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© Institut Mines-Télécom and Springer-Verlag France 2016

Abstract Internal users are the main causes of anoma-
lous and suspicious behaviors in a communication network.
Even when traditional security middleboxes are present,
internal attacks may lead the network to outages or to leak-
age of sensitive information. In this article, we propose
BroFlow, an Intrusion Detection and Prevention System
based on Bro traffic analyzer and on the global network
view of the software-defined networks (SDN) which is
provided by the OpenFlow. BroFlow main contributions
are (i) dynamic and elastic resource provision of traffic-
analyzing machines under demand; (ii) real-time detection
of DoS attacks through simple algorithms implemented in
a policy language for network events; (iii) immediate reac-
tion to DoS attacks, dropping malicious flows close of their
sources, and (iv) near-optimal placement of sensors through
a proposed heuristic for strategically positioning sensors in
the network infrastructure, which is shared by multi-tenants,
with a minimum number of sensors. We developed a proto-
type of the proposed system, and we evaluated it in a virtual
environment of the Future Internet Testbed with Security
(FITS). An evaluation of the system under attack shows that
BroFlow guarantees the forwarding of legitimate packets at
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the maximal link rate, reducing up to 90 % of the maxi-
mal network delay caused by the attack. BroFlow reaches
50 % of bandwidth gain when compared with conventional
firewalls approaches, even when the attackers are legitimate
tenants acting in collusion. In addition, the system reduces
the sensors number, while keeping full coverage of network
flows.

Keywords DoS attacks · Intrusion detection and
prevention system · Software-defined networking ·
Network security

1 Introduction

Intrusion Detection and Prevention System (IDPS) are
mandatory to complement conventional security meth-
ods, protecting the system from either internal, or exter-
nal attacks [17]. However, the resources inflexibility
degrades IDPS performance while preventing infrastruc-
ture attacks [12], such as flooding denial of service
(DoS) attacks. (DoS) attacks consume big amounts of
resources, hampering the achievement of the appropriate
quality of service (QoS) for legitimate users’ applications
[14].

Software-defined networking (SDN) provides a global
view of the network to an intelligent and logically cen-
tralized controller, which simplifies network management.
The information exchange between the network controller
and the applications is done through the Northbound Appli-
cation Program Interface (API). The switches received
information through the Southbound API, with the most
popular implementation OpenFlow API [9]. OpenFlow pro-
vides a basic instruction set to modify, route, and block
flows on the network. Consequently, it is possible to
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create security applications that promptly react against
attacks, taking actions on network flows. Additionally,
SDN manages multi-tenant network where multiple virtual
networks run in parallel [8]. In these environment, it is
mandatory to obtain the highest granularity for each virtual
network (VN), in order to detect specific attacks in each VN.

In this article, we propose BroFlow, an elastic and dis-
tributed IDPS for SDN in virtualized environment. BroFlow
is based on the OpenFlow [9] API and on the network traf-
fic analyzer Bro [13]. As a study case, BroFlow implements
different anomaly detection algorithms against flooding
DoS attacks. BroFlow traffic sensors are deployed in virtual
networks and in the infrastructure. This deployment allows
a fine granularity in detection, when sensors communicate
through secure channels with an application running on top
of the POX1 Network Controller and, thus, it performs the
countermeasures to block DoS attacks. According to the
system load, BroFlow replicates or tears down the resources,
supplying in on demand. BroFlow uses Bro traffic analyzer
and its policy language for network events. Unlike most
current IDPS, BroFlow allows a prompt reaction to block
attacks, by means of the Openflow features. BroFlow reacts
directly into routing and forwarding of flows on the net-
work and, hence, eliminates the malicious flows close to its
source. BroFlow models and proposes a heuristic for opti-
mization in IDPS sensor placement, reducing the number of
sensor and maximizing the network coverage.

A BroFlow system prototype is implemented and evalu-
ated into the Future Internet Testbed with Security (FITS),
which is an experimentation platform based on virtual-
ization techniques. The results show the elasticity of the
proposal to provide machines under a high packet rate flood-
ing attack. The system shows a high efficiency to react
under flooding attacks, reducing network delay up to 90 %,
guaranteeing proper packet forwarding with the maximal
link rate up to 50 % compared with conventional firewalls
approaches.

The remainder of this article is organized as follow. In
Section 2, we describe related work. We detail the BroFlow
architecture in Section 3. The sensor placement optimiza-
tion is modeled in Section 4. Experimental results are shown
in Section 5. Finally, Section 6 concludes the paper.

2 Related work

The dynamic control of flows feature grants OpenFlow a
suitable use for network security applications, such as SDN
firewall [7, 20] or anomaly detection [6, 10], being effective
for detection and reaction to security thread.

1http://www.noxrepo.org/pox/about-pox/.

Shanmugam et al. propose a distributed IDPS for cloud
computing [15]. The paper uses SDN to distribute detection
sensors and elastically provide resources according with the
processing demand of each attack. This approach lacks of
an optimization sensor placement and an evaluation of the
detection methods.

Medhi et al. implement anomaly detection algorithms
into NOX-OpenFlow controller [10]. The proposal inspects
only the first packet of the connections, thus, it is effective
against port scanning attacks, in which the packet header
is only analyzed. Nevertheless, this approach is inefficient
in more sophisticated attacks, such as worm attacks or
virus propagation. Hu et al. design a firewall SDN applica-
tion which presents a solution to firewall policy violation
conflicts in OpenFlow-based networks [7]. Giotis et al.
propose an OpenFlow-based anomaly detection architec-
ture [6] using sFlow data collection. sFlow gathers flows
information and communicates with an anomaly detector
to identify potential threats. Yoon et al. adopts a combina-
tion of both approaches [20], that is, it combines a firewall
with detection capabilities into a Floodlight network con-
troller. However, these proposals do not consider virtualized
multi-tenants environments.

SnortFlow [19] consists in an IDPS based on the Snort
tool, which is an open source IDS based on signature detec-
tion, and OpenFlow. The Snort Agent is localized into the
management domain on the XEN hypervisor. This work
only evaluates the performance of the agent placement in
the XEN hypervisor. The agent placed only in the manage-
ment domain causes a coarse-grained rule implementation
for each virtual network. Furthermore, the Snort tool only
utilizes the signature detection method lacking the anomaly
detection, which generates high false positive rate under
small attacks variations.

The problem of specific sensor placement is addressed
by Chen et al., who propose a technique based on Genetic
Algorithms (GA) for sensor placement [2]. The proposed
algorithm minimizes the number of placed sensors and
maximizes the rate of analyzed traffic. However, this pro-
posal based on GA requires high processing time without
warranting the solution convergence [5].

3 The proposed system

BroFlow employs a programmable software switch, Open
vSwitch (OVS),2 used as an OpenFlow switch. OVS
presents a forwarding table, which could be updated by an
OpenFlow controller, it also offers several features, such as
packet dropping, packet-header fields modifying, etc. Each

2http://openvswitch.org/
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virtual switch runs on a virtual machine (VM), as it is
deployed in FITS [11]. The POX network controller config-
ures and controls OpenFlow switches. We choose POX con-
troller among others, due to its programming simplicity and
a fair trade-off between prototyping time and performance.
Our system considers a hybrid network virtualized environ-
ment, composed of XEN virtual machines (VM) running
over an OpenFlow switching matrix. As a hybrid envi-
ronment (XEN+OpenFlow) [11], we consider XEN hyper-
visor for machine-based virtualization, and OpenFlow for
network-based virtualization. In this virtualization environ-
ment, the VMs are connected through OpenFlow switches,
implemented by Open vSwitch. Each virtual network (VN)
consists a set of Virtual OpenFlow Switches, running on vir-
tual machines (VM). All virtual networks could run over
several physical machines (Fig. 1).

We choose the Bro [13] open source network traffic tool
analyzer due to its high policies description language, which
defines events for the network activities, represented by a
packet abstraction in a higher information level. Bro lan-
guage enables users to define their own policies. In addition,
Bro inspects network traffic in real time, creating reports
and alarms when a security policy is threaten.

The system architecture is based on the FITS [11] envi-
ronment. FITS architecture is show in Fig. 2. FITS has
a set of nodes geographically distributed among several
institutions. A set of nodes is called an island. Islands
are interconnected via virtual private networks (VPN) and
generic routing encapsulation (GRE) tunnels to emulate
layer-2 links over the Internet. FITS owns three kinds
of nodes: manager, gateway, and operational nodes. Man-
ager is responsible for coordinating the testbed, the gate-
way interconnects two islands, and the operational node
hosts the experiment. Each operational node can instantiate

virtual switches and interconnected them to support differ-
ent virtual networks.

3.1 BroFlow sensors

Our system owns two types of sensors, the BroFlow vir-
tual network (VN) sensors and the BroFlow infrastructure
sensor, illustrated in Fig. 1. Every sensor executes a Bro
tool daemon, with a minimal resources consumption. VN
sensors are distributed between the virtual switches and
monitoring either virtual switches or specific hosts. In
each VN sensor, specific and independent policies for each
virtual network are established. It is important in a cloud-
virtualized environment, because the policy persists even
when there is a virtual switch migration. Once the BroFlow
sensor migrates, it carries its specific policies together. In
addition, a daemon monitors system resources, which are
consumed by both physical machines and virtual machines.
In this architecture, the physical machines allocate several
BroFlow virtual network sensors, which send notifications
trough a secure communication channel to the network con-
troller. The control communication between sensors and
controller goes through an isolated network. In this way,
we avoid security issues and possible delays during attacks.
With distributed sensors, monitoring different networks, it
is possible to observe behaviors that are not observed using
a single point of observation [1].

The BroFlow infrastructure sensor runs parallel to the
network controller in order to protect the physical network
from malicious threats. An example of an infrastructure
threat is the ARP flooding attack, known as ARP poison-
ing. ARP flooding overloads switches routing tables with
fake MAC addresses, causing a memory DoS of switches.
The infrastructure sensor detects and prevents these types of

Fig. 1 BroFlow system Architecture. Sensors analyses network traffic
to protect the physical infrastructure and virtual networks from attacks.
All sensors communicate with the BroFlow application thought secure

channels. Inspection modules provide elastic resources on demand.
Countermeasures are applied to forwarding engines in order to stop a
threat
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Fig. 2 Future Internet Testbed with Security (FITS) architecture. Gateway interconnect Islands, Operational nodes provide virtualization functions
and manager node coordinates the testbed

attacks, protecting the physical network and the hosted vir-
tual networks. Furthermore, BroFlow application, manages
the alarms and countermeasures. We use the event engine
and the policy interpreter from the original Bro traffic ana-
lyzer. The BroFlow policy module decides which events
generated by Bro represent an attack and which action the
BroFlow application must take.

3.1.1 BroFlow policy

BroFlow security policies are composed by two modules:
network event inspection (NEI) and attack detection (AD).
The NEI Module analyses in real time the relevant infor-
mation, provided by the Bro tool, about the established
flows during packet reception. Detection policies are written
in Bro language and consist of DoS flooding: TCP-SYN,
ICMP, and UDP. Thus, every time a packet related with
these events is detected by NEI module, the AD module is
invoked. The ADmodule implements algorithms, abstracted
into policies of Bro language. Two anomaly detection algo-
rithms for packet flooding attack are implemented: ramp
and adaptive thresholds [16]. The ramp algorithm sums
packets during a specific period and raises an alarm when
a threshold is reached. The adaptive threshold aims to
decrease the false positive due to “flash crowds, that quickly
exceeded the mean value. The algorithm detects variations
in traffic statistics, based on traffic measures in consecu-
tive T time intervals. When the threshold is exceeded, a
counter k is incremented. A counter bigger than one indi-
cates a threshold exceeding for consecutive time intervals,
featuring an anomaly considered as an attack.

3.2 BroFlow countermeasures

The countermeasure module performs the communication
with the BroFlow application in the POX-OpenFlow net-
work controller (NC). This module translates the informa-
tion generated by the BroFlow sensors and forwards the

alarms messages to the BroFlow application. The counter-
measures are applied in the forwarding engine in order to
stop or mitigate a threat. When an attack is detected by the
policy module, it sends an alarm message to the NC. We
establish a secure socket layer (SSL) channel in dedicated
network interfaces, ensuring authenticated and encrypted
communication. The messages are JSON formatted and
include flows information, IP addresses and ports, source
and destination, the destination MAC address, and the coun-
termeasure to be taken. These fields are all information that
Bro traffic analyzer tool obtains from a monitored packet.
As these fields do not compose an OpenFlow (OF) com-
plete flow, OF fills the other fields with wild-cards values.
Although this definition installs general flows in switches,
the use of wild-card fields do not generate ambiguity, as
long as a TCP connection is normally defined by four spe-
cific fields: source and destination addresses, source and
destination ports. Thus, as the four fields that identify the
TCP connection are well defined, the suspicious flows are
explicit.

3.3 BroFlow application

The BroFlow application runs on the top of POX-OpenFlow
network controller and receives alarms derived from sen-
sors, executing the required countermeasures to answer
those alarms. Thereby, when an alarm message is received
from sensors, the BroFlow application match message con-
tent with its flow table. After that, the application indicates
to the network controller the countermeasure to be taken
in all network switches. In our prototype, the countermea-
sures are corresponding OpenFlow action: drop to block a
flow, and output to forwarding packets to a specific switch
port, deviating a flow to another host. Countermeasures are
applied under a quarantine regime, that is, every time a
countermeasure is applied in the switches, a timer is acti-
vated. When a timer bursts, the countermeasure is cleaned
and all the analyses are established again. Hence, it is
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possible to detect if the attack was closed, ceasing to use
system resources.

3.3.1 Elasticity under demand

Elasticity consists of the growth and reduction of resources
according to the workload [3]. To prove this concept, we
use the flexibility provided by SDN, to dynamically devi-
ate traffic flows to be inspected in the BroFlow sensors.
Considering the traffic workload, it is possible to instanti-
ate or disconnect new sensors and balance flows, in order
to analyze network traffic. Our system deviates the mali-
cious flows to several BroFlow sensors when a machine
is overloaded. For packet mirroring between the BroFlow
Sensors, we useGeneric Routing Encapsulation (GRE) tun-
nel. The packet inspection is done after the decapsulation,
assuring packet integrity. Therefore, the flows distribution
consider the packet source and system resources availability
in each virtual machine. A flow of a new source is allocated
in the less loaded processing machine and flows from the
same source are allocated together in the same machine pre-
venting attacks from going unnoticed. The system resources
of each physical machine are monitored by libvirt library
running as a daemon. This library monitors the physical
machine resources, identifying which amount of resources
are consumed by the virtual machines. This daemon is
located in the privileged domain, called Domain 0, and
monitors resources such as bandwidth, CPU, and memory.
Statistics of all physical machines are aggregated in the
NC. Thereby, the NC has information about the resources
availability of each analyzed machine. In case of an over-
load, this module analyzes the available resources in the
physical machines and decides where to instantiate a new
BroFlow sensor. Likewise, all physical machine containing
BroFlow sensors are analyzed together, in order to detect
when a flow redistribution is possible, allowing to deactivate
a machine in case of unload, ensuring the elasticity of the
proposal.

4 Modeling and optimization of strategic IDPS
sensor location

BroFlow sensors are spread in both physical and virtual net-
works, then sensor placement results into an optimization
problem. In BroFlow, it is possible to establish a reduced
number of sensors instead of placing sensors in every
switch. This section models formally the problem of the sen-
sor network placement. A heuristic is proposed minimizing
the sensors number and maximizing the network coverage
reached for each sensor. We assume that each node has
enough processing power to analyze all incoming network
traffic, as it is for example, in a datacenter.

Let v ∈ V be a vertex, and s ∈ S ⊆ V , where S is the
subset of nodes which are implemented as an IDS sensor.
We use xv as the variable that determines if vertex v holds a
sensor

xv =
{
1, if v ∈ S

0, otherwise
(1)

Each vertex sends a traffic unit to each other vertices.
Therefore, the total amount of traffic T in the network
equals T = |V |(|V |−1)

2 . The traffic from the source i to desti-
nation j uses a single path, and we represent whether vertex
v is in the path of i, j traffic by tvij = 1, otherwise tvij = 0.
Thus, the total amount of traffic passing through vertex v

is tv = ∑
i �=j t

v
ij . We also define an auxiliary variable yi,j

to determine weather there is a sensor in the path from the
source i to destination j

yi,j =
{
1, ∃ v ∈ V | xv ∧ tvi,j
0, otherwise

(2)

In this way, the total amount of traffic analyzed by the
IDS sensors is

Tx =
∑

i �=j∈V

yij , (3)

The objective function F(x) represents the global cost to
minimize composed by two objective functions: the number

Fig. 3 Topology used in the first experiment, flooding attack against
the infrastructure. One physical machine hosts three virtual networks.
Each VN host a BroFlow sensor and one attacker acting in collusion.

Sensor in the VN cannot detect each attack at the VN, but the attack
is detected by the BroFlow infrastructure sensor as the sum of all
malicious flow in the infrastructure
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Fig. 4 In Fig. 4a three attackers
acting in collusion, detected by
Infrastructure Sensor around 40
seconds. In Fig. 4b a gain of
50 % is obtained by the
BroFlow, where a global
countermeasure is applied in all
switches blocking malicious
flow close to its source
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of sensors in the network and the total network traffic cov-
erage analyzed by all sensors. Then, we want to minimize
the global cost

minF(x) = Fsensor(x) − Ftraf(x), (4)

where Fsensor(x) is the relation between the sensor nodes
and the total of vertices in the network, expressed by

Fsensor(x) = 1

|V |
∑
v∈V

xv, (5)

and Ftraf(x) is the traffic percentage in relation to the total
amount of network traffic that each sensor node analyze,
given by

Ftraf(x) = Tx

T
= 1

T

∑
i �=j∈V

yij (6)

such that 0 ≤ Fsensor(x) ≤ 1 e 0 < Ftraf(x) ≤ 1. Besides,∑
v∈V xv ≤ |V |, and xv ∈ [0, 1]. This problem is reduce to a

set covering problem (SCP) a nondeterministic polynomial
time NP-hard problem.

To solve this problem, we use a greedy algorithm, which
sorts the vertex list according to tv , the amount of traffic that
pass through the vertices. Thus, the algorithm chooses first
central nodes that concentrate the largest amount of the traf-
fic. We use as metric the amount of traffic H(x) = Tx/T

covered by the current sensors. Hence, after the selection
of a sensor node, it is verified if the solution H(x) reaches
a target amount of traffic, and stops. Otherwise, the algo-
rithm selects another node. The process is repeated until the
sensor set covers the target amount of traffic, or when it is
not possible to add more sensors. Greedy algorithms make
locally optimal choices that eventually reaches a global opti-
mal. Nevertheless, the computational cost execution is low
comparing with other solutions.

We also used the Simulated Annealing (SA) optimiza-
tion method, which has a proven convergence to a global

minimal in an undetermined time. Every iteration selects a
number of sensors and their positions at random and gen-
erate a new candidate solution that could be accepted in
case it has a lower objective function F(x) than the pre-
vious iteration. If the solution is worse than the previous,
SA accepts the new solutions by a decreasing probability
according to iteration. Thus, the solution may be accepted
even if the objective function is higher to the previous
one. This behavior is necessary to avoid the solution con-
verge to a local minimal. The perturbation used to select
the number of sensors and the positions follow a Cauchy
distribution.

Even knowing that BroFlow uses specific control mes-
sages, it could be analyzed the possible impacts on the
network links while the network is in operation transfer-
ring data to the nodes selected as a sensor. This prob-
lem can be modeled as another restriction in the formu-
lation. Nevertheless, we leave this problem as a future
work.

5 Results

We developed a BroFlow prototype in Future Internet
Testbed with Security3 (FITS), an interuniversity testbed for
Future Internet proposals. FITS consists of distributed nodes
between Brazilian and European institutions to develop
experimentation in new generation networks. FITS is based
in the XEN and OpenFlow (OF) mechanisms to provide
a pluralist architecture [4], allowing a coexistence of par-
allel multiple networks running different applications. In
FITS [11] the control plane executes in the XEN VMs and
the packet forwarding is performed by OF. In addition, all
experiment results are presented with a confidence interval
of 95 %.

3http://www.gta.ufrj.br/fits.

http://www.gta.ufrj.br/fits
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Fig. 5 Topology of the Second
experiment. Comparison of
different defense method in a
Virtual Network. In the switch
with sensor, it is compared
BroFlow sensor with iptables
and system without defense. In
addition, this topology is used to
evaluate the performance of
BroFlow

5.1 Countermeasure evaluation

The first experiment analyzes the effect of a TCP-SYN
packet flooding attack to the infrastructure when host sev-
eral virtual networks. A physical machine hosting three
different virtual networks constitutes the scenario, as shown
in Fig. 3. All virtual switches run on a virtual machine. In
every virtual network there is one attacker and one BroFlow
sensor for virtual network, which analyzes the traffic of its
network. Moreover, an infrastructure sensor is installed in
the physical machine.

Figure 4a shows the experiment with three attackers
sending SYN packets at different rates. It was defined, as
a test criterion, the threshold in 100 SYN packets per sec-
ond that represents the maximal SYN packet rate allowed in
each network. As it can be seen in Fig. 3, in each in each VN
the threshold is never passed, boxes are not full. Nonethe-
less, as the tenants act in collusion, the maximal established
threshold is exceeded more than 50 %. The connection
aggregated rate per second of the VNs is totally forwarded
the physical machine that hosts these VNs. Thus, the thresh-
old established in the VN is not extrapolated individually,
but the aggregated threshold is considered an attack for the
infrastructure sensor, in Fig. 3, the box in the infrastructure
sensor is full. At the detection moment, approximately at
40 s, avoid flash crowds, an alarm message is generated by
BroFlow sensor located at the physical machine.

Each BroFlow sensor runs an adaptive threshold algo-
rithm implemented in Bro language. This algorithm

increments a counter k, when the mean rate value of the
previous T time interval of 10 s is exceeded. Then, if the
average packet rate is exceeded only one time, the coun-
termeasure is not launched, assuming a false positive, but
if the average rate is exceeded four times consecutively,
the alarm is sent to the BroFlow application. Hence, from
the infrastructure sensor viewpoint, there is a DoS attack
to the physical infrastructure. The adaptive threshold val-
ues adopted are estimated average per interval μi = 100;
exponentially-weighted moving average (EWMA) factor
β = 0.98; amplitude factor α = 0.5; time interval T = 10
s; successive threshold violation k = 4, being the same
values adopted by the authors in [16].

The SDN network global view allows a DoS attacks to
be blocked close to its source. This behavior is evaluated
in the experiment 2, as shown in Fig. 5. This experiment
has three virtual switches working in two physical machine,
with a virtual link of 1500 Mb/s. The attacker performs an
UDP flood at different rates, from 0 to 500 Mb/s, to a vic-
tim at two-hop distance. At the same time, a legitimate VM
sharing the link with the attacker performs a TCP bandwidth
measurement. We implement one BroFlow sensor in the
last virtual switch, the switch with sensor, close to the vic-
tim. BroFlow is compared with iptables and with the system
without any defense. Figure 4b shows that reception of TCP
packets without defense at 500 Mb/s is lost, because UDP
attack fills all link capacity. An improvement is reached with
iptables, whereas it blocks the malicious flow in the last
hop. Nevertheless, with BroFlow leveraging the SDN global

Fig. 6 BroFlow performance
evaluation under and without
attack. a The network average
delay is reduced up to 90 %
under attack scenario, time in
logarithm scale. b The
packet-forwarding rate of the
system is minimum affected
under attack with BroFlow
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Fig. 7 CPU consumption and
analyzed packet comparison.
Bro traffic analyzer tool running
in stand-alone and cluster with
one and two cores configuration
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view, once the sensor detects the attack it blocks the mali-
cious flow in all virtual switches, even in the closest switch
to the source. As Fig. 4b shows, the fall between 0 and 50
Mb/s, in case of BroFlow, it is due to the time taken to detect
an attack.

With the same topology of the Fig. 5, we evaluate the
performance of our system. Then, Fig. 6 shows the system
performance under a flooding attack. Figure 6b shows either
the overload introduced by BroFlow as well as its efficiency
blocking a DoS attack. Figure 6a compares the average
packet forwarding delays with and without an attack. The
delay added by BroFlow is insignificant when there is no
attack. On the other hand, BroFlow decreases the average
delay due to the packet dropping under attack. Figure 6b
shows the packet forwarding rate. BroFlow practically does
not overload the system without attack, reaching the maxi-
mal rate of 100Mb/s. During the DoS attack, the forwarding
rate falls 50 % of the maximal rate, while maximal network
average delay keeps almost unaffected with the BroFlow
system.

5.2 Evaluation of resources consumed by bro

Once a threat is detected, with the use of SDN capability, our
system is able to mirror the malicious traffic to be inspected
in different analyzer machines. If the rate of the attack is
high, it overloads the analyzer machine. Hence, we evalu-
ate consumed resources of the Bro traffic analyzer tool to

determine which aspect bandwidth or processing is the
most critical for the system when a DoS attack takes
place. It is important to highlight that the processing
required for the analyzer machine depends on the secu-
rity policy and the threat types. We generated increas-
ing packet rates to analyze the amount of CPU spent
by the machine and the perceptual of analyzed pack-
ets by Bro. The analyzed packet is the relation between
packets send and packets received and analyzed by
Bro tool.

Bro natively executes as single-threading, using only one
CPU core [13]. As it evolves, it executes as multi-threading,
using several CPU cores, in which each process is called
a worker. With the help of the PF RING library instead
of the libpcap library [13] is possible to increase the
sniffing capacity. We use the same terminology of Bro cre-
ators [18], in which the workload is spread across many
cores, or even many physical computers. We call cluster the
group of workers that can be multiple cores in one machine
or several physical machines used to handle the workload.
In this experiment, we evaluate the use of both technologies,
stand-alone and cluster, under a DoS attack. In the conven-
tional configuration, called stand-alone, the virtual machine
(VM) is configured to have access only to one core, avoid-
ing idle resources. In cluster configuration, it was performed
an execution with only one worker, one core, and with
two workers, two cores. Figure 7a shows cluster configura-
tion running two workers. It is important to highlight that

Fig. 8 Analysis of the CPU
consumption and Packet
reception of the BroFlow sensor
machines in an overload
scenario
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Fig. 9 Analysis of the CPU
consumption and Packet
reception of the BroFlow
Sensors in an unload scenario
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under this technique, we only analyzed the CPU consump-
tion of the workers threads that inspect traffic. It was not
considered the proxy and manager process because they can
be executed in separate machines.

Figure 7a shows Bro CPU consumption in a VM. In
stand-alone configuration, the system saturates using all the
CPU resources. Thus, after 3600 packets per second, CPU
consumption reaches 100 %. Notwithstanding, for the same
packet rate, in one worker cluster configuration, the system
stays behind this limit and with two workers configuration,
the performance is better. The CPU consumption increase
was almost negligible under the maximal tested rate of 5000
packets per second. Figure 7b shows the difference between
sent and received packets analyzed. Comparing these values
with the ones in Fig. 7a, we observe that analyzed pack-
ets suffer a decrease when CPU consumption is maximum,
this effect is notorious with one worker stand-alone con-
figuration, reaching the analysis at most only 70 % of the
packet under the maximal tested rate of 5000 packets per
second. The results show an improvement when one core

Fig. 10 Brazilian Rede Nacional de Ensino e Pesquisa (RNP) real
topology, with 31 vertex and 34 edges

cluster configuration is used, under the maximal tested rate
of 5000 packets per second, in which approximately 80 % is
analyzed, although in two-workers cluster configuration,
under the same rate, no packets are dropped.

5.3 Elasticity under attack

Figure 8 shows when second flow starts, it overloads the
BroFlow sensor machine, approximately at 30 s. Once
an overload is detected, there is a time interval to the
new machine instantiation, until all flows are redistributed.
Then, after the flow load balance, all the packets are being
analyzed without overloading the BroFlow sensor. This test
performs a temporal analysis of the machines in overload
case. Two flows are initiated in one machine, Fig. 8a, caus-
ing a CPU overload as shown in Fig. 8b. To avoid the
overload, a new machine is instantiated and all the flows
are redistributed, balancing the CPU consumption. In con-
trast, we evaluate the system on the opposite scenario,
when the system is unloaded. BroFlow sensors are deac-
tivated and flows are redistributed by the NC if exist idle
resources. Using the elasticity technique, we can see that
our system is capable to support high rates of attacks, or
several attackers against the system. In addition, as our
sensors, nodes support all incoming traffic, we consider
out system capable to scale to high rates of attack or
attackers.

Figure 9 shows the temporal analysis of the BroFlow sen-
sors in a unload scenario, the test begin with two virtual
machines receiving packets in a constant rate. After some
time, one flow is deactivated, causing a noticeable decrease
in the CPU consumption of one BroFlow sensors. When
unload is detected, the NC redistribute the flows, so the
machine with the lowest CPU consumption will not receive
any flows, and thus can be deactivated. Two machines are
inspecting packets when one flow is over, Fig. 9a. Then, the
NC analyze the CPU consumption of the two machines, as
shown in Fig. 9b, redistributing flows in order to deactivate
a sensor.
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Fig. 11 Efficiency of the
proposed placement method in
relation with the number of
sensors node to cover all
network traffic
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5.4 Optimal sensor placement

To evaluate the proposed heuristic, we use a real topology
from topology zoo.4 The analyzed topology is the Brazil-
ian Internet backbone network, Rede Nacional de Ensino e
Pesquisa (RNP), that has 31 vertex with 34 edges distributed
geographically in the Brazilian states. The real topology can
be seen in Fig. 10.

We have evaluated our metric with two meta-heuristic
solutions, greedy and simulated annealing, and with a ran-
dom choice. In addition, it is implemented the choice by the
betweenness centrality. Betweenness centrality is shown in
Eq. 7, where σij is the total number of shortest paths from
node i to node j and σij (v) is the number of those paths
that pass through v. The betweenness centrality consider all
the nodes and paths in the network, while our proposal is
relatively to each node.

g(v) =
∑

i �=v �=j

σij (v)

σij

(7)

Figure 11 shows in percentage the covered traffic in rela-
tion with the number of IDS sensors. The system determine
the best position that each node should be located war-
ranting the maximal network coverage. With low network
coverage, the behavior all approaches is similar. The random
choice shows the worst behavior followed by the simulated
annealing. Then, the simulated annealing improved it results
over the random choice. The betweenness and the greedy
proposal present an exact result until approximately 80 %.
Figure 11b shows in higher detail the results. The random
choice is still being the worst approach followed by the
betweenness. Both approaches with our metric showed the
best efficiency with high values of network coverage, min-
imizing the number of sensors nodes used. The simulated
annealing has better behavior despite of it high computa-

4www.topology-zoo.org

tional cost. With 95 % of network coverage, the random
solution use 15 nodes and the greedy and simulated anneal-
ing reduce it by two time using 7 nodes. Yet with 99 % the
simulated annealing gain by more than two time compared
with the random choice, choosing 11 nodes against 21 of the
random choice.

6 Conclusion and future work

In this paper, we presented BroFlow, an Intrusion Detec-
tion and Prevention System (IDPS) for virtualized SDN.
BroFlow joins the simplicity of policy elaboration of Bro
tool with the network global view and control agility pro-
vided by OpenFlow. BroFlow contributions are evidenced
with a prototype implementation running over FITS plat-
form. Upon elasticity techniques, several BroFlow sensors
can be instantiated dynamically in case of overload, tak-
ing into account system resources. Moreover, sensors are
deactivated in case of unload. Therefore, the architecture
provides resources according to demand. Furthermore, it
was we created a heuristic to locate IDS sensor, optimizing
the maximal network coverage with the lowest number of
sensor.

The prototype shows a good performance reacting to dif-
ferent DoS attacks, reducing up to 90 % the network delay
caused by the attack. Trough simple detection algorithms,
the system blocks packets close the source attack, allowing
the network availability in more than 50 % compared with
conventional firewalls approaches. We have proved that our
proposal significantly reduces the sensors number, while
keeping full coverage of network flows with an optimization
problem.

As future works, we will correlate different BroFlow sen-
sors alarms, taking into account the rules establishment into
switches. In addition, we plan to integrate newmetrics in our
heuristic, such as network bandwidth, node loads, among
others, in our optimization problem.

http://www.topology-zoo.org
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