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Abstract Network covert channels are policy-breaking and
stealthy communication channels in computer networks.
These channels can be used to bypass Internet censorship,
to exfiltrate data without raising attention, to allow a safe
and stealthy communication for members of political oppo-
sitions and for spies, to hide the communication of military
units at the battlefield from the enemy, and to provide
stealthy communication for today’s malware, especially for
botnets. To enhance network covert channels, researchers
started to add protocol headers, so-called micro-protocols,
to hidden payload in covert channels. Such protocol head-
ers enable fundamental features such as reliability, dynamic
routing, proxy capabilities, simultaneous connections, or
session management for network covert channels—features
which enrich future botnet communications to become more
adaptive and more stealthy than nowadays. In this sur-
vey, we provide the first overview and categorization of
existing micro-protocols. We compare micro-protocol fea-
tures and present currently uncovered research directions for
these protocols. Afterwards, we discuss the significance and
the existing means for micro-protocol engineering. Based
on our findings, we propose further research directions
for micro-protocols. These features include to introduce
multi-layer protocol stacks, peer auto-configuration, and
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peer group communication based on micro-protocols, as
well as to develop protocol translation in order to achieve
inter-connectivity for currently separated overlay networks.
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1 Introduction

In 1973, covert channels were introduced as policy-breaking
communication channels not foreseen in a system design
[24]. Later, the term network covert channel was defined
as a policy-breaking and stealthy communication channel
[7, 32]. Murdoch mentions the fact that network covert
channels must not be stealthy in any case but can instead be
placed in steganographic channels to add stealthiness to the
channels [33]. In the remainder, we use the term network
covert channel as a stealthy and potentially policy-breaking
communication channel.

In comparison to a cryptographically secured commu-
nication channel, a network covert channel is not used to
prevent that a third party can read the transferred secret
information but to prevent that the communication itself
will being detected. Network covert channels are a dual-
use good, i.e., they can be used for good and bad, peaceful,
and military purposes. For instance, botnets can improve
the stealthiness of their command and control channels with
network covert channels [15]. On the other hand, journal-
ists can apply network covert channels to secretly transfer
illicit information in networks with censorship. Thus, net-
work covert channels can contribute to the free expression
of opinions [54].
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Two different classes of network covert channels were
previously identified [54]:

1. Network covert storage channels hide data in currently
unused fields of network protocols.

2. Network covert timing channels hide data in timing
information, such as timing variations between network
packets or by manipulating packet order.

In the sequel, we focus on network covert storage chan-
nels since only storage channels provide enough space to
transfer control protocols. Besides, hybrid covert channels
exist which can combine storage and timing channels. As
for all storage channels, control protocols can be embedded
into the storage channels of hybrid covert channels as well.

A large number of publications deal with the problem of
placing hidden data in network packets, e.g., [1, 9, 14, 16,
23, 27, 35, 37, 38, 41, 50], and many techniques were devel-
oped to detect and prevent network covert channels, e.g.,
[5, 12, 17, 26, 39, 40, 54]. We do not focus on such network
protocol-specific hiding techniques as others already cover
these aspects in detail [54].

Network covert channels only provide a communication
channel. To extend their capabilities, covert channel-internal
control protocols, so called micro-protocols were intro-
duced. A communication protocol is required to regulate the
communication between distributed processes in a computer
network [34]. A micro-protocol is a communication proto-
col, but unlike other communication protocols, the header
of a micro-protocol is placed within the hidden data trans-
ferred by a covert channel. The name micro-protocol comes
from the constraint that network covert channels provide a
very limited space for hidden data. In order to fit into such a
limited space, a micro-protocol can contain only a few bits.

With micro-protocols, features can be realized which
would otherwise not be feasible for covert channels. The list
of features provided by micro-protocols comprises (but is
not limited to):

1. Reliable data transfer
2. Session management for covert transactions
3. Covert overlay network addressing schemes
4. Dynamic routing for covert channel overlays
5. Upgrades of a covert channel overlay infrastructure
6. Peer discovery within a covert channel overlay
7. Switching of utilized network protocols
8. Adaptiveness to network configuration changes

In general, users of covert channels do not reveal the fact
that they use a covert channel. Although covert channels
are subject to research since decades, it is thus not possi-
ble to provide the reader with information about the extent
of practical covert channel application or the dimension of
micro-protocol usage in practice. However, various use of
cases for network covert channels with micro-protocols are

possible. We want to highlight the selected use of cases to
show the significance of the topic:

1. Stealthy botnet command and control channels: If a
botnet implements a network covert channel with a
micro-protocol, it can signal commands and configu-
ration messages through the micro-protocol (e.g., the
command to send a spam message). The rest of the
hidden data (i.e., the actual hidden payload) is inter-
preted according to the micro-protocol information. If
the micro-protocol command is to send a spam mes-
sage, the hidden payload could comprise the spam
message to be sent. The micro-protocol can additionally
optimize the stealthiness of the botnet’s covert channel
by optimizing the covertness of a routing path [4, 13].

2. Journalists in networks with Internet censorship: To
transfer illicit information, a journalist can either send
data through a simple covert channel or can instead
use a micro-protocol-based covert channel. The micro-
protocol is capable of hiding the transfer in an improved
manner by splitting the payload over multiple simulta-
neous channels (e.g., different utilized network proto-
cols instead of only one). At the same time, a micro-
protocol provides reliability over all channels used and
can additionally support dynamic overlay routing in
order to allow the journalist to bypass critical censor-
ship infrastructure on a global routing path.

3. Military communication, secret agencies, and political
opposition: Like journalists, members of other orga-
nizations can profit from micro-protocols in covert
channels. A military communication at a battlefield
should not be detectable by enemy units but should pro-
vide a reliable communication. Micro-protocols realize
these requirements. Spies may dynamically define opti-
mal routing paths for stealthy communications based
on micro-protocols and members of the political oppo-
sition can exchange secret information in covert chats
with session management and automatic peer discovery
of other oppositional members.

A problem is that the existing micro-protocols are not
optimized for a covert channel environment because they
were designed like all other network protocols. As a result,
the protocols headers are too large and additionally are not
placed within the covert data in the optimal way [4, 48]: If
micro-protocol headers are too large, more bits are required
to be manipulated in the utilized network packet. Thus, more
anomalies are caused due to the manipulation which can
lead to easier detection of the covert channel. If the micro-
protocol header is not placed within the hidden data in the
optimal way, the operation of the micro-protocol can result
in anomalies (e.g., uncommon bit/flag combinations in net-
work packets) which can also lead to the easier detection of
the channel.
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In this article, we contribute to the existing knowledge
by:

1. Providing the first survey of micro-protocols for net-
work covert channels,

2. categorizing all existing micro-protocols,
3. providing the first survey of existing micro-protocol

engineering approaches and propose an improvement
for one of these approaches,

4. proposing a multi-layer micro-protocol architecture,
and

5. presenting new research goals for micro-protocols.
We propose to design multi-layer micro-protocols and
research that enables the inter-connectivity of currently
separated covert channel overlay networks by introduc-
ing protocol translation for micro-protocols.

The remainder of this article is structured as follows.
Section 2 provides a summary of existing micro-protocols,
compares their features, and applies a categorization to these
protocols. We discuss the drawbacks of existing micro-
protocols and protocol engineering solutions for these prob-
lems in Section 3. Based on our findings, we propose novel
directions for micro-protocol research in Section 4 and
conclude in Section 5.

2 Existing protocols and their history

In this section, we present and discuss existing micro-
protocols for network covert channels. These micro-
protocols do not only comprise different header sizes but
also differ in the number and type of the provided features.

2.1 Ping tunnel

The first micro-protocol presented was developed by Stødle
for the tool ping tunnel (PT) in 2004 [41]. PT is one of the
most feature-rich micro-protocols, but the price for it is the
requirement for more space. The header of PT is shown in
Fig. 1.

PT utilizes the ICMP “Echo Request” and “Echo Reply”
payload to cover its micro-protocol and its payload. The first
4 bytes of the ICMP Echo payload contains a magic byte
used to identify PT packets, which makes the tool easy to
detect. However, its main purpose is to pass firewalls and
not to provide a stealthy communication. The magic byte
is followed by the actual micro-protocol which contains the

Fig. 1 The header of ping tunnel’s internal micro-protocol as pre-
sented in [41]

fields shown in Fig. 1: a 4-byte destination IP address, a 4-
byte destination port (actually, a port number only requires
2 bytes), a 4-byte state information used to indicate the
message type as well as the connection state, a 4-byte
acknowledgement number (of the last received packet), the
4-byte length of the payload following the micro-protocol
header, a 2-byte sequence number,1 and a 2-byte identifier
field to handle multiple simultaneous connections.

2.2 Micro-protocol by deGraaf et al.

deGraaf et al. designed a micro-protocol in 2005 which we
will denote dG protocol. The dG protocol prevents packet
re-ordering in a port knocking-based covert channel. There-
fore, sequence numbers are placed in the UDP destination
port field [9]. The 16-bit destination port field is split into
a data part and a sequence number. This simple micro-
protocol does not prevent packet loss but was the first
micro-protocol for covert channels discussed in the research
community.

2.3 Micro-protocol by Ray and Mishra

Another micro-protocol by Ray and Mishra (which we will
denote RM protocol) was released in 2008 [36]. The proto-
col is designed for getting embedded into the ICMP Echo
payload like the PT protocol.

The header of RM is shown in Fig. 2 and contains a
sequence number and an expected sequence number which
is the acknowledgement number (2 bits each). One flag indi-
cates that payload is attached and another flag indicates that
the packet contains an acknowledgement.

The field expected sequence number contains the
sequence number of the received packet, e.g., if the field
contains the number 1, the packet with the sequence number
1 was successfully received, but the sequence number 10 (2)
is expected for the next packet.

The 2-bit sequence number (i.e., four states are possible)
is sufficient for a covert channel communication to prevent
the re-usage of a sequence number [36]. In comparison to
PT’s 16-bit sequence number, the 2-bit sequence number of
Ray and Mishra’s protocol is small. Since the RM proto-
col only sends out new packets after the latest packet got
received and acknowledged, i.e., a stop-and-wait automatic
repeat request (ARQ) protocol is used; sequence numbers
cannot be used for two packets at the same time. However,
waiting for the acknowledgement of a packet before send-
ing out the next packet is a slow process. Since ARQ only
requires a 1-bit sequence number, but the protocol provides
a 2-bit sequence number, an improved variant of ARQ could

1The size difference of the acknowledgment and sequence numbers is
known but was not modified so far.
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Fig. 2 The header of the protocol presented by Ray and Mishra [36]

be used where multiple packets can be sent sequentially
before an acknowledgement is received. Therefore, the RM
authors propose the improved versions Go-back-n ARQ and
selective repeat ARQ [36]. Ray and Mishra motivate their
choice with the fact that the improved algorithms can lead
to more re-transmissions of packets in case of ICMP rate
limiting,2 which can raise more attention.

The last two bits are used to specify whether a covert
communication starts or ends with the current packet.

2.4 Covert file transfer protocol

In 2010, Trabelsi and Jawhar published a covert file transfer
protocol (CFTP) hidden within the IP record route option
[43]. CFTP allows to transfer covert messages but addition-
ally allows to upload, download, and list hidden files. It
therefore provides a file hosting service–the CFTP server–
that is accessible by the CFTP clients. CFTP additionally
implements session management and reliability, but in com-
parison to the other protocols, it also enables authorization.
For instance, a client can be allowed to upload files to the
CFTP server, but the server could forbid the same client to
list the files located on the server. These permissions are
indicated by four flags (privilege to list files on the server,
download files, upload files, and to send short messages).
Besides, additional flags indicate whether a packet is a short
message, a file, or a part of a file, and whether a packet is a
retransmitted packet or not.

2.5 Hybrid approach using digital watermarking

Mazurczyk and Kotulski developed a control protocol based
on a hybrid hiding (HyH) approach in 2006 [31]. The pro-
tocol combines a covert channel with digital watermarking.
Therefore, a 6-bit control protocol header is embedded into
unused bits of the IP, UDP, and RTP header. The header
describes parameters of a watermark embedded into the
payload of a VoIP message.

The first 4 bits of the control protocol describe the infor-
mation contained in the watermark, which are analogous to
the RTCP protocol (authentication or integrity parameters,
inter-arrival jitter, NTP timestamp, or RTP timestamp, just
to mention a few). The fifth bit signals the side of the bi-
directional communication (sender or receiver). The sixth

2With ICMP rate limiting, e.g., provided by modern CISCO devices
and Linux, the number of ICMP messages of the same type per time
slot can be limited [11].

bit indicates if the packet represents a beginning parame-
ter indicated by the first 4 bytes or whether the watermark
contains continuing data of a parameter.

2.6 Smart covert channel tool

In 2012, we presented an optimized control protocol that
allows the configuration of dynamic routing in covert chan-
nel overlay networks [4]. The so-called smart covert chan-
nel tool (SCCT) implemented a routing algorithm based on
OLSR to achieve a high stealthiness for the propagation
of routing information. The header of the control proto-
col does not comprise a standard header as the header
design is highly dynamical by only comprising the compo-
nents required for a particular routing message. Therefore,
four routing messages (requesting peer tables, sending peer
tables, transferring topology graphs, and performing rout-
ing updates) were implemented. Moreover, the protocol was
designed to be integrated into various network protocols
which can be utilized by SCCT’s software architecture.

2.7 Terminology

In [48], we introduced an improved terminology for micro-
protocols visualized in Fig. 3. We explain our terms in this
section.

Each network covert storage channel uses a network
protocol to embed hidden information into. We call this uti-
lized protocol the underlying protocol. The area(s), in which
the covert data is embedded within the underlying proto-
col, is called the cover protocol. In the cover protocol, the
micro-protocol and the payload are placed.

For instance, if different bits of the IPv4 header (e.g.,
selected bits of the TTL, the bits of the IP Identifier, and the
DF flag) are used for the covert channel transfer, the com-
bined area of these utilized bits are summarily called the
cover protocol, while IPv4 itself is the underlying protocol.

Coming back to the botnet scenario, the micro-protocol
could comprise a botnet command (e.g., sending a spam
message or installing a software upgrade for a bot) while the
actual payload could comprise a spam message fragment or
a fragment of a software update for a bot.

Fig. 3 Underlying, cover, and micro-protocol
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2.8 Categorization

After introducing the existing micro-protocols and terminol-
ogy, we will now categorize these protocols. The categoriza-
tion allows to determine protocol features which were not
part of any previous research.

In the first step, we apply the OSI layer model to
micro-protocols. The OSI-based categorization allows us
to evaluate which kind of layer-associated features were
(not) part of any micro-protocol research and could thus
lead to new research contributions. Afterwards, we intro-
duce a second categorization of covert channel-specific
attributes in order to evaluate the need for micro-
protocol feature improvements from an information hiding
perspective.

2.8.1 OSI-based categorization

We analyzed the features of all mentioned protocols which
we summarize in Table 1. As this table demonstrates, the
mostly addressed feature of micro-protocols is a reliable
data transfer—a feature of the transport layer. Also, in
four of six micro-protocols, a simple session management
functionality is implemented. Only PT and SCCT support
features of the network layer. None of the protocols but
CFTP comprises features of the application layer, and none
of the protocols contains features of the presentation (except
HyH), data link, or physical layer. However, since covert
channels build overlay networks on top of an existing net-
work infrastructure, the data link and physical layer are not
considered to be of importance.

A direction for novel micro-protocol research is to intro-
duce features of the presentation layer and additional fea-
tures of the application layer. For example, overlay networks
can use own addressing schemes. For a covert channel,
space-efficient addresses are optimal as they allow small
micro-protocol headers. Hostnames for overlay addresses
will increase the usability of the overlay network, and thus,
the integration of DNS features of the application layer will
improve the usability.

Besides, it is feasible to introduce additional features of
layers already taken into account, such as a control message
protocol like ICMP for covert channels or quality of service
support (quality of covertness for dynamic routing in covert
channel overlays is already available [4]).

2.8.2 Covert channel-specific categorization

In comparison to normal network protocols (non-micro-
protocols), one specific challenge in designing micro-
protocols is to embed the bits of the micro-protocol header
into the cover protocol without raising attention. A sec-
ond challenge is to decrease the size of a micro-protocol
header. Normal, space-efficient protocols like CSLIP are
available as well, but micro-protocols face the problem that
their header can be split over different header areas of
the underlying protocol for which different encodings of
the micro-protocol header bit can be necessary. Advanced
micro-protocols like HyH [31] can moreover be split over
different network layers [47].

For the second categorization, we therefore introduce the
following properties to classify micro-protocols. In contrast

Table 1 Categorization of micro-protocol features in the context of the OSI model

OSI layer PT RM dG CFTP HyH SCCT

7 (Application) – – – File transfer – –

6 (Present)a – – – – Integrity, –

authenticity

5 (Session) Multiple parallel Simple sessions – Simple sessions, Session information –

sessions based on authorization /control

(ID field) transactions

4 (Transport) Reliability Reliability Reliability Reliability Continuity of –

transfer

3 (Network) Addressing, – – – – Routing,

proxy adressing

functionality

2 (Data link) – – – – – –

1 (Physical) – – – – – –

a
Cryptographic features belong to the presentation layer but were not taken into account if they are not directly handled by the micro-protocols

although some implementations encrypt payload
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to the OSI layer categorization, these properties are specific
to covert channels. We introduce a metric called features
per micro-protocol header bit which can be seen as an effi-
ciency value for the coding of micro-protocol header bits:
the more features a micro-protocol implements per utilized
bit, the more space efficient its design is and the fewer
anomalies are caused per provided feature.

We evaluated the following attributes for the micro-
protocols:

1. Hiding technique of the protocol header
2. Size of the micro-protocol header
3. Features per micro-protocol header bit
4. Dependence on TCP/IP attributes
5. Addressing scheme if included
6. Upgradability
7. Handling of incoming packets not belonging to the

covert channel but using the same underlying protocol

We discuss all these properties separately and summarize
our findings in Table 2.

1. Optimized hiding To achieve stealthy communication,
hidden information should be placed in the underlying
protocol in a way to generate as few anomalies as pos-
sible to avoid raising attention. However, an optimized
placement of header bits within the underlying protocol
was introduced for none of the mentioned protocols.

2. Size of the micro-protocol header The RM protocol
is more space efficient than PT as it comprises only
8 bits instead of 192 bits. The dG protocol requires
16 bits (the size of the UDP destination port field).
CFTP also needs 16 bits (including 4 unused bits).
As the HyH header is separated from the parameters
(linked to varying sizes), we did not include it in the
size evaluation. However, the first 4 bits of the HyH

header allow to integrate only required parameters into
the watermark in order to save space for currently unre-
quired parameters. A similar approach to only include
required header components is present in SCCT which
also leads to a dynamic header size.

3. Features per micro-protocol header bit The absolute
number of features provided within the 8 bits of the
RM protocol is smaller than for PT, but the number of
features provided per bit is higher for RM as for PT.
However, if large address fields are transferred within a
protocol header (such as 32 bit IPv4 addresses used for
PT), the number of features per header bit decreases.
Within the 16 bits of the dG protocol, only one fea-
ture is realized while CFTP supports six features within
the same header size. The number of features can be
counted in different ways since sub-features can be
considered as a feature as well. For instance, in the
RM protocol, the start flag and the stop flag are rep-
resented by 2 bits and indicate whether a transaction
starts or begins. Both features can be seen as a single
feature and could be placed in one bit: either the start
flag is set (transmission starts or is taking place) or it
is not set (transmission ends). Therefore, we only pro-
vide approximate numbers for the number of features
in Table 2. The feature to transfer a general hidden mes-
sage was not counted as a micro-protocol feature since
payload transfer is a fundamental feature in covert
channels that was already realized in the past without
micro-protocols. Unused bits which are part of a micro-
protocol header definition were counted as header bits
without a feature.

4. TCP/IP dependence Covert channels can be embedded
into various underlying protocols, including protocols
of non-TCP/IP stacks, such as BACnet [3]. Micro-
protocols should be designed in a way that they are

Table 2 Categorization of micro-protocol features in the context of covert channel-specific attributes

Attribute PT RM dG CFTP HyH SCCT

Hiding optimized – – – – – –

Size optimized – Comparably – – Parameter- Yes

small header based

Features per Few (< 0.1) High (0.75) Few (< 0.1) Average (0.375) Dyn. size Dyn. size

header bit

TCP/IP Yes (IP addr./ – – – – Yes (IP

dependence protocol size) addr.)

Addressing IPv4 None None None None IPv4

scheme

Upgradability – – – – – Proposed

Handling of Magic byte, Reliability Reliability Reliability Authenticity -

non-covert input reliability
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suitable for various underlying protocols in order to
enable switches of the underlying protocol [48].

While the PT and RM protocols were developed for
getting placed within the ICMP Echo payload and the
dG protocol was designed for getting embedded within
the UDP header, CFTP was designed to be hidden in
an IP option’s header and HyH can be embedded into
IP, UDP, and RTP. SCCT supports various protocols by
design, but generally, all protocols can be adapted to
arbitrary protocols. However, it is easier to place the
8-bit header of the RM protocol into another utilized
protocol than it is to place the 192-bit header of PT in
another underlying protocol since many protocols only
provide a few bits. Another possibility to integrate the
PT protocol into another underlying protocol would be
to split the PT header over multiple protocol layers—an
approach proposed in [47].

5. Addressing scheme A characteristic of PT and SCCT
are the IPv4 addressing schemes which allow no non-
TCP/IP communication. The RM, dG, CFTP, and
HyH protocols do not contain any internal address-
ing schemes and can thus be embedded in any other
protocol as well. A suitable addressing scheme for
TCP/IP independence would be to introduce an own
addressing scheme into a covert channel overlay
network.

6. Upgradability To allow newer micro-protocol versions,
it is an important feature to use version numbering in
micro-protocol headers. This enables to create back-
ward compatibility as well as previously unsupported
features [46]. None of the micro-protocols comprises
such a feature.

7. Handling of incoming packets which do not belong to
the covert channel Received data might be inadver-
tently interpreted as belonging to a covert communi-
cation. The PT header therefore introduces a magic
byte: only if the magic byte equals a given value, the
packet is treated as a covert channel packet. HyH com-
prises support to evaluate the authenticity of packets.
The other protocols do not comprise such features.
However, due to the provided reliable data transfer,
sequence numbers which do not match an existing
connection could be logically dropped by all other pro-
tocols (except SCCT) as long as the implementations
foresee such a feature.

2.9 Micro-protocols in the network environment
learning phase

Yarochkin et al. introduced a so-called network environment
learning phase (NEL phase) [52]. In the NEL phase, two
covert channel peers (a) try to determine the presence of
each other and (b) try to determine the underlying protocols

they can use to communicate with the other peers. Non-
routed or blocked underlying protocols are discovered and
not used for the communication.

The discovery of usable underlying protocols can be
achieved in an organized manner as micro-protocols allow
to announce test packets in advance [45]: if a test packet
does not reach the receiver after a waiting time t , the
receiver knows that the underlying protocol cannot be used.
The receiver sends the result of the packet transfer to the
sender using a micro-protocol message.

A two-army problem can be relieved by using micro-
protocols: if two peers send test packets to each other to
discover usable underlying protocols and if a traffic nor-
malizer drops packets on the path between both systems,
the peers cannot be sure whether the message sent did not
reach the other peer or whether the acknowledgment mes-
sage (that indicates the successfully received packet) was
dropped by the normalizer on its way back to the sender
[45]. Based on a third participant and micro-protocols, meta
information to announce test packets can be exchanged
between two peers and they can determine whether a packet
reached the peer or not.

2.10 Control protocols for covert timing channels

Although we focus on covert storage channels as only these
channels can comprise headers of micro-protocols, con-
trol mechanisms are available for timing channels as well.
Therefore, timing channels use various encoding mecha-
nisms (e.g., sending parity bits [44]).3

Luo et al. showed that multiple TCP flows can be used
simultaneously to encode a hidden message via timing
channels while additionally providing reliability [29]. A
similar approach called TCPScript that encodes messages
into TCP data bursts was presented by the same authors in
[30]. TCPScript is an approach that relies on the sliding-
window algorithm, the sequence number, and the capability
to acknowledge messages and can be integrated into other
protocols (e.g., SCTP) as well [30].

CoCo is a reliable timing channel that modulates hid-
den information via inter-arrival times of packets and is
adjustable to configure undetectability, rate, and robustness
of the channel [20]. ProtoLeaks is another timing chan-
nel using TCP-based protocols to provide reliability and
therefore utilizes permutations of multiple distinguishable,
sequential network objects (e.g., HTTP requests or FTP
commands) [42].

3In [44], we speak of a storage channel, but as the channel utilizes
the order of network objects, it can also be categorized as a timing
channel.
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3 Overcoming existing drawbacks: micro-protocol
engineering

Basically, existing protocol engineering means can be
applied to micro-protocols as well. However, to address
micro-protocol-specific design problems and drawbacks of
existing micro-protocols, two engineering approaches were
introduced which can be combined with the existing means.

3.1 Drawbacks of existing control protocols

Being linked to the introduced features, micro-protocols can
also affect the detectability of a network covert channel in
a positive way (e.g., by enabling the adaption of the covert
traffic to the patterns of legitimate traffic and by enabling
protocol switching) or in a negative way. In this section, we
cover the negative effects: First of all, embedding a micro-
protocol header requires space of the cover protocol. Each
needed header bit leaves less space for the actual payload
of the channel that must be placed in the cover protocol as
well. Thus, the more bits micro-protocol headers require,
the more bits must be manipulated and the more packets
must be sent for a given payload transfer and the chance
of a detection increases. Therefore, we can conclude that a
micro-protocol’s size must be as small as possible.

On the other hand, a micro-protocol can negatively affect
the detectability of the covert channel by causing anomalies
in the underlying protocol. For instance, if a micro-protocol
is located in selected bits of the TCP flags, it may cause flag
combinations which are not standard conform. Such behav-
ior can cause an alert of the intrusion detection systems.
Thus, the behavior of a micro-protocol must conform to the
(standard of the) underlying protocol.

In order to overcome the outlined problems, we devel-
oped solutions: status updates [4] optimize the size of the
micro-protocol header and the conformance approach [48]
ensures that the micro-protocol conforms to the underlying
protocol.

3.2 Status updates

A first technique to achieve a space-efficient control proto-
col header was the HyH protocol [31] in which the first four
header bits indicate the presence of parameters in the water-
mark. In this section, we discuss a more dynamic approach:
status updates reduce the size of micro-protocols by only
transferring header bits if these are required [4]. Hence, this
approach optimizes the features per header bit metric from
Section 2.8.2.

The idea of status updates is based on compressed SLIP
(CSLIP) [22] and IPv6 header extensions [8]. CSLIP trans-
fers a bitmask which indicates the presence of header
parameters [22] (this approach was applied in the HyH

protocol as well [31]). IPv6 extension headers, on the other
hand, allow the dynamic combination of extension headers
as well as multiple occurrences of extension headers within
a single packet.

Status updates combine both ideas and add the idea of
states: In the context of status updates, a connection between
two covert peers can be linked to many states, such as the
source address of a connection, the destination address of
a connection, or a session’s state (active or inactive). These
states are only transferred between the peers if they change.

For instance, if a covert sender wants to transfer payload
to a covert destination over a proxy, the proxy only needs
to receive the status for the destination address once and
not with every packet of a connection. If IPv4 addresses are
used, the sender has to transfer 32 bits less per packet.

To apply status updates to an existing micro-protocol, its
header must comprise parts which are not always needed,
i.e., which are only needed to indicate an update of a con-
nection’s state. All header components that are not always
required are removed from the default micro-protocol
header and are only transferred if required.

To transfer a header part not belonging to the default
header, preamble bits must be sent. The value of the pream-
ble bits identifies the type of the header part. For each
non-default header part, a unique identifier must be defined
and it is possible to combine multiple non-default headers
in a single packet.

Using status updates, the size of the RM micro-protocol
could be made more efficient: A status update-based version
of this protocol transferred fewer bits in comparison to the
original header if at least five packets are transferred per
transaction [4]. To this end, the bits which indicate the start
and end of a transaction are removed from the default header
and are only transferred if a transaction begins or ends.

Besides, status updates were also used to implement
the efficient transfer of routing updates for covert channel
overlays [4].

3.3 Conformance approach

A first approach to ensure that a micro-protocol conforms to
the underlying protocol was presented in [48]. To this end,
an area of the underlying protocol must be defined to be
used for the placement of the micro-protocol–as mentioned–
this area is called the cover protocol.

Next, the occurrence rates of micro-protocol bits and the
occurrence rates of bits in the cover protocol are evaluated,
e.g., based on traffic recordings. Afterwards, micro-protocol
bits are mapped to bits of the cover protocol such that
occurrence rates match as closely as possible. Thus, the bit
occurrence rates do not differ much between an underly-
ing protocol without a micro-protocol and an underlying
protocol with a micro-protocol.
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Assume for example that micro-protocol and cover pro-
tocol comprise bits ab and cd , respectively, where Pr(a =
1) = 0.7, Pr(b = 1) = 0.5, Pr(c = 1) = 0.6, and
Pr(d = 1) = 0.3. Then, a should be mapped to c and b

should be mapped to d to match the probabilities in the best
possible way.

Afterwards, both the micro-protocol as well as the cover
protocol are modeled using a formal grammar. Each formal
grammar must produce all possible bit combinations for the
header of its protocol, and both grammars are required to
comprise the same terminal symbols to represent the same
bits in the underlying protocol. Therefore, the previously
configured bit mapping is used. The sentences produced
by both grammars need to contain their respective terminal
symbols in exactly the same order, and each terminal sym-
bol must only occur once since a header bit cannot be set
twice in the same packet.

In the final step, it is tested whether the micro-protocol’s
operation can lead to bit patterns in the cover protocol
which are not foreseen by the underlying protocol. For
instance, an unusual TCP flag combination could be cre-
ated if the micro-protocol utilizes TCP flags. This could
raise attention at a typical network IDS. Therefore, a lan-
guage inclusion test is applied: If the language produced by
the micro-protocol’s grammar can generate sentences which
cannot be created by the language produced by the cover
protocol’s grammar, the micro-protocol does not conform
to the cover protocol. This means that the micro-protocol
would generate bit combinations in the underlying proto-
col which should not occur. To apply an automatic language
inclusion test, the grammar of the micro-protocol must be
regular or context free and the grammar of the cover proto-
col must be regular. Otherwise, the language inclusion is not
decidable.

Typically, the grammars are constructed along the mean-
ings of the packets or packet headers [18, 19]. As an
example, assume that the two micro-protocol bits comprise
a packet type and a flag according to the rules:
M -> Type Flag

Type -> 0|1

Flag -> 0|1

The underlying protocol might use the two bits in two
modes distinguished as follows:
S -> Mode1 | Mode2

Mode1 -> 0 Flag

Flag -> 0|1

Mode2 -> 11

Then, the language of the micro-protocol grammar is
{00, 01, 10, 11} while the language of the underlying pro-
tocol grammar is {00, 01, 11}. As 10 is used in the micro-
protocol but not in the underlying protocol, the micro-
protocol is not conforming to the underlying protocol and
should be revised.

The conformance approach is dynamic as re-designing
paths are defined to optimize selected steps of the process.
Additionally, the approach can support connection-oriented
protocols which have to take bit values of previously sent or
received packets into account.

3.3.1 Improvement of the existing approach

In the early phase of the conformance approach, occurrence
rates of bits in micro- and cover protocol are evaluated based
on traffic recordings or are estimated. Afterwards, bits of
the micro-protocol are mapped to bits of the cover protocol
in a way that a micro-protocol bit is as likely to occur as a
cover protocol bit.

We discovered that different protocol states should be
considered in the evaluation since bit occurrence rates
depend on protocol states. For instance, some flags of the
TCP header are more likely to occur in the connection
establishment or connection termination phase than in the
phase in which the actual payload transfer is taking place.
If the micro-protocol utilizes TCP flags, a state-independent
mapping could thus lead to non-optimal results.

For a better mapping, each state of the cover protocol
should be evaluated separately with respect to bit occurrence
rates. Afterwards, the micro-protocol is mapped to the cover
protocol in ways optimized for each state. The drawback
of this approach is that for n protocol states, n mappings
instead of one must be computed which also results in n

language inclusion tests.
Since the covert channel sender always knows the state

of the cover protocol when a message is generated, it auto-
matically has knowledge about the bit mapping that must be
applied. On the receiver’s side, the cover protocol state and
with it the correct bit mapping can always be determined,
i.e., the micro-protocol bits can always be interpreted in the
correct way.

3.3.2 Adaptability to similar use cases

In [21], the authors propose to create steganographic con-
nections in a way that implementation errors for net-
work protocols are covered by the steganographic data
transfer as well. This complicates the distinction between
an original but erroneous implementation and a stegano-
graphic implementation of a protocol. However, while the
authors mention the requirement for error-conform proto-
col implementations, they do not provide a solution. Our
conformance approach provides a first means to model
such error-conform implementations since implementation-
known errors can be modeled using the formal grammar.
Therefore, the grammar of the steganographic protocol
implementation must produce a language subset of the
original implementation’s grammar.
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Lucena et al. earlier presented work on syntax and
semantics-preserving steganography for the application
layer [28]. Their approach must be considered the first that
aimed on ensuring protocol conformity of steganographic
protocols to underlying protocols. Besides not taking other
layers but the application layer into account, the approach
does also differ from our approach as it does not target
micro-protocols, but general network steganography and
solely focuses on statistical similarity. The authors selected
randomized fields in the SSH2 protocol to place their hidden
data into. Our conformity approach enables the conformity
of complex header structures and, although it is designed for
micro-protocols, can be seen as an extension to the work by
Lucena et al. as it considers non-randomized header fields.

4 Future challenges for control protocols

In this section, we will discuss goals for further micro-
protocol research in order to provide a fundament for
upcoming papers in this emerging field.

4.1 Integration of features from other OSI layers

As already pointed out in Section 2.8.1, we see the inte-
gration of additional features of the Internet and transport
layers as well as integration of features of the presentation
and application layers as valuable goals.

In the context of our covert channel-specific categoriza-
tion from Table 2, we see the development of an own
addressing scheme as a fundamental goal. If IP addresses
are used in micro-protocols, the micro-protocol size and,
thus, the features per header bit value will impair. An own
addressing scheme with tiny addresses (e.g., 5-bit addresses
for a 32-host network) would be suitable. If larger address
ranges, or even subnets, will be introduced, it would also
make sense to integrate DNS-like features into network
covert channels.

Based on the given use case, it would also be possible to
introduce application layer functionality specific to the use
case. If, for instance, a video shall be transferred (or even
streamed) by a journalist, a streaming functionality would
be required,4 while a general file transfer can be achieved
with the existing micro-protocols.

If presentation layer functionality will be included, covert
channel peers could agree on encodings or on a compres-
sion algorithm for payload (e.g., for the mentioned video
streaming).

4While the HyH protocol generally supports VoIP streaming, it does
not hide the streaming content itself.

Other desirable functionalities comprise IGMP-like
group communication or DHCP-like peer auto-
configuration. Therefore, peers joining the network could
be assigned with temporary covert overlay addresses. Such
a feature would help to reduce the number of required
address bits in micro-protocol headers as temporarily used
non-static addresses can be assigned to other peers from
time to time.

4.2 Multi-layer micro-protocols

Another promising approach is the creation of an OSI-like
layered model for network covert channels. As explained,
physical and data link layer functionality are not nec-
essary for covert overlay networks. However, functional-
ity of the network, transport, session, presentation, and
application layers must be considered useful for covert
channels.

A layered micro-protocol design would allow to include
and exclude features depending on the use case. If, for
instance, a reliable data transfer is required, a transport layer
component providing reliability could be included, other-
wise, the space could be saved. This approach is similar to
the status update approach but would allow an even more
dynamic and more feature rich design as status updates
only focus on a single protocol and a multi-layer model
would lead to a set of protocols for a whole protocol
stack.

4.3 Protocol translation for micro-protocols

The discussed micro-protocols raise the question whether
an inter-operability of such micro-protocols is feasible.
Inter-operability for micro-protocols means that a covert
channel peer using micro-protocol Pa can communi-
cate with another peer using micro-protocol Pb with
Pa �= Pb.

If inter-operability is feasible, currently separated covert
channel peers and even whole overlay networks could be
linked together to form larger, more robust distributed sys-
tems (e.g., it would be possible to create more alternative
routing paths between peers).

The following aspects must be taken into account by
further research to enable protocol translation for micro-
protocols:

Unsupported features Obviously, two protocols Pa and Pb

do not necessarily share the same feature set, and even if
same or similar features are implemented, they can be repre-
sented in a different or even incompatible way. For instance,
the RM protocol comprises a 2-bit sequence number and a
2-bit expected sequence number, while the sequence num-
ber field of PT comprises 16 bits and the acknowledgment
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field comprises even 32 bits. A protocol translation can thus
not be considered trivial in any case.

Besides, a feature contained in protocol Pa that is not
available in protocol Pb cannot be handled in Pb (e.g.,
the permission flags are only available in CFTP but not
within other protocols). Even if two networks using Pa are
separated over a network that uses Pb, the transfer over
Pb cannot preserve the features which are not supported
by the protocol as all those features must be removed as
long as Pa is not entirely encapsulated (tunneled) through
Pb.

Reliability All micro-protocols implement reliability but
use fields of a different size. A protocol translation system
could, for instance, cache sequence and acknowledge num-
bers on the PT side of the connection and apply ARQ on the
RM protocol side.

Addressing scheme A completely different problem would
be to realize addressing between two PT/SCCT systems
that are separated by a network that uses the RM, HyH,
or dG protocol: The latter protocols do not comprise any
address values since they use the address values in the IPv4
header. One technique to overcome this problem is to tunnel
the PT/SCCT protocol as payload through the connection
established by the RM/HyH/dG protocol. In any case, the
protocol gateway must include the IP address of the peer
in the RM/HyH/dG payload if the traffic is forwarded to
another gateway.

Magic byte PT’s micro-protocol comprises a magic byte
that allows to identify whether an ICMP Echo packet
belongs to the covert channel or not and the HyH proto-
col can verify the authenticity of a packet in order to detect
whether a packet belongs to a connection or not. In com-
parison to the magic byte, the authenticity verification can
be considered more robust as it is harder to forge. The
RM, SCCT, and dG protocols do not support such a fea-
ture, and thus, packets that do not belong to the covert
channel could be treated as covert channel packets. Such
packets might also be forwarded by a protocol translation
system to a PT/HyH peer and could possibly corrupt a con-
nection. However, this scenario can be considered unlikely
since micro-protocol fields of accidentally sent ICMP Echo
packets must comprise suitable values (sequence numbers
should fit into the connection). A plausibility check could be
used as a solution to this problem (e.g., packets containing
sequence numbers out of the scope of the current connection
could be ignored).

We consider protocol translation for currently incompat-
ible micro-protocols as a valuable research goal to inter-
connect currently separated overlay networks.

4.4 Detection and reverse engineering of micro-protocols

Protocol reverse engineering aims to understand undocu-
mented file formats and network protocols and was applied
in the past to understand protocols like SMB and ICQ [6].
Recently, protocol reverse engineering became popular in
order to understand C&C protocols of botnets.

Micro-protocols were, in comparison to C&C proto-
cols, not subject of reverse engineering in the past. While
early botnets used IRC and HTTP as underlying protocols,
their architecture became more advanced as P2P architec-
tures, protocol obfuscation, and encryption features were
implemented into C&C communications [6, 25].

To this end, researchers, on one hand, scrutinize botnet
binaries using static and dynamic analysis to reconstruct
the message format and behavior of C&C protocols as well
as to reverse engineer encryption and decryption methods
[6, 25, 51]. Static and dynamic analysis is linked to the
drawback that an analyst needs to know about the existence
of a hidden communication as well as she needs access
to a binary of a bot. The goal of covert channels is to
prevent that a third party knows about the existence of a
hidden communication, i.e., static and dynamic analysis are
not suitable approaches to counter covert channels—with
or without micro-protocols. However, after a covert chan-
nel is detected, static and dynamic analysis can help to
reverse engineer the hiding technique of a covert channel
and with it the transferred payload and the micro-protocol
design.

On the other hand, protocol reverse engineering means
based on network input are available. Antunes et al. re-
construct a protocol state machine and protocol language
based on network traces [2], but their approach is not
designed to handle micro-protocols as they are split over
multiple layers and multiple fields within headers, can
utilize various hiding approaches, and can adapt to net-
work traffic in order to remain hidden (e.g., by adapting
packet lengths to legitimate network traffic [49]). These
covert channel-specific characteristics are valid for other
approaches as well: Zhao et al. classify network traffic in
order to detect malware activity in real time, which is similar
to classification-based covert channel detection approaches
[53] but does also not focus on micro-protocols but on the
covert channel as a whole. Dietrich et al. determine the pres-
ence of botnet C&C traffic by observing the message length,
encoding differences and carrier protocols of network com-
munications [10] but require a priori information about the
characteristics of particular C&C protocols. Gu et al. cluster
similar flows and malicious traffic in order to detect botnets
but refer to covert channels as a potential countermeasure
to render their approach ineffective [15]. A major challenge
for the adaption of these techniques to micro-protocol-based
covert channel detection is the high number of potential
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hiding techniques which can be applied to implement data
hiding in networks.

In comparison to static and dynamic analysis, means
based on network input can be implemented on network
hops instead of end-user systems and do not require binaries
of the bot software.

Although the major goal of a covert channel is to cover
the existence of a hidden communication, a future chal-
lenge is to verify the adaptability of existing protocol reverse
engineering means to micro-protocols and to develop spe-
cialized methods capable to (a) deal with cover protocols
spread over multiple header fields in different network lay-
ers as well as (b) capable to deal with micro-protocols com-
prising a variable header structure (status update) and (c)
capable to deal with micro-protocols which were optimized
to provide conformity (conformance approach). Like exist-
ing methods (cf. [6]), micro-protocol reverse engineering
needs to determine protocol elements (e.g., message for-
mat including fixed-length and variable-length fields, length
fields, delimiters, protocol keywords, and dynamic fields)
and to re-construct the state machine of a micro-protocol.
The availability of such an approach would enable adver-
saries to interact with micro-protocol-based covert channels
after detection.

Active adversaries (or active wardens) could aim to
compromise the covert channel overlay (e.g., by request-
ing peer tables of the overlay network or by inserting
faked routing information in order to redirect all covert
channel traffic over their own systems [4]). Moreover,
passive adversaries (or passive wardens) could aim to
determine the involvement of third parties into a covert
communication.

5 Conclusion

In this survey, we explained the importance of covert
channel-internal control protocols—so-called micro-
protocols. Micro-protocols enable feature-rich and stealthy
communications for future malware communications on
one hand and facilitate secure communications for jour-
nalists, governmental organizations, or members of the
political opposition in networks with censorship on the
other hand. Micro-protocols can be used to introduce fea-
tures such as reliable data transfer, session management,
dynamic routing, peer discovery, protocol switching, and
adaptiveness to networkvert channels.

We compared and categorized the existing research pro-
tocols to highlight potential paths for further research. A
new metric called features per micro-protocol header bit
was introduced to evaluate the space efficiency of a micro-

protocol. Our results demonstrate that most protocols are
not space-efficient and do not provide any features of higher
OSI layers, protocol upgradability, an optimized placement
of the micro-protocol in the hidden data, or an addressing
scheme optimized for covert communication.

In the context of existing protocol engineering methods,
we proposed an improvement to one of the approaches in
order to additionally optimize the stealthiness of micro-
protocols.

Finally, we underlined directions for future research in
this emerging field: We see valuable goals in the integra-
tion of features of the OSI presentation and application layer
as well as in adding additional features of the network and
transport layer to micro-protocols. We also motivated multi-
layer designs for micro-protocols and protocol translation to
achieve inter-connectable covert channel overlay networks.
Furthermore, we illustrated challenges and chances for the
adaption of protocol reverse engineering means from the
area of botnet research to micro-protocols.
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