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Abstract Power source replacement of the sensor nodes,
which are once deployed in the network area, is generally
difficult. So, energy saving is one of the most important issues
for object tracking in wireless sensor networks. To reduce the
consumed energy and prolong the network lifetime, the nodes
surrounding the mobile object should be responsible for sens-
ing the target. The number of participant nodes in target
tracking can be reduced by an accurate prediction of the object
location. In this paper, we present a fast energy efficient with
high-accuracy target tracking scheme which is based on loca-
tion prediction. The missing rate of proposed predictor is very
low in comparison with other predictors especially in a ran-
dom waypoint mobility model in which after pause time, the
three main parameters direction, velocity and, acceleration
would be changed. The accuracy of predictor has a direct
effect on missing rate and so strongly reduces the consumed
energy. Additionally, a new node selection criterion is pro-
posed in which minimum nodes surrounding the object are
wakened and track the object. Simulation results show that our
proposed predictor has low consumed energy and complexity
in comparison with Extended Kalman Filter (EKF) and Un-
scented Kalman Filter (UKF) predictors.
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1 Introduction

Rapid advances in miniaturization in computing and sensor
technologies and advent of low-power short-range radios

recently have given rise to strong interest in wireless sensor
networks [1]. Each sensor node has a capability of sensing the
environment, processing data, and communicating with the
base station. All these tasks are done without human involve-
ment, and this makes such networks have a lot of applications
in both military and civilian fields [2, 3].

Tracking moving objects are emerging as applications such
as wild animal habit monitoring, military and civilian scenar-
ios, environment monitoring, etc. [2]. The sensor nodes are
used to find mobile object position which is a complicated
scenario and is accompanied with collaborative works be-
tween nodes.

But, the use of sensor networks for object tracking faces a
number of main issues. These issues contain limited energy
supply and communication bandwidth, distributed algorithms
and control, and handling the fundamental performance limits
of sensor nodes, especially as the size of the network becomes
large. Unlike traditional networks, a wireless sensor network
(WSN) has resource constraints. Resource constraints contain
a limited amount of energy, short communication range, low
bandwidth, and limited processing and storage in each node
[1, 4]. Tracking of the mobile objects should solve main
problems such as object detection, localization, and prediction
[5].

In the localization problem, excessive sensors may join
in detection and tracking for only a few objects. And, if all
nodes have to always wake up to detect a mobile target,
there are a lot of waste of battery power and channel
utilization. Actually, power conservation is one of the most
critical issues in target tracking since it would be difficult
to replace the battery of the sensor nodes that are once
deployed in the network area [3].

Many research works about object tracking are focused on
finding the optimum point of energy consumption, tracking
accuracy, and calculation time [6]. So, many researchers try to
reduce the number of active nodes during tracking process [5,
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7–9]. The tracking methods are classified into three
categories:

1. Tree-based methods [10–12]
2. Cluster-based methods [9, 13, 14]
3. Prediction-based methods [7, 15, 16]

In prediction based methods, the next location of a moving
object is predicted. Then, during each defined time step, only
some nodes near the predicted location are activated and other
nodes stay in sleep mode as energy save state. For example, in
[15], advantages of prediction mechanism in a cellular net-
work lead to a limited search space of object tracking and so
strongly reduces the paging overheads. In [7], authors use
prediction mechanism to decrease the number of active nodes.
So, in each time step, just one hop-surrounding nodes of the
next predicted location of the object would be activated. In
[16], by using the past sensing history and spatial and tempo-
ral knowledge of sensors, the future location can be predicted,
and just a few number of nodes are activated.

In most target tracking applications, tracking and predic-
tion mechanisms are based on object motion model. For
example [5, 7, 17–21], assume that the target has a linear
mobility with constant velocity. In [7] the regression based
prediction and Kalman filter are used. The linear predictor is
used to predict the next position of an object in which the
current location and the previous location of the object are
taking account [5, 17]. Authors in [18] assume that the object
just sometimes move nonlinearly, so they use a moving aver-
age estimator with a proposed correction mechanism. In
[19–21], Kalman filter-based methods such as extended
Kalman filter (KF) and SOI-KF was proposed.

In [22, 23], particle filter is proposed to predict the location
of the object, and in [8], a new adaptive prediction mechanism
is introduced in which the position of target for the next t0
seconds would be predicted. t0 is denoted as escape period and
is proportional with the distance between target and node.

Gauss Markove mobility model is considered in [15], and
authors propose a simple prediction model in which the object
mobility stays constant for a certain period of time. In [24],
authors use an extended Kalman filter to track the moving
target with nonlinear mobility model.

So far, there are no research works about prediction-based
WSN tracking object with variable velocity. So, the previous
methods lost the variable speed object during tracking pro-
cess. It is clear that the missing rate of the object leads to a
high total energy consumption in the network. In WSN object
tracking mechanisms, the energy consumption is dependent
on the missing rate, since the nodes must find the lost object
via recovery mechanism as a high-energy consumption pro-
cedure [25]. In an accurate predictor, less nodes would be
activated for collaborative tracking and lead to negligible
consumed energy and transmission overheads.

In this paper, we define a deferent kind of mobility model
for a moving object and a new prediction-based energy effi-
cient and high-accurate tracking method in a clustered sensor
network is introduced. This method is suitable for tracking
more than one object coming into the considered area simulta-
neously and are far enough from each other. If they move close
to each other and there are uncertainties in the association of
observed measurements, we should apply multi-target tracking
algorithms [2] which are outside the scope of this paper.

According to our proposed method, in each time instance,
only some nodes with the following characteristics will be
selected for tracking and other nodes go to the power saving
mode:

– Near to the target
– Have more energy
– Less distance to their head node

Despite of the previous works [22–24, 26, 27], we assume
a nonlinear measurement from the object with variable speed.
In addition, a new recovery mechanism is introduced to find
the lost object with high accuracy.

The results show that the proposed predictor has good
accuracy with low missing rate which leads to an energy
efficient object tracking method. Also, our proposed predictor
reduces the number of operations without loosing the predic-
tion accuracy.

2 Preliminaries

2.1 Environment

In this paper, a WSN with large number of stationary sensors
is considered in which nodes are capable of sensing, comput-
ing, and communicating. Each node knows its own location
by using GPS or other location awareness techniques. They
can sense the environment, detect the target, and track it. The
understudy network is a cluster-based heterogeneous sensor
network which consists of two types of nodes: cluster head
and ordinary nodes in which just head nodes send the final
tracking information to the sink.

Here, all cluster head nodes work in two modes, idle mode
and active mode, and all ordinary nodes work in three modes,
sleep, idle, and active modes. So, in our energy efficient pre-
diction mechanism, in each time step, just a few numbers of
nodes nearby the predicted location of target will be activated as
tracker nodes and the others will stay in power-saving mode.

2.2 Energy consumption model

In this section, themathematical model of consumed energy in
target tracking sensor network is introduced. During sleep and
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idle modes, the power consumption of a node is ignored. Also,
we do not consider the energy overhead for switching between
operating modes of nodes. For active nodes, all of their
components are active and the energy consumption of sensing
and communication components is considered.

Each node that wakes up senses the environment for a
certain period of time tsense and consumes energy Esense, then
sends its data packets to the head node. The energy consump-
tion model for transmitter is given by [28]:

if d > d0Et ¼ lEelec þ lεmpd
4 þ lEDA

if d ≤ d0Et ¼ lEelec þ lεfsd
2 þ lEDA

( )

where EDA is the energy for data aggregation in head nodes,
Eelec is the dissipated per bit to run the transmitter or receiver
circuit, εfs and εmp depend on the transmitter amplifier model,
d is distance, and l is the packet length. The consumed energy
for receiver nodes Er is as follows:

Er ¼ lEelec

3 Energy efficient tracking scheme

3.1 Target tracking mechanism

First, all head nodes are in idle mode. Once received, an alarm
message from sink wakes up and senses the environment.
Each head node, which finds the object, stays active, and
others go back to idle mode in which they just can listen to
communication channel to check messages. The head node
should carry out the necessary computation and find the best
sensor nodes for object tracking. Then, it sends a wake-up
message to ordinary nodes which are initially in sleep mode
and changes their state to idle mode periodically and synchro-
nously to check the messages. If they receive a wake-up
message, they become active; otherwise, they return to sleep
mode. If the object is going to leave the current head node’s
cluster, it informs the next head node by sending a wake-up
message. Also, the current position of the object would be sent
to the next head node. Head nodes send their information to
the sink for a period of length T seconds.

3.2 Measurements and localization model

It is assumed that each sensor node can find the approximate
angle of the target in its sensing range. So, the nonlinear
measurement model for sensor i Є {1, 2,…, n} at time instant
t is as follow:

θi ¼ Arctan
yit−S

i
y

xit−S
i
x

 !
þ vi ð1Þ

where (Sx
i ,Sy

i ) is the position of the sensor, i,(xt
i,yt

i) is the real
position of the target, and vi is the sensing error, which is zero
mean, Gaussian distribution with constant standard deviation
of σθ.

There are various works that have been done on the
bearing-only localization. Among them, least-square algo-
rithm has a closed form solution and does not need to solve
nonlinear problem which make it computationally easy. So, it
can be suitable for object localization in the network. LS
algorithm is based on assumption that the node-sensing errors
are sufficiently small. Therefore, the head node can adopt the
least-square algorithm to determine the target location, with
node sensing collaboratively [29]. The true value of an angle
can be written as

tan θið Þ ¼ sin θið Þ
cos θið Þ ¼

yit−S
i
y

xit−S
i
x

 !
ð2Þ

In presence of noise, we can write

FX ¼ h ð3Þ

Where X is the location of the target and the matrices, F and
h, are given by

F ¼
sinθ1
⋮

sinθn

cosθ1
⋮

cosθn

2
4

3
5 ; h ¼

S1x :sinθ1

Snx :sinθn

−
⋮
−

S1y :cosθ1

Snx :cosθn

2
4

3
5

The least square solution of Eq. (3) is

bX LS ¼ FT F
� �−1

FTh ð4Þ

3.3 Target mobility model

There are many mobility models for moving objects
such as models in [8, 15, 18, 22, 23]. For modeling
the motion of some mobile targets like a vehicle, a
mobile target moves for a random period of time in a
random direction with variable speed and acceleration
that are in ranges[0, vmax] and [0, amax]. This vehicle
cannot change its direction suddenly. It should stop for a
short random period of time and then starts moving and
changing its direction. Also the congestion leads to
variable speed for the vehicle most of the time. In fact,
we use random waypoint and constant acceleration mod-
el (RCAM) for target mobility in which random way-
point model uses pause times before changing three
parameters: speed, direction, and acceleration; the state
equations for the RCAM contain acceleration component

Ann. Telecommun. (2015) 70:63–71 65



which is time invariant. The mobility equations are as
follows:

x tð Þ ¼ x t−1ð Þ þ v tð Þ*Δt ð5Þ

v tð Þ ¼ v t−1ð Þ þ a tð Þ*Δt ð6Þ

a tð Þ ¼ a t−1ð Þ ð7Þ

By considering the process noise for target movement,
dynamic model of object under tracking can be defined as:

X k ¼ AX k þ Gwk ð8Þ

where k is the time index, Xk=[x(k)y(k)vx(k)vy(k)ax(k)ay(k)]
T is

the state vector which contains relative positions, velocities,
and accelerations of the target in two dimension plans, A is the

model state transition matrix, wk is the process noise that is
white Gaussian noise with zero mean and variance matrix
Q(k), and G(k) is the process noise input matrix. The related
matrices are given by:

A ¼

1 0 T 0
T2

2
0

0 1 0 T 0
T2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

2
6666666664

3
7777777775
G ¼

0 0
0 0
0 0
0 0
T 0
0 T

2
6666664

3
7777775
wk ¼ wx

wy

� �

3.4 Proposed predictor

Proposed predictor is based on prediction error described by
the angle between the actual location and previously predicted
location, denoted by θn. Since it is assumed that a moving
object has constant acceleration, so after predicting the speed
of the object in the next time step, we try to find the next
position of the object based on prediction error. If θn is in
range [−α, α], the velocity of the moving object is given by:

v t þ 1ð Þ ¼ 2*v tð Þ−v t−1ð Þ ð9Þ

Then the next location of the object is predicted as follows:

x t þ 1ð Þ ¼ v t þ 1ð Þ*T*cosΦþ x tð Þ
y t þ 1ð Þ ¼ v t þ 1ð Þ*T*sinΦþ y tð Þ ð10Þ

Table 1 Parameters for energy
consumption model Eelec 50nJ/bit

EDA 5nJ/bit/signal

Esense 106μJ/s

εmp 0.0013pJ/bit/m4

εfs 100pJ/bit/m2

d0 100
ffiffiffi
2

p

tsense 4.81 ms

Data packet
size

4000 bits

Signal packet
size

64 bits

Fig. 1 Number of dead nodes vs.
simulation time for two different
methods (without predictor and
prediction-based)
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where Φ ¼ arctan y tþ1ð Þ−y tð Þ
x tþ1ð Þ−x tð Þ
� �

but if θn is not in the range [−α, α], so we have

vx t þ 1ð Þ ¼ 2*vx tð Þ−vx t−1ð Þ
vy t þ 1ð Þ ¼ 2*vy tð Þ−vy t−1ð Þ
x t þ 1ð Þ ¼ vx t þ 1ð Þ*T þ x tð Þ
y t þ 1ð Þ ¼ vy t þ 1ð Þ*T þ y tð Þ

ð11Þ

3.5 Node selection algorithm

The node selection algorithm is the next step after
prediction mechanism. This algorithm finds and

activates three suitable sensor nodes to guarantee the
accuracy of the next prediction and also prolong the
network lifetime. Current prediction-based methods con-
sider nearest nodes to the predicted location such as
[14, 15] and in [5]; remaining energy of nodes is
considered too. In the proposed algorithm, three param-
eters are used as selection criterion:

– Distance
– Remaining energy of nodes
– Energy consumption for sending a packet to the head

node

Fig. 2 Energy consumption of
two different methods (without
predictor and prediction-based)
vs. simulation time

Fig. 3 Prediction error of
different predictors
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The active head node calculates the selection criterion as
follows:

Selectioni ¼ Eremaini−Esendi

d2i

where di is the distance of node i from the object,
Eremaini is the remaining energy of node i, and Esendi

is the consumed energy of node i for sending a packet
to the head node. Then head node chooses three nodes
with maximum selection parameter for tracking purpose.
Hence, in each time step, the closer nodes to the object
with more energy and shorter distance from the head
node will be selected. The proposed selection criterion
with three mentioned parameter helps us to prolong the
lifetime of target tracking system.

3.6 Recovery

There is a possibility of getting a lost object in the
presence of link failures, node failures, or prediction
errors. So, a recovery procedure is needed to find the
lost object. In this procedure, when a head node dis-
covers the moving object, it sends a packet to the
previous head node to inform the location of the object.
If the previous head node does not receive the packet, it
means that the object is lost and so informs the sink
node. The head nodes surrounding the cluster in which
the object is lost are awakened by sink to sense the
environment and try to find the lost object.

4 Simulation results

In this section, we try to analyze the effect of prediction
mechanism on energy efficiency and lifetime of target track-
ing system. Also, the accuracy of predictors and the effect of
their accuracy on missing rate and energy consumption are
considered. So, the linear predictors [5], a modified version of
Kalman filter named extended KF (EKF) which was intro-
duced in [26] and another modified version of Kalman filter
named unscented KF (UKF) [27], are considered to have a fair
comparison. Finally, the impact of node selection algorithm
on network lifetime is investigated.

4.1 Simulation environment

The network area is 400×400 which is divided into 16 equal-
size clusters, and so, 16 head nodes with initial energy of 50 J
are placed at the center of these clusters. The sink node is
located out of the area (x=200,y=450). Three hundred sensor
nodes are uniformly distributed in the network area with
sensing range Rsensing=60m and initial energy of 0.5 J. For

Fig. 4 Consumed energy of
different predictors vs. simulation
time

Table 2 Comparison of speed and missing rate of different predictors

Predictor Number of Operations Missing rate

Proposed predictor 28,440 0.69%

UKF 702,017 0.88%

EKF 107,734 3.92%

Linear 14,193 4.14%
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each sensor node, the standard deviation of measurement
noise is σθ=1.

During target tracking process, the sink receives informa-
tion about the moving object, every T=0.5s. For the target, we
have the maximum acceleration amax=15m/s2, the maximum
velocity vmax=30m/s, and the variance matrix of process noise
Q=52×I2×2. For the predictor, the bound of the prediction
location error is a=15 (see Sections 3–4). The parameters of
energy consumption model are shown in Table 1.

4.2 Advantages of prediction-based methods

In this section, the effect of prediction mechanism on network
performance metrics is discussed. We compare two target
tracking methods: prediction-based method which uses pro-
posed predictor and nonprediction method. Then, the energy
consumption, number of dead nodes, and lifetime of two
understudy tracking methods are compared. As shown in
Fig. 1, the number of dead nodes in prediction-based method
is zero during simulation time, but the network without pre-
diction is failed in the 15th time step of simulation.

Figure 2 shows that in nonprediction method energy con-
sumption of system is too high so that the network failed (the

connected network graph becomes at least two split graph),
very soon in comparison with prediction based method. The
reason is that in each time instant T, the head node has to wake
all of the nodes up to track the target, but in prediction
mechanism, only three most suitable nodes are woke up for
tracking purpose.

4.3 Accuracy and missing rate

First, we compare the accuracy of four mentioned predictors
that is determined by square root of the difference between the
predicted and actual location of the object in two dimensions.
The prediction error is given by:

pre−error
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtpre−xtreal
� �2

þ ytpre−ytreal
� �2r

where the pre−error
t is the prediction error of predictor at time t.

As shown in Fig. 3, the UKF predictor and our proposed
predictor have the lowest prediction error and so are more
accurate than the others. But, as we expect, the linear current
predictor has the greatest prediction error and EKF predictor is
in the middle. EKF predictor has good accuracy most of the
time, except in some peak points. The EKF predictor uses a
first-order linearization that sometimes leads to instabilities
during simulation time.

4.4 Energy consumption

When the object is missed, a recovery mechanism is needed to
find the lost object, and this leads to excessive energy

Table 3 Network lifetime comparison for different methods of node
selection

Node selection method Lifetime

Proposed method 11,946 s

Distance and remaining energy 10,061 s

Distance-based selection 5,339 s

Fig. 5 The defined performance
factor α vs. simulation time
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consumption in the network. After missing the object, all
nodes in a cluster should wake up, sense the environment,
and transmit their packet to head nodes. Figure 4 shows the
total energy consumption of network from 10 to 60min. As
we expect, the predictors with lower missing rates have less
energy consumption than the others. We point out that con-
sumed energy of prediction procedure is neglected in Fig. 4.

Also, another main evaluation metric for target tracking
algorithm byWSN is the number of operations. Table 2 shows
a comparison between accuracy and number of operations in
these four predictors in a 1-h target tracking. As shown in
Table 2, the linear predictor has lower accuracy with the
fastest run time because of its low number of operation. But,
UKF predictor with the high accuracy has a large number of
operations while computational capacities of sensor nodes are
constraint. The proposed predictor gives an optimum point
between accuracy and run time speed. So, our proposed
predictor has good accuracy that can be equal to the UKF

predictor and the number of operations about 24.7 times less
than UKF. The number of operations is a man-evaluating
factor of predictors especially in WSNs with processing re-
source constraints.

4.5 Effect of node selection algorithm on network lifetime

Finally, we try to evaluate our proposed selection criterion.
Table 3 shows the effect of proposed method on network
lifetime. As depicted in Table 3, when considering three-
element selection criterion, the lifetime of network is in-
creased about 10 %. Since in each time step, three nodes with
highest level of energy and lowest distance to the CH are
selected.

To have a fair comparison between the predictors, the
following factor is defined in which the normalized number
of operations, predictor error rate, and consumed energy are
considered.

α ¼ 1

Normalizenumberof operationsð Þ � Error rateð Þ � Energyconsumption ratioð Þ

So, as shown in Fig. 5, our proposed predictor gives the
best α, as defined factor, during simulation time. The linear
predictor has the lowest number of operation and so leads to
great α, in comparison with UKF and EKF.

5 Conclusion

Tracking of the mobile objects should solve main problems
such as object detection, localization, and prediction. And, if all
nodes have to always wake up to detect a mobile target, there
are a lot of waste of battery power and channel utilization.

In this paper, we propose an energy efficient tracking
method to reduce the number of nodes participating in object
tracking. Simulations results show that our method leads to
saving energy and thus prolong the network lifetime as well
regardless of mobility pattern of the mobile object including
random waypoint model.

The proposed predictor causes lower missing rate than
linear, EKF and UKF predictors, and the number of operations
which is the main determinant factor in the speed of the
predictor is 24.7 times less than UKF. Also against the moving
average estimator [18], a correction step is necessary and leads
to extra computation. But, this step is removed from our
proposed method and so, the numbers of operations are re-
duced. So, the proposed predictor helps the network to

increase the speed of prediction and decrease the energy
consumption.
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