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Abstract As a special kind of application of wireless sen-
sor networks, body sensor networks (BSNs) have broad
application perspectives in health caring. Big data acquired
from BSNs usually contain sensitive information, such
as physical condition, location information, and so on,
which is compulsory to be appropriately protected. How-
ever, previous methods overlooked the privacy protection
issue, leading to privacy violation. In this paper, a differ-
ential privacy protection scheme for sensitive big data in
BSNs is proposed. A tree structure is constructed to reduce
errors and provide long range queries. Haar Wavelet trans-
formation method is applied to convert histogram into a
complete binary tree. At last, to verify the advantages of
our scheme, several experiments are conducted to show the
outperformed results. Experimental results demonstrate that
the tree structure greatly reduces the calculation overheads
which preserves differential privacy for users.
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1 Introduction

As a special application of wireless sensor networks
(WSNs) [1], body sensor networks (BSNs) [12, 32] are
deployed on the surface of bodies for periodically monitor-
ing physical conditions [24]. In some cases, especially in
emergency or health care, security and privacy properties
are extremely important [25]. Because a slight leakage of
sensitive data may cause unpredictable damages. Therefore,
extensive studies on privacy preservation have been carried
out, which is one of the most critical research topics in BSNs
[16].

Usually, data collected, aggregated, and transmitted in
BSNs contain personal and sensitive private information
[11], which directly or indirectly reveals the condition of
a person [26]. If the data cannot be properly preserved,
once exposed to the public, the privacy will be destroyed.
Therefore, protecting the privacy of sensitive data is of great
importance [2, 20].

In general, traditional methods for protecting privacy and
security of big data in BSNs fall into three categories [6–
8, 18, 21, 23, 27]: (1) anonymous techniques, (2) privacy
protection rules, and (3) collaborative filtering.

However, the above-mentioned privacy protection
schemes are still suffering from several common problems:

1. Anonymous technologies [23, 27] simply hid or
replaced the information such as identity or location.
They overlooked the fact that an attacker can iden-
tify a certain user based on his background knowledge
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although an objective user’s identity information is
concealed or deleted. Obviously, anonymous technique
does not protect the accuracy or availability of data.

2. Privacy protection rules [6, 10, 21] mainly aimed at
finding out the underlying relationship among data.
However, this method can only cope with a fixed mode
of attack.

3. Collaborative filtering schemes [7, 8, 14] loosed
degrees of the data set and calculated errors based on
similarity. They assumed that the attacker cannot grasp
full background knowledge. Such limitations seriously
constraints the widespread application based on this
scheme.

Researching the mechanism of privacy protection in
BSNs provides fundamental contributions in developing
network security technology. With the growing demands for
wearable devices, privacy protection of big data has become
a major concern. As the big data era comes, personal infor-
mation leakage happens more and more frequently, such
as the famous cookies storm happened several years ago,
which caused 360 users’ information exposed. Therefore,
privacy protection of BSNs should be paid close attention
to [16].

Our motivation is to design a scheme to protect the pri-
vacy of BSNs based on differential privacy technology [9,
30]. In our scheme, we change the structure of the data set to
reduce the sensitivity, and then add noise to the deformation
data set, and finally, get the published data set [36].

The contribution of this paper can be summarized as
follows:

1. To the best knowledge of the authors, this is probably
the first time that differential privacy combining with
Haar Wavelet technique is applied to protect the privacy
in BSNs. We develop a tree-based structure to analyze
the data so as to reduce the error and provide long range
queries.

2. In order to add noise conveniently, we use Haar Wavelet
transform method [30] to convert histogram into a
complete binary tree.

3. To verify the advantages of our scheme, several experi-
ments are conducted to show the outperformed results.
Experimental results reveal that our scheme greatly
reduces the overhead of calculations.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of the state of the art of
the privacy preservations for BSNs. Section 3 introduces
related preliminaries of this paper. In Section 4, a differen-
tial privacy protection scheme is proposed, which aims at
protecting the sensitive information of the BSNs. Experi-
ments are conducted in Section 5. Finally, we conclude this
paper and suggest our future work in Section 6.

2 Literature review

With the continuous interest in BSNs for wearable device,
the growing emergence of new techniques inspired great
efforts on the research of the privacy protections in BSNs
[2, 15]. In literature, particular attentions are paid for pro-
tecting sensitive data in BSNs. In general, the approaches
of preserving the privacy of big data fall into three
categories.

Barua et al. [5] proposed packet scheduling schemes
for real-time transmission in wireless body area networks
(WBANs) with proper security and privacy. Real-time and
non-real-time traffic are classified to minimize the waiting
time of the eHealth application’s data traffic. Liu et al. [19]
presented a remote anonymous authentication protocol to
enable client terminals/application to access WBANs ser-
vices securely. Trcek et al. [28] proposed address privacy
for the Internet of things technology by focusing on the
most primitive members, bare sensors and RFIDs. A strat-
egy of incrementally adjusting existing protocols is adopted.
Antonescu et al. [4] provided a comprehensive review of the
challenges and emerging technologies for WBANs.

To provide availability, integrity, and confidentiality for
data, privacy protections in BSNs mainly concentrated
on cryptography technology. He et al. [13] presented the
design, implementation, and evaluation of a secure net-
work admission and transmission subsystem based on a
polynomial-based authentication scheme. The procedures
to establish keys for each biosensor in this subsystem are
communication efficient and energy efficient. Ali et al. [3]
demonstrated a scheme which is able to construct shared
keys with near-perfect agreement for the secret key gen-
eration, avoiding the cost on reconciliation. Zhao et al.
[34] proposed an open research issue that should be solved
in the future key negotiation protocols. They explore and
classify these solutions, and evaluate their performance by
analyzing their merits and demerits. Li et al. [17] pro-
posed group device pairing (GDP), a user-aided multi-party
authenticated key agreement protocol. Based on GDP, a
group of sensor devices which have no pre-shared secrets
establish initial trust by generating various shared secret
keys out of an unauthenticated channel. From the above
several methods, we know that cryptography technology
is better than privacy-protected methods in WBANs to be
applied in BSNs. However, to reduce energy consumption,
most of them just use cryptography technology without
considering the data sets. Moreover, the encrypted data
are prone to attention of the attacker and be the target
of interception and attack. With the appearance of new
attack methods, the scope of applicability of encryption
technology will be smaller. Therefore, protecting secu-
rity and privacy of the sensitive data in BSNs is still a
challenging problem.
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In WSNs, another research proposed a kind of method
that build a particular transport protocol between the com-
munications of sensor network device to protect the data
sets. Yao et al. [33] designed a regulator packing real data
session into an independent transmission model at transmis-
sion layer. All valid data packets are equably sent at the
frequency defined by the regulator and at the same length
to clutter the inherent pace of valid data transmission and
other parameters. They also proposed a strategy PAS to min-
imize the overhead while preventing attackers from locating
the patients. Lu et al. [22] proposed PSSS, Physiological
Signals based Secret Sharing scheme, aiming at deploy-
ing identical secrets automatically among the nodes of
BSNs, which is considered as an important add-on security
mechanism in BSNs. By utilizing biometric characteris-
tics of physiological signal, PSSS can be efficient, reliable,
and free of third-party authentication and pre-distribution.
Yan et al. [31] proposed a novel In-network AES Equiv-
alent (IAE) mechanism to protect the security/privacy and
maintain good energy efficiency for WBASNs at the same
time. IAE achieves this goal by outsourcing part of the
energy-consuming cryptographic operation to other delib-
erately selected peer sensor nodes, so as to balance the
energy consumption of the entire network. In [35], Zhou
et al. mainly focused on the goals and tactics of privacy-
preserving data aggregation in cloud-assisted wireless wear-
able communications. With respect to the unique security
and privacy requirements and the efficiency consideration
for resource-constrained wearable devices, they identified
the inappropriateness of secure multiparty computation and
fully homomorphic encryption. Venkatasubramanian et al.
[29] presented physiological value-based security (PVS), a
usable and efficient way of securing inter sensor commu-
nication schemes for BSNs. The PVS scheme distributes
the key used for securing a particular message along with
the message itself, by hiding it using physiological val-
ues. In this way, it not only eliminates the need for an
explicit key distribution but also reduces the number of keys
required at each node to meet all its secure communication
requirements.

Although all the above privacy protected schemes pro-
vide solutions to improve the security and privacy of BSNs,
most of them just protect the data from outside and ignore
data encryption and transport protocol on privacy; once
there is a new attack method that appears, the limitations
of these methods will be revealed and the goal that protect
the data permanently will not be achieved [2]. Imagine, if
there is some VIP data information leaked, the result will
be terrible. In this paper, a privacy protection scheme based
on differential privacy is developed to avoid the situation
mentioned above.

The major differences between this work and the afore-
mentioned schemes are that differential privacy protection

is a new definition of privacy protection. Differential pri-
vacy protection considers the background knowledge of the
attacker to protect user’s privacy information of a protection
mechanism. The general idea is inserting or deleting one
user’s data will not affect the availability. In that case, even
if the attacker masters more information, they cannot figure
out which data belongs to the target user.

3 Preliminaries

In this section, related preliminaries are introduced.

3.1 Differential privacy

The main idea of the differential privacy protection is
demonstrated as follows.

If a data set D includes a message of Bob, then vari-
ous operations M(D), such as average, count, and so on,
are performed to obtain statistical results. Suppose that after
Bob’s information is deleted from D, which changes D and
into D′, performing M(D′) or M(D) yields almost identical
results, it is considered that Bob’s information in the data set
D under the operation M(D) is safe. Because either missing
his information or not does not affect the output.

Then, we introduce the definition of proximate data.
Suppose there is a finite field Z and a data set D1, all

elements in D1 are made up of the elements in Z. The
number of elements of D1 is denoted as n and the num-
ber of attributes of D1 is denoted as d. We define f as a
query of the data set D1 and F represents the collections
of f . For privacy protection concerns, we use algorithm
A to encrypt the results generated by F . Suppose there is
a data set D2 which has the same structure as D1 (i.e.,
A(D1)). D1�D2 represents the difference between the two
data sets, and |D1�D2| represents the number of elements
in D1�D2. If |D1�D2| = 1, D1 and D2 are considered as
proximate data.

Definition 1 Differential privacy. Given two similar data
sets D1 and D2, and a privacy protection algorithm A. If
the results of A(D1) or A(D2) is O, Pr represents the
probability of privacy loss, and O satisfy the following
inequation:

Pr [A(D1) = O] ≤ ez ∗ Pr(A(D2) = O), (1)

then algorithm A is regarded as satisfying ε-difference
privacy.

Here, ε is called differential privacy budget, which is
defined below.
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Definition 2 Differential privacy budget ε. Given two data
set, D1 and D2 , the ratio of two results operated by
algorithm A is denoted as ε (see Eq. 2).

ε = A(D1)

A(D2)
(2)

Figure 1 shows the risk of privacy leakage. We note that
two similar data sets D1 and D2 meet ε-difference privacy
when the risk is very small.

When the value of ε approaches to 1, the availability of
D1 and D2, which are processed by the algorithm A, will
remain high, whereas the level of privacy protection is low.
Lower value of ε indicates higher level of privacy protec-
tion, and furthermore, the processed data set vary widely.
When ε = 0, maximum privacy protection is achieved, how-
ever, at this point, data become unavailable. Therefore, ε

should not be as small as possible. We should appropriately
balance the data availability and privacy according to actual
situation.

Definition 3 Sensitivity of differential privacy �f : A usual
method of achieving difference privacy is adding noise.
Here, we consider how to trade off the amount of noise
to be added into the original data. When adding too much
noise, the data will be far from the original value, destroy-
ing the accuracy. On the contrary, when little noise is added,
it will not be able to protect data properly. As an important
indicator of adding noise, the value of differential privacy
sensitivity �f is denoted as the change of data set we get
after deleting any records of the data set, which is calculated
by Eq. 3.

Deltaf = max
D1,D2

||f (D1) − f (D2)|| (3)

3.2 Adding noise

First of all, we demonstrate the importance of adding noise
by a simple example.

Four patients’ status are listed in the data set of hospital
medical records as shown in Table 1. It shows whether a
patient catches a cold. In the table, 1 denotes catching a cold
and 0 denotes health.

If the data set provides query services, we define f (i) =
num(i) as the number of the patients among i people. For

Fig. 1 Neighbor dataset

Table 1 Diagnostic results in hospital medical records

Name Diagnostic results

Tom 1

Bob 0

Mary 1

Jack 1

example, f (1) = 1, f (3) = 2, f (4) = 3. We also assume
that it is impossible to find out the prevalence of a certain
patient. However, these two requirements cannot achieve
protecting privacy. For example, one attacker wants to get
Jack’s prevalence, therefore, he can know Jack is sick by
calculating the value of f (4) − f (3) = 1.

To avoid privacy leakage, we additionally put noise into
function f . We denote f ′(i) = num(i)+noise. Afterward,
results obtained by f ′(i) can be {2, 2, 2, 3} or {0, 1, 2, 2},
etc., which thus protect the privacy of all patients within the
group. Moreover, after adding the noise, the diagnosis of
Jack became unavailable.

Adding noise is a main technology of differential privacy
to achieve privacy protection. There are two common meth-
ods to add noise: (1) Laplace mechanism, and (2) Indexing
mechanism.

Laplace mechanism After adding random noise, which
obeys Laplace distribution to the results generated from the
data set, the effect of privacy protection will be achieved.
We need to add noise function Lap(b) with probability den-
sity p(x) = exp(−|x|/b)/2b, Lap(b) = exp(−x/b), here,
b satisfies b = �f/ε and algorithm A(D) = f (D) + Y .
The result of the query f (D) is Y ∼ Lap(�f/ε).

Indexing mechanism In many cases, Laplace cannot sat-
isfy the query of object, because it only queries the value.
When we need to query a choice or a solution, we usually
choose the indexing mechanism. For example, we use the
indexing mechanism to quantify the degree of how much we
agree with a scheme.

4 Our scheme

In this section, we illustrate our scheme for preserving pri-
vacy for sensitive big data in BSNs by utilizing differential
privacy technology in details.

4.1 Tree structure-based scheme

In our scheme, we use a non-interactive method to real-
ize differential privacy protection. This approach helps to
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reduce sensitivity and makes it difficult to destroy data
structures. Specific methods are shown in Algorithm 1.

Our scheme is to perform a treatment to the data set.
Usually, a structure transformation is conducted through the
structure deformation to decrease the sensitivity. Then, the
noise is added to the data set for obtaining a release of the
data sets after deformation. We build a histogram for record-
ing the deformation after adding noise. Therefore, it can
reduce errors and can provide remote query.

The key to our scheme is selecting an appropriate struc-
ture to analyze the data. Through the analysis and compar-
ison, we adopt a tree hierarchy. Each group of histogram
serves as a leaf node of the tree, and we number the node id
according to the order of histogram from left to right.

Then, a complete tree is structured. Based on the con-
cept discussed previously, we know that apart from budget
ε, sensitivity �f is also another main factor, which is cre-
ated by deleting or adding data into the data set; this also
causes the key error for differences privacy protection. The
same histogram has the same number of leaf nodes in the
tree. If a different node degree is used, it will generate
different height of trees; for example, a tree with eight
leaves will produce the complete binary tree with a height of
four and a ternary tree with three. For the original data set D,
deleting data to obtain D′ will only affect a leaf node. Thus,
the sensitivity �f equals to the height of the tree. In this
example, based on the sensitivity of a binary tree �f = 4
and ternary tree �f = 3, the larger the value of �f is, the
greater the effects will be generated.

Then, we illustrate how to construct a tree structure and
how to set corresponding values based on histogram.

Firstly, for a complete binary tree, Haar Wavelet trans-
form is used for grouping histogram. The Haar Wavelet
function is discontinuous, similar to the step function, which
is defined as:

ϕ(x) =
⎧
⎨

⎩

1 0 ≤ x ≤ 1/2
−1 1/2 ≤ x < 1
0 Others

(4)

The scale function is:

φ(x) =
{

1 0 ≤ x ≤ 1
0 Others

(5)

For a complete binary tree, the left node of the range is
considered as x(0, 1/2), while the right node of the range

Table 2 Frequency for each group

Age group The number of people

0 ∼ 10 2

10 ∼ 20 4

20 ∼ 30 2

30 ∼ 40 6

is x(1/2, 1). Through the Haar Wavelet transformation, it
converts histogram into a complete binary tree.

Suppose there are n groups of histograms. We use the
Haar Wavelet transformation method to convert the his-
togram into a complete binary tree and optimize the struc-
ture. Each node of the complete binary tree will generate
n lines with differential privacy groups by adding Laplace
operation. Data released from n groups are not only avail-
able but also can stop an attacker from getting the desired
information.

For a group of data set, each id number in the inves-
tigation of medical corresponds to the heart rate. First,
histogram data are optimized into several groups, each
group matches the corresponding age range. Each heartbeat
data point corresponds to the appropriate range and the fre-
quency range will plus 1. Moreover, each group represents
the frequency of the band’s original data in the resulting
histogram.

In order to describe the algorithm better, we assume that
n = 8. The original data set D = {2, 4, 2, 6} is shown in
Table 2.

For convenience, the first step takes ε = 0.5 to indicate
the availability. It can be seen from Fig. 2 that the height of
the binary tree is 3 and the sensitivity is Δf = 3.

Next, we introduce the process of our algorithm to get the
tree structure.

Firstly, the established Knode structure is used to store
the original data set. For example, when the original data set
has 3600 pieces of data, it initiates an information array to
store the original data set. Then we find the maximum and
minimum values. We calculate the difference between the

Fig. 2 A complete binary tree for Haar Wavelet
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Fig. 3 Shimmer body sensor networks

two values divided by the number of groups. Secondly, the
width of the group is divided by the function which creates
a node to convert the original data in each group into a his-
togram. Each group stores the frequency. The value of the
node is the original data for each group in the histogram. It
is referred to as the distribution of data privacy protection,
which will be used later in this work.

In the initialization of all non-leaf nodes of the tree: d0,
d1, d2, and d3, are created, where d0 stores the average value
of frequency of leaf nodes in the complete binary tree and
d1, d2, and d3 are the wavelet coefficients. The id of the di

wavelet coefficients is calculated as follows: The average

Table 3 Original data

ID Value ID Value

180 70.111115 197 68.079369

198 87.854698 199 71.616608

200 77.471306 201 69.299144

202 83.119659 190 64.551892

191 78.184372 192 90.095238

193 87.451767 194 81.742371

195 62.956043 196 77.472527

203 81.307693 204 85.152626

205 66.409035 206 80.169716

181 65.780220 182 60.064713

183 62.440781 184 92.256409

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

Group

F
re

qu
en

cy

The original frequency

Fig. 4 Original frequency

value of all leaf nodes in the left subtree of di is denoted
as a, and the average value of all the leaf nodes in the right
subtree of di is denoted as b, making the di values as follow:

di = (a − b)/2 (6)

In our example, we have d2 = (2 − 4)/2 = −1. d0 is the
average value of all the leaf nodes, where (d0 = 3.5). Then
we add noise to the binary tree for each wavelet coefficients.
Here, we use Laplace equation as:

Lap(b) = exp(−|x|/b) (7)

From b = �f/ε, we note the mainly influence of noise
mainly relies on values of �f and ε. ε is a constant, and �f

is a difference value between original data set and newly
generated data set, which closely relates to the height of the
tree. Then noise added by wavelet can be calculated as:

Lap((1 + log2 n)/(ε ∗ WHaar(di))), (8)

Table 4 Original frequency

ID Frequency Heartbeat (beats/min)

8 12.000000 62.546703

9 9.000000 67.539986

10 9.000000 72.533272

11 10.000000 77.526558

12 12.000000 82.519844

13 9.000000 87.513123

14 10.000000 92.506409

15 9.000000 97.499695
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Fig. 5 Comparison of frequency before and after treatment

here, WHaar(di) = 2h−i+1, h is denoted as the height of the
complete binary tree. i denotes the layers which di locates
in the binary tree. Then Laplace transformation is executed
to assign noise or each coefficient di . In our example, the
amount of noise added for d2 is Lap(1 + log2 4/4ε).

After receiving all wavelet coefficients of the com-
plete binary tree, we calculate the value recorded in
each leaf node. We denote the leaf nodes as b1, b2...bn.
We have:

bi = c0 + �h
i=1fi ∗ ci (9)

Here, ci is the value of wavelet coefficient and, the values
of fi are associated with the left and right subtrees of bi .
Starting from the first layer of the complete binary tree with
height h based on the above formula, if the leaf node bi

belongs to the left subtree of ci , then fi = 1; if it is below
the right subtree, then fi = −1; and if it is not a ci subtree,
we will simply ignored it without processing.

So far, we introduce how to use the Haar Wavelet coef-
ficients to add noise to the complete binary tree leaf, which
changes the structure of the histogram to obtain the effect
of differential privacy. We know that the smaller the value
of differential privacy budget ε is, the greater the noise will
generate, although the results has been better protected, the
availability of data is significantly reduced, so the difference
in budget ε is an important parameter.

Table 5 Frequency of added noise

ID (Heartbeat) Frequency

8 (62.546703) 14.348530

9 (67.539986) 9.770548

10 (72.533272) 10.210751

11 (77.526558) 9.355263

12 (82.519844) 12.500614

13 (87.513123) 8.097567

14 (92.506409) 9.150123

15 (97.499695) 9.000000

Table 6 Frequency contrast

ID Original frequency Handled frequency

8 12.000000 14.348530

9 9.000000 9.770548

10 9.000000 10.210751

11 10.000000 9.355263

12 12.000000 12.500614

13 9.000000 8.097567

14 10.000000 9.150123

15 9.000000 9.050000

4.2 Privacy protection algorithm

The above operation can be used in each group to sat-
isfy the original histogram of differential privacy. The main
algorithm is described in Algorithm 4.2.

In addition to the differential privacy budget ε, the sensi-
tivity �f is another main parameter of differential privacy.
Sensitivity �f is the maximum difference when calculating
results after deleting records in a data set. In the tree struc-
ture, the change of leaf node will affect the maximum value
of other nodes which depend on the height of the tree. When
the number of leaves is fixed, the height of the tree will be

Table 7 Deleted information

ID Heartbeat (beats/min) ID Heartbeat (beats/min)

67 70.918190 68 83.521370

69 87.653236 70 93.511592

71 89.065933 72 79.401711

73 68.216118 74 89.755798

75 78.742371 76 78.322342

77 97.974358 78 89.783882
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Table 8 Frequency of deleted data

ID Frequency Heartbeat (beats/min)

8 11.000000 62.546703

9 9.000000 67.539986

10 9.000000 72.533272

11 10.000000 77.526558

12 12.000000 82.519844

13 9.000000 87.513123

14 10.000000 92.506409

15 9.000000 97.499695

determined by the degree of tree m. When m = 2, a com-
plete binary tree will be established. When m = 3, a ternary
tree will be created.

5 Experiment results

In this section, experiments are conducted to verify the
advantages of the proposed schemes.

5.1 Test of differential privacy

In this paper, the data of human’s heartbeat were collected
by a number of Shimmer wearable sensors (http://http://
www.shimmersensing.com/), which is shown as Fig. 3.
Several experimental data are listed in Table 3.

The experimental environment was Windows 7 operating
system and the compiler was codeblocks, data were stored
as text files (.TXT), and MATLAB simulation was used.
Since our scheme is based on the histogram, we collected
the data and then convert them into meaningful histograms
as shown in Fig. 4. In our experiment, data are collected
from different ages of people such as 60–70, 70–80, and so
on. We divided data into groups which are the basis for cre-
ating histogram. For ease of analysis, we selected data set of
80 people for our experiments.

Table 9 Deleted information

ID (Heartbeat) Frequency

8 (62.546703) 13.219845

9 (67.539986) 9.472412

10 (72.533272) 9.693085

11 (77.526558) 8.945652

12 (82.519844) 13.054348

13 (87.513123) 8.306915

14 (92.506409) 9.527588

15 (97.499695) 9.000000

The Haar Wavelet transformation method is used in the
histogram based on a complete binary conversion. The
results are listed in Table 4. Here, the first column indicates
the node number, the second column is the frequency, and
the third column is the middle value for each range.

Figure 5 is depicted to show comparison of frequency
between the original data and the processed data. Table 5
shows the encrypted data node information. As the former
seven nodes store the wavelet coefficients, we only list the
data to be protected numbered from 8 to 15. Table 6 lists the
comparison of values before and after differential privacy
protection.

As shown in the Fig. 5, blue bars represent the raw data,
red bars stand for the data obtained by performing the differ-
ential privacy protection. We note that values move up and
down and the error is not big. Therefore, when the attacker
grasp full background knowledge, we cannot still identify
the objective user because of the noise adding technology.
Hence, our scheme can provide sufficient privacy protec-
tions and the personal heartbeat data can be successfully
protected.

Next, we test whether this method satisfies the dif-
ferential privacy protection requirements. If two sets are
approximate data and the results of the statistical inquiry
are almost identical. In this way, it can meet the differential
privacy protection.

Fig. 6 Deleted difference
comparison of data generated
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Fig. 7 Comparison of different
values from Å
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Among the 80 pieces of data, in order to facilitate our
notion, we chose to delete the last message, as shown in
Table 7. We deleted the data numbered 79.

After deleting data, we perform privacy differential pro-
tection scheme. We compare the results before and after
deleting data.

Table 8 shows the data after deleting individual nodes
as well as the frequency corresponding to the number of
heartbeat values.

Figure 6 below each diagram shows the frequency of
each node after deleting a record and adding the noise
(see Table 9). We observe that our scheme is able to achieve
differential privacy protection.

From the histogram, we note that, when differential pri-
vacy protection is not applied, deleting one data in the
data set will only influence the frequency of one group.
The attacker will immediately find out which user’s data is
deleted. On the contrary, when differential privacy protec-
tion is used, the influences of deleting one data are migrated.
Data generated by our algorithm still have high availabil-
ity. Moreover, data frequencies of all groups have been
changed in different extents. Therefore, the attacker cannot
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Fig. 8 Differential budget for privacy-treated node frequency

distinguish the range of the deleted data, which achieves pri-
vacy protection. Therefore, we can conclude that the results
obtained by our algorithm can protection the privacy of the
data while guaranteeing data availability (Table 9).

5.2 Impact of budget for noise

Next, we testify whether data encryption will cause an effect
when the budget ε changes. As previously mentioned, the
value of ε will influence the effect of differential privacy.
When the value of ε is close to 1, the data availability
will be higher. When ε is close to 0, the protective effect
is the best, but the data will become unavailable. In the
previous experiments, the value of ε was set to 0.5. Now
we make ε = 0.8 and compare the results of these two
experiments. As shown in Fig. 7, the blue bar represents
the original data, the green bar indicates ε = 0.5, and red
bar stands for ε = 0.8. Compared to the green line, the
red line is closer to the blue line. We note that, when
ε = 0.8, the differential privacy algorithm leads to higher
availability.

In this experiment, we make ε = 0.2 to obtain the
frequency for all nodes in the binary tree. For ease of obser-
vation, we depict four experimental results in Fig. 8. In our
scheme, we regard ε = 0.2 as the benchmark for comparing.
We note that, when ε = 0.8 is applied, the error is relatively
small. When ε equals 0.1, big error occurs.

We can conclude that, when ε is approaching 0, the
error will become large, making data unavailable. When ε

is increased, the availability will be improved; however, the
security and privacy protection will be weakened.

6 Conclusion

In this paper, a differential privacy protection scheme for
sensitive big data in BSNs is proposed. A tree structure is
constructed to reduce errors and provide long-range queries.
Haar Wavelet transformation method is used to convert
histogram into a complete binary tree. At last, to ver-
ify the advantages of our scheme, several experiments are
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conducted to show the outperformed results. Experimental
results demonstrate that the tree structure greatly reduces the
calculation overheads which preserving differential privacy
for users.

As part of our future works, we will study how to use dif-
ferential privacy scheme to protect flow data in body sensor
networks.
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