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Abstract Convolutional tailbiting codes are widely used
in mobile systems to perform error-correcting strategies of
data and control information. Unlike zero tail codes, tail-
biting codes do not reset the encoder memory at the end
of each data block, improving the code efficiency for short
block lengths. The objective of this work is to propose a
low-complexity maximum likelihood decoding algorithm
for convolutional tailbiting codes based on the Viterbi
algorithm. The performance of the proposed solution is
compared to that of another maximum likelihood decoding
strategy which is based on the A* algorithm. The computa-
tional load and the memory requirements of both algorithms
are also analysed in order to perform a fair comparison
between them. Numerical results considering realistic trans-
mission conditions show the lower memory requirements
of the proposed solution, which makes its implementation
more suitable for devices with limited resources .
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1 Introduction

The two main channel coding techniques used by 4G mobile
systems, such as LTE and WiMAX, are turbocodes and con-
volutional tailbiting codes (hereafter tailbiting codes) [1,
2]. From them, turbocodes achieve better results in terms
of error-correcting capabilities, but at the cost of a higher
computational complexity. Moreover, the gap between the
performance of turbocodes and tailbiting codes becomes
narrower for short block lengths, with tailbiting codes being
preferred to encode the short-length control information of
these standards.

The main characteristic of tailbiting codes is that the state
of the encoder memory is the same at the beginning and at
the end of the encoding of each data block without adding
any tail to reset the encoder memory [3]. For feedforward
convolutional codes, this is achieved presetting the encoder
memory with the last bits of the block being encoded. The
main advantage of tailbiting codes compared to convolu-
tional zero tail codes is their higher efficiency, especially for
short block lengths.

The brute force algorithm to obtain a maximum like-
lihood (ML) decoding of tailbiting codes is to perform a
different Viterbi decoding for each one of the possible ini-
tial and final states of the trellis to decode finally the path
with the best metric. The problem with this algorithm is its
huge computational load, since 2k iterations of the Viterbi
algorithm must be performed to get the most likely tailbiting
path of the trellis, with k as the length of the code memory.

In order to decrease this computational load, several sub-
optimal algorithms have been proposed that employ the
circular properties of tailbiting codes. The circular Viterbi
algorithm (CVA) [4] extends the Viterbi algorithm to more
than one trellis round, using the final metrics obtained
at the end of each iteration of the Viterbi algorithm as
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the initial ones for the following iteration. This process is
repeated iteratively until a stopping rule is fulfilled or a max-
imum number of iterations is reached. Both the wrap-around
Viterbi algorithm (WAVA) [5] and the bounded distance cri-
terion circular Viterbi algorithm (BDC-CVA) [6] are based
on the CVA. WAVA searches the most likely path of the trel-
lis at the end of each iteration, stopping the process if this
path is tailbiting. If the maximum number of iterations is
exceeded, the tailbiting path with the best metric found so
far is decoded, although a non-tailbiting path with a better
metric may exist. BDC-CVA uses a fixed-length extended
trellis to perform the Viterbi algorithm. Similar to CVA, this
extended trellis is obtained concatenating the encoded block
a number of preset times. Finally, the two-step Viterbi algo-
rithm does not use CVA to obtain the decoded sequence [7].
This algorithm searches a proper initial and final state for
the tailbiting path with a modified version of the soft-output
Viterbi algorithm (SOVA) [8], forcing the trellis to start and
to finish at that state.

Recently, there has been an increased interest in the topic
of ML decoding of tailbiting codes and several novel decod-
ing algorithms have been proposed so far [9–11]. Some
of these solutions rely on the use of the A* algorithm,
which is a least-cost path-finding algorithm for graphs that
can be applied to search the most likely path of a tail-
biting trellis. Although this decoding strategy leads to a
marked drop in the computational load of the decoding
process compared to that of the brute force algorithm, the
A* algorithm is more complex than the Viterbi algorithm
and its implementation requires a great amount of mem-
ory, which makes it not suitable for devices with limited
resources.

In contrast to these previous solutions, the ML decod-
ing algorithm proposed in this work is fully based on the
Viterbi algorithm, which greatly decreases its implementa-
tion complexity. The structure of the proposed algorithm
is similar to that of the EA* algorithm [10], but substi-
tuting the A* algorithm with the classic Viterbi algorithm.
Although this change may increase the overall computa-
tional load slightly, the parallelization achieved with the
Viterbi algorithm and its more efficient use of memory
resources make it easier to implement in real devices
than the A* algorithm. In this sense, the proposal of
low-complexity algorithms to decode the error-correction
strategies used in wireless systems is of paramount impor-
tance, since they can decrease the power consumption
of the terminals, increasing its energy efficiency and
lifetime [12].

The work is organized as follows: Section 2 presents a
detailed explanation of the proposed algorithm, comparing
it and contrasting it with the EA* algorithm. Section 3 anal-
yses the complexity and the memory requirements of both
algorithms. In Section 4, their actual computational load

and memory usage are obtained by simulation for a typi-
cal tailbiting code used in a 4G system. Finally, Section 5
summarizes the main conclusions.

2 Proposed algorithm and comparison
with the EA* algorithm

In this section, the proposed algorithm and the EA* algo-
rithm are explained in detail. Both algorithms are divided
in two stages. In the first stage, it is gathered information
from the trellis which allows pruning the possible initial and
final states of the most likely tailbiting path. In the second
stage, the most likely tailbiting path is searched with the
Viterbi algorithm in the proposed algorithm and with the A*
algorithm in the EA* algorithm.

Let T be the trellis of a (n, 1) binary tailbiting code with
codewords of length nL bits and generated with an encoder
of memory k. This trellis T spans N = 2k states at each
time instant i, with i ranging from 0 to L, and it is formed
by the union of N subtrellises, T (sp), each of them starting
and ending at one of the possible N states. The tailbiting
trellis can also be seen as a subset of a more general trellis
Ts which does not have constraints concerning the initial
and final states of each path in it. Therefore, each path of
the trellis T is also a path of Ts , but not in reverse.

The metric m
(
si−1
q , sip

)
corresponding to the transition

between the state sq at time instant i−1 and state sp at time
instant i is defined as

m
(
si−1
q , sip

)
=

n∑
l=1

(xl ⊕ yi,l)|Ri,l | (1)

where n is the number of output coded bits per information
bit, xl is the output bit l corresponding to that state tran-
sition, yi,l is the l hard demodulated bit of the i encoded
symbol (the i encoded symbol is formed by the n output bits
generated by the encoder when it is fed with the i input bit)
and Ri,l is its associated log-likelihood ratio, defined as

Ri,l = ln
P(yi,l = 1|ri,l)
P (yi,l = 0|ri,l) (2)

with ri,l as the l soft demodulated bit of the i encoded
symbol. The rule to obtain the accumulated metric of the
survivor path at each state sp and time instant i according to
the Viterbi algorithm and this metric definition is

M
(
sip

)
= min

q

(
M

(
si−1
q

)
+m

(
si−1
q , sip

))
. (3)

The most likely path in the trellis will be the path with
the lowest accumulated metric, which allows applying the
least-cost path-finding algorithms used for graphs, such as
the A* algorithm, in tailbiting trellises.
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First stage of the decoding The first stage of the pro-
posed algorithm and the EA* algorithm is the application
of the Viterbi algorithm to the trellis Ts with the initial state
metrics set to zero. The survivor paths at the end of the
Viterbi algorithm allow pruning the subtrellises where the
most likely tailbiting path will be sought. Moreover, their
accumulated metrics give a hint on the probability of the
subtrellises where this path may be. In the EA* algorithm,
this stage is also employed to collect information concern-
ing the trellis which will be needed for the application of the
A* algorithm.

While the standard Viterbi algorithm is used in the pro-
posed algorithm and no past metrics need to be recorded in
each update, in the EA* algorithm, the accumulated met-
ric of the survivor path at each state sp and time instant i,

M
(
sip

)
, is stored. The term Δ

(
sip

)
, defined as

Δ
(
sip

)
= max

q

(
M

(
si−1
q

)
+m

(
si−1
q , sip

))

−min
q

(
M

(
si−1
q

)
+m

(
si−1
q , sip

))
, (4)

is stored in the EA* algorithm as well. This term corre-
sponds to the metric difference between the survivor path
and the discarded path at each state of the trellis.

In both algorithms, the survivor paths at each one of the
N final states of the trellis Ts are sorted and tracebacked
when the trellis calculation is finished. These paths may not
be tailbiting since the survivor path at state sLp represents
the least-cost path ending at that state without restrictions
regarding its initial state. If the survivor path with the least
accumulated metric is also tailbiting (its initial and final
states are the same), the algorithm stops and this path is
decoded as the most likely tailbiting path. If not, the tailbit-
ing survivor with the least accumulated metric is searched
and its metric is stored in the variable ρ. This path consti-
tutes the best candidate for the most likely tailbiting path
found in the first stage of the decoding. If none of the sur-
vivors is tailbiting, then there is no tailbiting candidate and
ρ is set to ∞.

Since the survivor path at each final state is the least-cost
path ending at that state, any other path with the same final
state will necessarily have a higher metric and it will have
been discarded at some point in the operation of the Viterbi
algorithm. Therefore, if the metric of the survivor path at sLq
is higher than ρ, then the subtrellis T (sq), which starts and
ends at sq , can be removed from the search for the least-cost
tailbiting path in the second stage of the decoding.

Second stage of the proposed algorithm As stated previ-
ously, the final states of the survivor paths with an accumu-
lated metric lower than ρ set the subtrellises T (sp) where
the most likely tailbiting path must be searched. To perform

it, we propose to use the standard Viterbi algorithm forc-
ing the initial and final states of the trellis to each one of
these states sp. Therefore, the second stage of the decoding
is based on an iterative application of the Viterbi algorithm
to get the most likely tailbiting path and its accumulated
metric in each one of these subtrellises. Since the initial and
final states of a subtrellis are the same, it is clear that the
survivor path obtained at the end of the application of the
Viterbi algorithm will be tailbiting.

The subtrellises T (sp) can be sorted in an ordered list QT

according to the value of the accumulated metric M
(
sLp

)

of their corresponding survivor path found in the first stage
of the decoding. This accumulated metric is closely related
to the likelihood of the survivor path, and it can be used to
select the order of application of the Viterbi algorithm to the
subtrellises of QT .

Let T1(sp) be the subtrellis in the first position of QT ,

i.e. the subtrellis with the lowest value of M
(
sLp

)
. Once

the Viterbi algorithm has been applied on T1(sp), this sub-
trellis is deleted from QT and the accumulated metric of
its tailbiting survivor path is compared to ρ. If the accumu-
lated metric is lower than ρ, then the value of ρ and the
best candidate for the most likely tailbiting path of the trellis
are updated. Moreover, the subtrellises in the list QT with

M
(
sLp

)
higher than the new value of ρ are also deleted

from QT . This iterative process is repeated until the list QT

is empty, with the decoded path being the candidate for the
most likely tailbiting path stored in that moment.

Figure 1 shows an example of the decoding process with
the proposed algorithm for the rate 1/2 convolutional code
with polynomial generators (g1, g2) = (7, 5) in octal. In
Fig. 1a, the structure of the encoder and a transition of the
trellis are depicted. The vector of log-likelihood ratios of the
received sequence is

R = [−0.45 − 0.18 − 1.26 1.25 1.02 0.21]
which corresponds to the encoded sequence u =
[1 1 0 1 1 1]. As it can be seen, there are two errors
in the received sequence located in the first two positions of
R.

Figure 1b shows the survivor paths, marked in bold, at
the end of the first stage of the decoding. In this case, the
survivor path with the least metric is not tailbiting since it
starts at state s2 and ends at state s0 (path s2,0). The tailbiting
survivor with the least metric is the path ending at state s3.
Therefore, the value of ρ is set to M

(
s3

3

)
and the candidate

for the best tailbiting path at the end of the first stage is the
path s3,3.

The list QT is formed by the two subtrellises correspond-

ing to the final states with an accumulated metric M
(
s3
p

)

lower than ρ: T (s0) and T (s2). As M
(
s3

0

) = 0, the Viterbi
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Fig. 1 Example of decoding with the proposed algorithm for the rate
1/2 convolutional code with (g1, g2) = (7, 5). a Encoder structure
and trellis transition. b First stage of the decoding (si,j indicates the
survivor path ending at j and starting at i). c, d Application of the
Viterbi algorithm to the subtrellises T (s0) and T (s2). The decoded path
is the survivor of T (s0)

algorithm is applied to subtrellis T (s0) first (Fig. 1c). The
survivor path obtained in this subtrellis has an accumulated
metric equal to 0.63, so the value of ρ and the candidate for
the most likely tailbiting path are updated. Since M

(
s3

2

) =
0.39 < 0.63, the subtrellis T (s2) cannot be deleted from
QT and a Viterbi decoding must be performed on this sub-
trellis as well (Fig. 1d). In this case, the survivor path has an
accumulated metric of 2.72, so the value of ρ and the candi-
date tailbiting path do not change. Since the list QT is now

empty, the algorithm stops and the decoded tailbiting path
is the survivor path of subtrellis T (s0).

The following steps summarize the proposed algorithm:

1. Apply the Viterbi algorithm to the trellis Ts with the
initial state metrics set to zero. Record the accumulated
metric M

(
sLp

)
of the survivor paths at the final states

of the trellis.
2. If the survivor path with the least metric is also tailbiting

(its initial and final states are the same), the algorithm
stops and this path is decoded.

3. Set ρ as the least metric of the survivor path which is
also tailbiting and store this path as the candidate for
the most likely tailbiting path. If none of the survivors
is tailbiting, ρ is set to ∞.

4. Load in QT the subtrellises T (sp) corresponding to

final states sLp with accumulated metric M
(
sLp

)
lower

than ρ. Sort them in ascending order of M
(
sLp

)
.

5. Apply the Viterbi algorithm to the subtrellis in the first
position of QT . If the accumulated metric of the sur-
vivor path at the end of the subtrellis is lower than ρ,
update ρ and the candidate for the most likely tailbiting
path.

6. Delete the subtrellis in the first position of QT and the

subtrellises T (sp) with an accumulated metric M
(
sLp

)

higher or equal than ρ.
7. If the list QT is empty, the algorithm stops and the can-

didate for the most likely tailbiting path is decoded. If
not, go to step 5.

Second stage of the EA* algorithm A graph is an ordered
pair G = (V, E) where V is a set of nodes and E is a
set of edges which connect some of the nodes in V. If we
consider V as the set of states of a trellis and E as the set
of transitions in that trellis, any algorithm to find the least
cost path in a graph (as the A* algorithm) can be applied to
obtain the most likely path in the corresponding trellis with
an appropriate definition of the transition metrics.

Once the first stage of the decoding has been performed,
the EA* algorithm stores the survivor paths with an accu-
mulated metric lower than ρ, setting their final states as
the initial nodes for the A* algorithm. The operation of the
A* algorithm is based on an iterative update of the paths

sia,p =
(
s0
a , . . . , s

i
p

)
stored in an ordered queue named QP .

This queue is arranged according to a cost function associ-
ated to each path in it. The first state of each path in QP

is always the initial state of one of the candidate subtrel-
lises obtained previously, while the last state of the path
corresponds to a final or intermediate state of that subtrellis.

Additionally, the A* algorithm stores a table of visited
states, BV , where the first and the last states of the paths
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which have ever been on the top of the queue QP are
recorded. As it can be demonstrated, the items in BV indi-
cate the intermediate states of the trellis to which an optimal
path ending at those states has already been found.

The key parameter of the A* algorithm is the cost func-
tion used to arrange the paths in QP since it sets the
iterations required to obtain the least cost tailbiting path and,
thus, the computational load of the decoding process. The
cost function employed in the A* algorithm is always the
addition of two terms:

f
(

sia,p
)
= g

(
sia,p

)
+ h

(
sia,p

)
. (5)

The first term g
(

sia,p
)

corresponds to the accumulated

metric of the path from its initial state in the trellis, s0
a , until

the state it ends, sip. Its value is derived from the following
expression:

g
(

si+1
a,q

)
= g

(
sia,p

)
+m

(
sip, s

i+1
q

)
(6)

with g
(
s0
a,a

) = 0.

The function h
(

sia,p
)

is named the heuristic function,

and it corresponds to an optimistic estimation of the remain-
ing cost required to reach the goal node, i.e. the final state of
the subtrellis T (sa), from the last state of the path, sip . The
heuristic function is defined as

h
(

sia,p
)
= max

(
0,M

(
sLa

)
−M

(
sip

))
(7)

for i greater than 0. For i = 0, the value of h
(

sia,p
)

is set

to M
(
sLa

)
if the zero-length path has never been on the top

of QP or to M ′ (sLa
)

if the zero-length path has been on the
top of QP before. M ′ (sLa

)
is defined as

M ′ (sLa
)
= M

(
sLa

)
+ min

(
Δ

(
s1
m

)
,Δ

(
s2
n

)
, . . . ,Δ

(
sLa

))
. (8)

The second term in (8) refers to the minimum value of

Δ
(
sip

)
corresponding to the sequence of states which form

the survivor path of the first stage ending at state sLa . Thus,
M ′ (sLa

)
is the accumulated metric of the second best path

ending at the same final state of that survivor path.
In each new iteration of the A* algorithm, the path on the

top of Lc, sia,p =
(
s0
a , . . . , s

i
p

)
, is picked up and the pair(

s0
a , s

i
p

)
is searched in the table BV . If there is an entry cor-

responding to that pair, the path is discarded from QP since
another path starting at s0

a and ending at sip with a lesser
cost has been found in a previous iteration. If not, the pair
is stored in BV and the successor paths of sia,p are obtained.
These successors are formed by the concatenation of sia,p
and the states of the trellis which can be reached from sip
with a branch of length one. The form of these successor

paths will be si+1
a,q =

(
s0
a , . . . , s

i
p, s

i+1
q

)
. Finally, the path

sia,p is deleted from QP and its successor paths are inserted
according to the value of their cost function. If this cost is
higher than ρ, the successor path is deleted from QP . This
process is repeated until the path on the top of QP is a tail-
biting path of the trellis, that is, until its first and last states
correspond to the same initial and final states of the trellis
or until QP is empty.

The EA* algorithm also implements the following stop-
ping rule aiming at decreasing the overall computational
load of the decoding: if the last state of the path on the top

of QP , sia,p =
(
s0
a , . . . , s

i
p

)
, corresponds to a state of the

stored survivor path obtained in the first stage of the algo-
rithm which ends at the initial state of the path on the top of

QP , sLb,a =
(
s0
b , . . . , s

i
p, . . . , s

L
a

)
, then the algorithm stops

and the path formed by the concatenation of the path on the
top of QP and the rest of the survivor path from the state
they join to its end is decoded. This early stopping rule can
be applied since the cost function of the resulting path is
equal to the cost function of the path on the top of QP .

Figure 2 illustrates the decoding with the EA* algorithm
of the same sequence used previously. The first stage of the
decoding is similar for both algorithms, so the outcome of
this stage is the same as the one shown in Fig. 1b and the
value of ρ is set to M

(
s3

3

) = 1.2. The zero-length paths
loaded in QP correspond to the initial states of the sub-
trellises which pass to the second stage of the proposed
algorithm, namely s0

0,0 and s0
3,3 in Fig. 2a. The cost functions

of these paths are f
(

s0
0,0

)
= 0 and f

(
s0

3,3

)
= 0.39.

After the first iteration of the second stage of the EA*,
the cost function of path s0

0,0 is updated to 0.63 according
to (8). Now, the first position in QP corresponds to path
s0

3,3 and its cost function is updated to 0.66 in the second
iteration using (8) again. In the third iteration, the succes-
sors of s0

0,0 are obtained and inserted in QP , which will

contain the paths s1
0,0, s1

0,1 and s0
3,3 (Fig. 2b). The values of

their cost functions are 0, 0.63 and 0.66, respectively. In the
fourth iteration, depicted in Fig. 2c, the successors of s1

0,0
are obtained, but in this case, they are not inserted in QP

since their cost function is higher than ρ
(
f

(
s2

0,0

)
= 1.25

and f
(

s2
0,1

)
= 1.26

)
. Finally, Fig. 2d shows the fifth iter-

ation of the decoding. In this iteration, the decoding ends
since the path on the top of QP , s1

0,1, merges into the sur-
vivor path found in the first stage of the algorithm ending
at state 0. The concatenation of both paths is the resulting
decoded sequence.

The following steps summarize the EA* algorithm:

1. Apply the Viterbi algorithm to the trellis Ts with the
initial state metrics set to zero. Record in each update
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Fig. 2 Example of decoding with the EA* algorithm. a Paths in QP

at the beginning of the second stage of the decoding. b–d Iterations 3,
4 and 5 of the second stage. The decoded path is the concatenation of
the path s1

0,1 with the rest of the path ending at state s0 found in the
first stage of the decoding

the terms M
(
sip

)
and Δ

(
sip

)
for all the states. Record

also the survivor paths at the end of the algorithm.
2. If the survivor path with the least metric is also tail-

biting (its initial and final states are the same), the
algorithm stops and this path is decoded.

3. Set ρ as the least metric of the survivor path which is
also tailbiting. If none of the survivors is tailbiting, ρ

is set to ∞.
4. Discard all the survivor paths with metrics M

(
sLp

)

higher or equal than ρ.

5. Load in QP the zero-length paths corresponding to
the final states of the paths not discarded in the pre-
vious step. Sort them in ascending order of their cost

function values, which are M
(
sLp

)
.

6. If the queue is empty, the algorithm stops and the sur-
vivor found in the first stage with accumulated metric
ρ is decoded.

7. If the path on the top of QP reaches the end of its
subtrellis, this path is decoded.

8. If the path on the top of QP merges into the survivor
path found in the first stage of the algorithm which
ended in the final state of its subtrellis, the algorithm
stops and the path formed by the concatenation of the
path on the top of QP and the rest of the survivor path
from the state they join is decoded.

9. If the path on the top of QP has zero length and its cost

function corresponds to M
(
sLp

)
, change its cost func-

tion to M ′
(
sLp

)
. If M ′

(
sLp

)
is greater than ρ, the path

is discarded. If not, rearrange the queue in ascending
order of the cost function and go to step 6.

10. If the initial and final states of the path on the top of
QP are stored in BV , discard the path and go to step
6. If not, store them in BV .

11. Find the successors of the path on the top of QP and
compute their cost functions. Delete the path on the
top of QP and rearrange the queue in ascending order
of the cost function. If any path has a cost function
higher than ρ, delete it. Go to step 6.

3 Computational load and memory requirements
of the proposed and the EA* algorithms

As it has been shown in the previous section, the decoding of
tailbiting codes with the proposed and the EA* algorithms
is divided in two stages. The first one is always executed
and it consists in the application of the Viterbi algorithm.
The second stage differs for the two algorithms and it can
be skipped if the least cost path found in the first stage
is already tailbiting. In order to measure the computational
load and the memory requirements of the decoding process,
both stages must be analysed.

Concerning the first stage of the decoding, the standard
Viterbi algorithm requires 2 additions and 1 comparison to
compute the survivor path at each state of the trellis. It must
be noted that the computational load of the subtractions

used to obtain the terms Δ
(
sip

)
in the EA* algorithm is

null, since these subtractions can substitute the comparisons
required to select the survivor paths (the comparison can be
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done with the sign of the subtraction). Therefore, the com-
putational load of the first stage of both algorithms is 3NL
operations.

Steps 2–4 of the proposed algorithm and 2–5 of the EA*
algorithm are only executed once and the most complex task
performed in these steps is the sorting of the accumulated
metrics of the N survivor paths, so their computational load
can be neglected.

The second stage of the proposed algorithm comprises
steps 5–7 and it corresponds to the iterative application of
the standard Viterbi algorithm to the subtrellises obtained
in the first stage. The computational load of step 5 is 3NL
operations to apply the Viterbi algorithm to the subtrellis
plus one operation to compare the metric of the survivor
path of the subtrellis with ρ. If the value of ρ has been
updated, some of the subtrellises in QT may be deleted (step
6). To do so, a comparison of the new value of ρ with the

term M
(
sLp

)
associated to the subtrellises of QT must be

performed. Since QT is an ordered list, it can be done effi-
ciently with a binary search in QT . The average number of
required comparisons with this method is

w + 2 − 2w+1

IT + 1
(9)

with w = ⌊
log2(I )

⌋
and IT as the number of items in QT .

In the worst case, It is N − 1. Finally, step 7 can be per-
formed at no cost since it can be carried out only with a flag
check.

The second stage of the EA* algorithm (steps 6–11) cor-
responds to the application of the A* algorithm. First of all,
the algorithm checks if the queue QP is empty (step 6). As
in step 7 of the proposed algorithm, it can be assumed that
this step has no cost. Then, one comparison is performed to
establish if the path on the top of QP has reached the end
of its subtrellis, i.e. it is checked if the length of the path is
L (step 7). As for step 8, it requires one additional compar-
ison to determine if the path on the top of QP merges into
the corresponding survivor path found in the first stage of
the decoding.

If a new zero-length path reaches the top of QP , L −
1 comparisons and one addition are performed to find and

add the minimum of the values Δ
(
sip

)
associated to the

corresponding survivor path obtained in the first stage of the
decoding (step 9).

As in step 6 of the proposed algorithm, the search of an
item in the table BV (step 10) will require (9) comparisons
on average. If the search in BV is unsuccessful, a new ele-
ment (length and initial and final states of the path) must
be inserted into the table. If not, the path is discarded and a
new iteration of the algorithm is performed. Afterwards, the
cost functions of the successors of the path on the top of QP

are computed (step 11). This calculation requires two addi-
tions (g and f functions) and one subtraction (h function)
per successor. The last step carried out is the insertion of the
successor paths in QP according to their cost function (step
12), which takes (9) comparisons.

As regards the memory requirements of the decod-
ing process, the best way to estimate the actual use
of memory is to measure the maximum allocated mem-
ory employed at any point of the algorithms. In this
case, the proposed and the EA* algorithms differ both
in the first and the second stages of the decoding
process.

The allocated memory in the first stage of the proposed
algorithm is the memory employed by the standard Viterbi
algorithm:

– 2N accumulated metrics for the survivor paths at time
instants i and i + 1

– LN predecessor states to perform the traceback
– Ln received metrics

In the second stage of the proposed algorithm, the value
of ρ, the candidate for the least-cost tailbiting path and the
subtrellises in QT with their associated metrics must be
stored. Assuming that the memory required to record one

state, one subtrellis or the variables ρ or M
(
sip

)
is 1 byte,

the allocated memory in the worst case is 1+L+2N bytes.
If we add the memory employed by the Viterbi algorithm,
the maximum required memory of the proposed algorithm
is 1 + L(N + n+ 1)+ 4N bytes.

On the other hand, although the first stage of the EA*
algorithm is also the application of the Viterbi algorithm,
in this case, the accumulated metrics of the survivor paths

and the terms Δ
(
sip

)
are also stored for all the states of the

trellis. The allocated memory in this stage is as follows:

– LN accumulated metrics of the survivor paths M
(
sip

)

– LN metric differences Δ
(
sip

)

– LN predecessor states to perform the traceback
– Ln received metrics

Therefore, the total memory allocated in the first stage of
the EA* algorithm is 3LN+Ln bytes. This amount is fixed,
and it does not depend on the block being decoded.

In the second stage of the decoding process, the stored
data can be divided into three different groups: information
from the previous stage, the ordered queue QP and the table
BV . The data from the first stage is as follows:

– LN accumulated metrics of the survivor paths
– Ln received metrics
– S survivor paths, with S being the number of survivor

paths of the first stage with accumulated metric lower
than ρ
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Fig. 3 Computational load for the proposed and the EA* algorithms. Left: WiMAX code, AWGN channel. Center: WiMAX code, ITU Vehicular
A extended channel. Right: LTE code, AWGN channel

– S sequences of L metric differences Δ
(
sip

)

– The value of ρ and the candidate for the most likely
tailbiting path

Regarding BV , each of its items is formed by three ele-
ments: the first state of the path, the last state of the path and
its ending level. Finally, the queue QP stores the follow-
ing elements for each path in it: the sequence of states that
forms the path, its length and its associated cost functions (f
and g functions). The total memory allocated in this stage is
1+L(2S+N + n+ 1)+ IP (3+ path length)+ 3IV bytes,
with IP and IV as the sizes of QP and BV , respectively. It
is worth mentioning that this amount will vary dynamically
with each data block being decoded, which may impose
great demands of memory resources to the decoder.

4 Simulation results

In this section, we show the performance of the proposed
algorithm compared to that of the EA* algorithm over the

additive white Gaussian noise (AWGN) and the ITU Vehic-
ular A extended channels. The considered codes are the
rate 1/2 binary tailbiting code used in WiMAX and the rate
1/3 code binary tailbiting code used in LTE. The mem-
ory of both codes is 6, and their polynomial generators are
(g1, g2) = (171, 133) and (g1, g2, g3) = (171, 133, 165)
in octal, respectively. The sizes of the encoded blocks used
in the simulations are also compliant with the WiMAX and
LTE systems. The encoded data are interleaved and mapped
to QPSK symbols, which are transmitted in an OFDM signal
with a bandwidth of 5 MHz, a carrier frequency of 3.5 GHz
and 512 subcarriers. It has been assumed soft decoding
at the receiver and perfect channel estimation. The results
have been obtained ensuring at least 100 reported errors for
every simulation result. Similar simulations have been per-
formed for other tailbiting codes which confirm the results
presented in this section.

Since the proposed and the EA* algorithms are ML
decoding algorithms, the results obtained in terms of block
error rate (BLER) are the same for both of them. Neverthe-
less, the computational load and the memory requirements
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to perform this ML decoding will vary from one algorithm
to the other.

Figures 3 and 4 compare the average computational load
and the maximum required memory of both algorithms.
This comparison has been carried out considering the the-
oretical analysis explained in Section 3 and taking into
account both the first and the second stages of the decoding.
For medium-to-low BLER, the average computational load
of the EA* algorithm is about 5–10 % lower than that of the
proposed algorithm, while for high BLER, the reduction is
greater.

Although in these figures the proposed algorithm seems
to work worse than the EA* algorithm, two considerations
must be pointed out: first, concerning the queue QP and the
table BV , only the operations associated to searches in them
have been considered, but not the operations or the elapsed
time required to insert new elements. Secondly, although
the A* algorithm is very efficient and obtains the least-cost
tailbiting path in few iterations, it is also a sequential algo-
rithm, which makes difficult to get any parallelization for
its implementation in hardware. On the contrary, the com-
putation of the survivor paths and their associated metrics at
each transition of the trellis can be easily executed in paral-
lel with the Viterbi algorithm. Additionally, the second stage
of the proposed algorithm can be parallelized as well, exe-
cuting simultaneously the Viterbi algorithm for the different
subtrellises that reach this stage. In this case, if we have P
processors and S subtrellises in the second stage, the decod-
ing time could be reduced ideally by a factor �N/S� at the
cost of a P-factor increase of the memory requirements.

As regards the memory requirements of the algorithms,
the best method to estimate the actual memory use of the
decoding process is to measure the maximum allocated
memory employed at any point of the execution of the algo-
rithms. The worst case for the proposed algorithm happens
when there has not been found any tailbiting survivor path
in the first stage of the decoding. In this case, the maximum
required memory of the proposed algorithm is 1 + L(N +
n+1)+4N = 1+48(64+2+1)+4·64 = 3,473 bytes when
the block size is 48 bits and 1+ 144(64+ 2+ 1)+ 4 · 64 =
9,905 bytes when the block size is 144 bits. On the con-
trary, the memory required by the EA* algorithm is 23
times higher than that of the proposed algorithm for high
BLER and 8 times higher for low BLER. This reduction in
the memory requirements obtained with the proposed algo-
rithm is significantly high and of paramount importance
for the implementation of this kind of maximum likelihood
decoding strategies in real systems with limited resources.

5 Conclusions

A new optimal decoding algorithm for tailbiting codes is
proposed in this work. The decoding is divided into two
stages: in the first one, the Viterbi algorithm is used to
prune the subtrellises where the least cost tailbiting path
may be found. In the second stage, the same Viterbi algo-
rithm is applied in these subtrellises to search the most
likely tailbiting path. Simulation results show that the pro-
posed algorithm achieves a marked decrease in the memory
requirements and that it is more efficient to be implemented
in real systems than other ML algorithms. For these rea-
sons, the proposed algorithm is suitable for environments
involving low resource devices.
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