gp of Zp,Gq

10 1.10 · 103 1.92 · 103 3.60 · 103 0.44 MB

100 1.21 · 104 2.00 · 104 3.59 · 104 4.61 MB

1,000 1.33 · 105 2.09 · 105 3.59 · 105 48.60 MB

10,000 1.49 · 106 2.21 · 106 3.59 · 106 0.51 GB

100,000 1.61 · 107 2.30 · 107 3.59 · 107 5.33 GB

1,000,000 1.77 · 108 2.42 · 108 3.59 · 108 56.64 GB

calculate an estimation of the size of the election data pub-
lished on the bulletin board. Note that the lists EF, E′, FH ,
and V′ need not to be stored explicitly (see footnote on 8).
To simplify the setting, we assume that every eligible voter
submits one single ballot, which implies M = N = N ′.
Furthermore, to allow comparison with the results given in
[28], we adopt the security parameters K = 80, |p| = 1024,
and |q| = 160. The results of this calculation are given in
Table 4.

We conclude from the results of Table 4 that the total
size of the election data increases only slightly compared to
the predecessor protocol. An overhead of 10 % is needed
for M = 10, but this number gets even smaller when M

gets larger, for example less than 7 % for M = 1,000,000.
This observation reflects the fact that the tallying procedure
requires only O(N) space and therefore contributes much
less to the total election data than the O(N logM) space of
the ballots (assuming that K is a constant value), especially
when M gets large.

A similar conclusion can be drawn with respect to com-
putation time. Recall from step 2 in Fig. 4 that verifying all
ballots is an important part of the tallying procedure. As we
will see in Table 5 (upper part), the verification of the proofs
in each of the N ballots requires O(N logM) exponenti-
ations in Gp and Gq and O(MN) multiplications in Zp,

Table 3 Number of group
elements and exponentiations
required during tallying in case
of a single authority and
assuming that all ballots are
valid

Component Elements of Gq Elements of Zq Exps. in Gq

EF′ = shuffleφ
f(δ,σ1),...,(δ,σN )

(EF) 4N – 4N

πE N + 8 2N + 5 12N + 7

H = dec×
x (E′) N – N

πH 2N N 2N

F′
H = shuffleφ′

fσ ′
1,...,σ ′

N ′
(FH ) 2N ′ – 2N ′

πF N ′ + 6 2N ′ + 4 8N ′ + 5

V = dec+
x (F′

H ) – N ′ N ′

πV 2N ′ N ′ 2N ′

Total 8N + 5N ′ + 14 3N + 4N ′ + 9 19N + 13N ′ + 12
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Fig. 4 Summary of the tallying phase with a single trusted authority

which is much more expensive than O(N) exponentiations
inGq required to execute the remaining steps of the tallying
procedure. For estimating the running times of verifying all
ballots, we refer to [28, Table 6]. For M = 1,000,000, for
example, we calculated an negligible 0.1 % overhead for the
whole tallying procedure. Therefore, we refer again to the

Table 5 Number of exponentiations and multiplications required to
verify the election data for M eligible voters, N submitted ballots,
N ′ participating voters, security parameter K , and a single trusted
authority

Component Exponentiations Exponentiations Multiplications

in Gp in Gq in Zp

π1 6N�logM
 + 6N – 2NM

π2 2KN + N 4KN –

π3 – 16N –

πE – 13N + 15 –

πH – 4N –

πF – 9N ′ + 11 –

πV – 4N ′ –

Total 6N�logM
+ 4KN + 33N+ 2NM

2KN + 7N 13N ′ + 26

discussion and conclusions given in [28] and do not repeat
them here.

4.3 Verification

Compared to the predecessor protocol from [28], a complete
verification of the election data as presented at the end of
Section 3.2 requires a number of steps in addition to the
verification of the proofs contained in the submitted ballots.
Table 5 summarizes the number of exponentiations in Gp

and Gq and the number of multiplications in Zp. Note that
π1 requires a linear number of multiplications, which cannot
be neglected when M gets very large [6].

Again, it turns out that the additional work to verify the
proofs generated during tallying is marginal compared to
the verification of the ballots. In terms of asymptotic run-
ning times, O(N) exponentiations in Gq are required for
verifying the proofs from the tallying procedure, whereas
O(N logM) exponentiations in Gp and Gq and O(NM)

multiplications in Zp are required for verifying the bal-
lots. For example, we calculated that the overall verification
takes only 3 % longer for M = 10 and less than 0.05 %
longer for M = 1,000,000. In [28, Table 6], we estimated
the time to verify the proofs included in 1,000,000 ballots
on a single ordinary machine to be more than 4000 h, which
seems to be at the limit of what is feasible today, possi-
bly with multiple and more powerful machines. The same
conclusion holds for the extended protocol from this paper.

5 Conclusion

In this paper, we introduced the first practical crypto-
graphic voting protocol offering everlasting vote privacy
and receipt-freeness simultaneously. Everlasting privacy
is realized with perfectly hiding commitments and zero-
knowledge proofs of knowledge, and hence does not
depend on trusted authorities or computational intrac-
tability assumptions. Receipt-freeness, on the other hand,
is achieved by a combination of cryptographic mixing
and homomorphic tallying, for which trusted authorities
and computational intractability assumptions are obviously
required. These characteristics of our protocol exclude vote
buying attacks, if we assume them to take place at the time
of an election and that rewards are paid off shortly after-
wards, but not many years later. Attacks against vote privacy
will always remain impossible.

We presented the protocol in two steps. For the basic ver-
sion, which includes all central mechanisms, some restric-
tions must be applied to both everlasting privacy and
receipt-freeness. To eliminate these problems, we proposed
corresponding protocol extensions, which can be added
individually or jointly. The protocol is captivating in its
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relatively simple vote casting procedure, but the complex
tallying and verification procedures—especially if all pro-
posed extensions are implemented—might be subject of
further research.

To check if our protocol is practicable for real-world elec-
tions, we analyzed the computational resources in terms of
memory space consumption and computation time. Com-
pared to the predecessor protocol, it turned out that the
overhead for the extended tallying procedure is marginal.
The results of the analysis and the conclusions are therefore
very similar to those given in [28]. For a medium-sized or
even a large electorate (up to approximately 1 million vot-
ers), our protocol is feasible with today’s technology. An
even larger electorate can always be divided into smaller
partitions without severe consequences.

Some problems remain unsolved in the current version
of our protocol. First, some aspects of coercion-resistance
are not addressed, for example forced-abstention, imperson-
ation, or randomization attacks. Another open issue is the
problem of flooding the bulletin board with a very large
number of valid ballots. This problem is a direct conse-
quence of our mechanism of achieving receipt-freeness by
allowing voters to vote multiple times and consider them all
in the final tally. Finally, our protocol provides no solution
for the problem of a malicious voting platform. Enhancing
our protocol with existing solutions to the open problems is
another subject for future research.
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