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Abstract In this paper, we propose three new sub-
optimum, reduced complexity decoding algorithms for
convolutional codes. The algorithms are based on the
minimal trellis representation for the convolutional
code and on the M-algorithm. Since the minimal trellis
has a periodically time-varying state profile, each algo-
rithm has a different strategy to select the number of
surviving states in each trellis depth. We analyse both
the computational complexity, in terms of arithmetic
operations, and the bit error rate performance of the
proposed algorithms over the additive white Gaussian
noise channel. Results demonstrate that considerable
complexity reductions can be obtained at the cost of
a small loss in the performance, as compared to the
Viterbi decoder.

Keywords Convolutional codes · Minimum trellis ·
M-algorithm · Viterbi decoding

1 Introduction

Digital communication systems make use of error cor-
recting codes to reliably transmit information over a
noisy channel [1]. Convolutional codes are among the
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most used ones, with extensive applications in mod-
ern wireless communication standards [2–5]. However,
the decoding of convolutional codes demands a large
amount of processing and energy consumption of a
regular wireless digital receiver, which is usually battery
powered. For instance, in [6], it is shown that the de-
coding of a convolutional code, executed by the Viterbi
algorithm (VA) [1], accounts for up to 76% of the
processing required by a HYPERLAN/2 receiver [4].
In [7], the authors analyse different receiver implemen-
tations compatible to the IEEE 802.11 standard [5],
showing that the VA accounts for 35% of the overall
power consumption.

Moreover, in the last two decades, we had an
unimpressive improvement of only 3.5% per year in
the nominal battery capacity, while the throughput
has increased a million times [8, 9]. Thus, complexity
(power) reductions in the decoding of convolutional
codes would increase the energy efficiency and life-
time of many wireless devices, being of considerable
impact in a number of applications. A survey in the
literature shows a series of papers related to this issue;
among them, we can cite [10–25]. These works can be
divided into three groups: (a) hardware-specific imple-
mentations [10–13], (b) sub-optimum decoding meth-
ods [14–19] and (c) simpler trellis representations [20–
25]. Supported by two recent new paradigms for the
implementation of digital communications systems, the
software-defined radio model [26] and the cognitive ra-
dio concept [27], we concentrate on software-oriented
implementations. Therefore, we consider only two of
the above options: sub-optimum decoding methods and
simpler trellis representations.

Most sub-optimum decoding algorithms were pro-
posed based on the conventional trellis representation
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of a convolutional code and are similar to the VA.
The sub-optimality comes from pruning some of the
trellis edges, based on specific criteria. One of the most
famous sub-optimum decoding algorithms is the M-
algorithm (MA) [14, 15]. The MA achieves a bit error
ratio (BER) close to that of the VA with reduced
complexity (for an appropriate choice of M) [19]. The
reduction in complexity is obtained by expanding only
M surviving states per trellis section, instead of expand-
ing all trellis states at each section. Due to this char-
acteristic, the MA is also used when the convolutional
code has a large overall constraint length [19] and the
application of the optimum VA is prohibitive.

Minimal trellis representation of a convolutional
code, introduced in [20] by McEliece and Lin, is an
alternative trellis representation for the code, allow-
ing to minimise several theoretical quantities based on
the trellis complexity measures defined in [28]. Such
a trellis, as opposed to the conventional trellises, has
an irregular structure (the number of states and the
number of edges emanating from each state are pe-
riodically time varying). New minimal trellis codes,
with good distance spectrum and fixed complexity
of the minimal trellis, have been proposed recently
[21, 22]; furthermore, in [29], the authors have shown
that the decoding of convolutional codes using the
minimal trellis can result in practical implementations
with both reduced power consumption and hardware
complexity.

In this paper, we combine both approaches, sub-
optimum decoding algorithms and simpler trellis repre-
sentations. More specifically, we design three decoding
algorithms based on the MA operating over the mini-
mal trellis, namely modular M-algorithm, proportional
M-algorithm and fixed M-algorithm (see Section 3).
Each algorithm relies on a different strategy to select
the number of states with best metrics in each depth of
the trellis. This number can be either fixed or variable
when the MA operates over the minimal trellis which
establishes distinct trade-off between complexity and
performance. We analyse both the computational com-
plexity, in terms of arithmetic operations, and the BER
performance for each proposed algorithm over the
additive white Gaussian noise (AWGN) channel. Our
results show that considerable reductions in complexity
can be obtained while achieving a performance close to
that of the VA within a given tolerance. Moreover, we
show that the proposed algorithms offer a wide range of
performance-complexity trade-off which can increase
even more the savings in computational complexity.
Finally, based on the complexity results, we discuss
the applicability of each algorithm in terms of receiver
architecture.

The rest of this paper is organised as follows: Some
fundamental concepts are introduced in Section 2. The
new proposed algorithms are described in Section 3.
The BER performance of the new algorithms is nu-
merically investigated in Section 4, while a complexity
analysis is carried out in Section 5. Section 6 concludes
the paper.

2 Fundamental concepts

Consider a convolutional code C(n, k, ν), where ν, k
and n are the overall constraint length, the number
of binary inputs and binary outputs, respectively. The
code rate is R = k/n. Every such convolutional code
can be represented by a semi-infinite trellis which
(apart from a short transient in its beginning) is peri-
odic, the shortest period being called a trellis module.
In general, a trellis module � for a convolutional code
C consists of n′ trellis sections, 2νt states at depth t,
2b t edges emanating from each state at depth t and lt

bits labelling each edge from depth t to depth t + 1, for
0 ≤ t ≤ n′ − 1.

Two important complexity measures of the compu-
tational effort per decoded bit of the VA operating
over a specific trellis module are the trellis complexity
and the number of merges, which are the number of
real additions and real comparisons (normalised by the
number of information bits), respectively; the VA has
to perform to update the state metrics in each module.
The trellis complexity of the module � for the code C,
denoted by TC(�), is [20]

TC(�) = 1
k

n′−1∑

t=0

lt 2νt+b t (1)

symbols per bit. The number of comparisons required
at a specific state, in its turn, is the number of edges
reaching it minus 1 [30]. Then, the number of compar-
isons in the module � at depth t + 1 is 2νt+b t − 2νt+1 .
So, the merge complexity of the module �, denoted by
MC(�), is

MC(�) = 1
k

n′−1∑

t=0

2νt+b t − 2νt+1 . (2)

In particular, the conventional trellis module �conv for
a rate R = k/n convolutional code C consists of one
trellis section with 2ν initial states and 2ν final states;
each initial state is connected by 2k directed edges
to final states, and each edge is labelled with n bits.
The trellis complexity and the merge complexity of
the conventional trellis are TC(�conv) = (n/k) 2ν+k and
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Fig. 1 Conventional a and
minimal b trellis modules for
the C(7, 4, 4) convolutional
code with generator matrix in
Eq. 3. In the minimal trellis,
solid edges represent “0”
codeword bits while dashed
edges represent “1” codeword
bits
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MC(�conv) = 2ν(2k − 1)/k. For instance, consider the
C(7, 4, 4) code with the following generator matrix:

G(D) =

⎛

⎜⎜⎝

1 + D 0 1 0 1 1 1
0 1 + D 1 + D D 0 0 1
D D D 1 1 0 1
0 D 0 D D 1 + D 1

⎞

⎟⎟⎠ (3)

whose conventional trellis module �conv is shown in
Fig. 1a, with TC(�conv) = 448 and MC(�conv) = 60.
The limiting factor for using the VA, when the trellis
module is dense (with many states and edges per state),
is the implementation complexity growth.

2.1 Minimal trellis

The “minimal” trellis module, �min, for convolutional
codes was developed in [20]. This “minimal” structure
has n′ = n sections and lt = 1 bit per edge ∀t. The
state complexity and the edge complexity at depth t
will be denoted by ν̃t and b̃ t, respectively. The state
and the edge complexity profiles of the “minimal” trel-
lis module are denoted by ν̃ = (̃ν0, . . . , ν̃n−1) and b̃ =
(b̃ 0, . . . , b̃ n−1), respectively. This module presents an
irregular pattern in each section. For instance, Fig. 1b
shows the minimal trellis module for the C(7, 4, 4) code
with generator matrix in Eq. 3. While the single-section
conventional trellis module in Fig. 1a has a very regular
structure, 16 states with 16 edges leaving each state,
each edge labelled by 7 bits, the minimal trellis mod-
ule in Fig. 1b has n = 7 sections, with 16 or 32 states
each. Note that only the first, second, fourth and sixth
sections have information bits, i.e. two edges leave each
state (b̃ t = 1).

For the C(7, 4, 4) code, ν̃ = (4, 4, 5, 4, 4, 4, 4) and
b̃ = (1, 1, 0, 1, 0, 1, 0); thus, it readily follows from Eqs.
1 and 2 that TC(�min) = 48 and MC(�min) = 16. It
is important to say that the minimal trellis module
achieves [28, Theorem 4.26] not only the minimum
trellis complexity and the minimum merge complexity
but other complexity measures as well, such as maxi-
mum number of states and total number of states. Such
reduced complexity is our motivation for considering
the use of the minimal trellis in this work. However, it
is not completely clear whether such a trellis complexity
measure directly translates into decoding complexity of
reduced complexity decoding algorithms, such as the
MA. For that sake, we will compute in Section 5 the
number of arithmetic operations required by a specific
decoding algorithm, be it over the conventional or the
minimal trellis.

2.2 MA over the conventional trellis module

Further reduction of decoding complexity can be at-
tempted by using, besides the simpler trellis represen-
tation, sub-optimum algorithms such as the MA [14].
The MA is very similar to the VA, the main difference
resting in the fact that the MA calculates the accumu-
lative metric of at most M ≤ 2ν paths along the con-
ventional trellis module.1 The MA operating over the

1When running the MA, it is possible that the number of states in
section t that are reached by edges coming from section t − 1 be
smaller than M. In this case, the MA stores all surviving states. In
Section 5, we illustrate one of such cases.
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conventional trellis can be described by the following
steps:

1. Start from the leftmost module of the trellis.
2. Expand all the states metrics stored at depth t − 1

to depth t. Select the surviving edges for each state
reached at time t.

3. Select, at most, the M states at time t with the best
metrics and discard the others.

4. Store the selected states, their metrics and surviving
edges.

5. Repeat steps 2–4 for all trellis modules.
6. Estimate the transmitted sequence by tracebacking

from the state with the best final metric.

The main difference between the VA and MA is that
the MA selects the M best states before expanding the
metrics of these states.

3 MA over the minimal trellis module

When the MA operates over the conventional trellis,
the parameter M is fixed; however, since the minimal
trellis has a time-varying state profile, the maximum
number of states selected in each section of this trel-
lis can be either fixed or variable. We propose three
different variants of the MA to operate over the mini-
mal trellis, namely modular M-algorithm (MMA), pro-
portional M-algorithm (PMA) and fixed M-algorithm
(FMA). These algorithms differ only in step 3, that is,
in the way they select the best states.

The MMA selects the surviving states only in the end
of each minimal trellis module. Thus, in the intermedi-
ate sections, all expansions are retained. The metrics
are expanded up to the end of the module, storing
the metrics of all states reached by any surviving edge.
Then step 3 of the MMA is thus described as:

3. If this is the last section of the module, store at most
the M best states and discard the others; otherwise,
store the metrics of all states reached by a surviving
edge.

In the PMA, the maximum number of stored states
varies according to the number of states in that section.
The maximum number of states stored per section is
2ν̃t × M

2ν . Recall that 2ν̃t is the number of states at that
section of the minimal trellis, while 2ν is the number
of states in the conventional trellis. For instance, if
in the MA operating over the conventional trellis the
parameter M means a reduction of 50% in the max-
imum number of stored states, then in the PMA this
value of M means a reduction of 50% in the maximum
number of states stored in each section of the minimal

trellis. Thus, the maximum number of stored states is
proportional to the number of states in that section of
the minimal trellis. Step 3 of the PMA can be written
as:

3. Store at most the 2ν̃t × M
2ν states with the best metric

for each section. Discard the others.

In the FMA, up to M states are stored at each section
of the minimal trellis, independent of the trellis pattern
or section. Step 3 of the FMA can be described as:

3. Store at most the M best states at each section.
Discard the others.

4 BER performance

In this section, we numerically investigate the BER
performance of the proposed algorithms. In the simula-
tions, the coded blocks were binary phase shift keying
(BPSK) modulated, sent over the AWGN channel and
decoded by soft decision decoding. We considered the
C(7, 4, 4) code with generator matrix in Eq. 3 and the
C(5, 3, 4) code with generator matrix:

G(D) =
⎛

⎝
1 + D D 1 1 0

0 1 1 + D 1 + D 1
D + D2 D 0 1 + D 1 + D

⎞

⎠ , (4)

whose conventional and minimal trellises are shown in
Fig. 2.

Figure 3 shows the BER performance of the three
new algorithms based on the minimal trellis, as a func-
tion of parameter M for a fixed value of the signal-to-
noise ratio Eb/N0 (so that the BER is close to 10−6),
for the C(7, 4, 4) code. In the figure, it is also shown
the performance of the VA over the conventional trellis
(or the minimal trellis), which is not a function of M.
Note that the performance of the proposed algorithms
increase with M, up to the limit where it reaches the
performance of the VA.2 Figure 4 shows similar results
but for the C(5, 3, 4) code. The performance curves
show sometimes a rough behaviour due to the partic-
ular dynamics of the proposed algorithms. The increase
of only 1 in M may have a huge impact sometimes
and almost not any impact in some other cases, also

2As the minimum trellis and the conventional trellis represent
the same code and the MMA algorithm only selects the surviving
states at the end of the trellis module, the performances of the
MMA algorithm operating over the minimum trellis and of the
typical M-algorithm operating over the conventional trellis are
identical.
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Fig. 2 Conventional a and
minimal b trellis modules for
the C(5, 3, 4) convolutional
code with generator matrix in
Eq. 4. In the minimal trellis,
solid edges represent “0”
codeword bits while dashed
edges represent “1” codeword
bits
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depending on the algorithm. We noted this same be-
haviour when examining the performance, obtained by
simulating the proposed algorithms over other codes.

In order to determine the minimal value of M re-
quired by each algorithm to achieve a performance
close to the VA, we define the tolerance γ , which is
the maximum acceptable BER degradation, so that the
BER achieved by the sub-optimum decoding algorithm
is at most γ above the BER obtained by the VA.
For instance, considering the C(7, 4, 4) code, Eb/N0 =
6 dB, and supposing a tolerance of γ = 10−6, the MMA
requires M = 6, while the PMA M = 9 and the FMA
M = 10. Thus, the MMA requires a smaller number of
surviving sates than the PMA and the FMA. But recall
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Fig. 3 BER versus M for the proposed algorithms, considering
the C(7, 4, 4) code, soft decision decoding and Eb/N0 = 6 dB

that MMA only selects the surviving states at the end of
the module, while the PMA and the FMA select them
at each section. If the tolerance is increased to γ = 5 ×
10−6, then there is a reduction in the required values
of M for the MMA from M = 6 to M = 5 and for the
FMA from M = 10 to M = 9. Increasing the tolerance
even more, to γ = 10−5, decreases the required values
of M by 1 for all algorithms. Different results are ob-
tained if we consider the C(5, 3, 4) code at an Eb/N0 =
6 dB. In this case and supposing γ = 10−6, the MMA
needs M = 6 while the PMA and FMA require M =
10 surviving states. The PMA and the FMA have ex-
actly the same performance because the minimal trellis
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Fig. 4 BER versus M for the proposed algorithms, considering
the C(5, 3, 4) code, soft decision decoding and Eb/N0 = 6 dB
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Table 1 Required value of M for each code for different BER
tolerances γ at Eb/N0 = 6 dB

Algorithm γ = 10−6 γ = 5 × 10−6 γ = 10−5

C(7, 4, 4) MMA 6 5 4
PMA 9 9 8
FMA 10 9 8

C(5, 3, 4) MMA 6 5 5
PMA 10 9 9
FMA 10 9 9

module for this code has a constant number of states
per section, namely 16 states per section. If the toler-
ance is increased to γ = 5 × 10−6, then the required M
is decreased by 1 for all algorithms. By further increas-
ing the tolerance to γ = 10−5, there is no change in the
required values of M. These results are summarised in
Table 1. We observe that different M are required by
each algorithm to achieve a performance close to the
VA, within a given tolerance. A comparison among
the complexity of each algorithm, for each particular
required value of M, is performed in the next section.

5 Complexity analysis

The complexity of a decoding algorithm can be deter-
mined in many ways. For instance, in [31], the authors
characterise the hardware cost of each operation re-
lated to the Viterbi algorithm. Here, we analyse the
complexity only as a function of the number of arith-
metic operations required by the algorithm, as to be
independent of the specific implementation technol-
ogy or architecture. In this paper, we consider only
summations (S), multiplications (X ) and comparisons
(C). First we consider only the operations required to
calculate the accumulated state metrics. Later we take
into account the effort required to select the best M
states in each section, when needed by the MA and its
variants. For the sake of simplicity, memory reads and
writes are not taken into account.

Either in the VA, in the MA, or in the proposed
algorithms, the first step in decoding is to calculate
the edge metrics. These metrics may be calculated by
means of the Hamming distance (hard decision decod-
ing) or the Euclidean distance (soft decision decoding).
We focus on the case of the Euclidean distance, where
when using a constant modulus modulation such as
BPSK it is known that the edge metric can be greatly
simplified [32]. Supposing the use of a trellis module
� with parameters νt, b t and lt in section t, as defined
in Section 2, then the edge metric can be calculated
as

∑lt
j=1 y j

t · x j
t , where y j

t is the j-th symbol of the re-

ceived lt-tuple and x j
t is the corresponding edge symbol.

Therefore, a total of lt X and (lt − 1) S are required
per edge. Then, the state metrics are expanded, by sum-
ming the previous state metrics with the calculated edge
metrics. Therefore, one additional summation per edge
is required. Furthermore, in order to select the best
new state metrics, we have to compare the accumulated
metrics of all edges reaching a given state. If Nit

e is the
number of edges starting in section t and reaching state
i in section t + 1, then the total number of operations
�t in the section t of the trellis module �, required to
calculate the accumulated state metrics, is:

�t =
Nt+1

s∑

i=1

lt Nit
e (X + S) + (Nit

e − 1) C (5)

where Nt+1
s is the number of states in section t + 1

that are reached by edges coming from section t. This
analysis is carried out over the n′ sections. Thus, the
number of operations � in the module is

� =
n′−1∑

t=0

Nt+1
s∑

i=1

lt Nit
e (X + S) + (Nit

e − 1) C. (6)

The parameters Nit
e and Nt+1

s are a function of the
state and edge complexity profiles of the trellis mod-
ule and of the type of algorithm in use. For the VA,
Nit

e = 2(bt+νt )

2νt+1 and Nt+1
s = 2νt+1 . Note that the number

of required summations and multiplications matches
the non-normalised (multiplied by k) TC(�) defined
in Eq. 1, while the number of required compar-
isons matches MC(�) in Eq. 2 after the same de-
normalisation by k. Equation 6 is specialised for the
minimal trellis (n′ = n, lt = 1 ∀ t) as

�min =
n−1∑

t=0

Nt+1
s∑

i=1

Nit
e (X + S) + (Nit

e − 1) C. (7)

In the case of the sub-optimum algorithms, as the
MA and its variants operating over the minimal trellis
proposed in this paper, it is hard to calculate exactly
the number of required operations. That is because the
number of edges in each section is a random variable,
as well as the number of states reached at each trellis
section. These random variables can be tracked during
the computer simulations, so that the actual average
values can be used for calculating the computational
complexities. For instance, Table 2 lists N̄t+1

s , the av-
erage number of states in section t + 1, that are reached
by edges coming from section t, for the three proposed
algorithms, the C(7, 4, 4) code, Eb/N0 = 6 dB, and us-
ing the minimal M for γ = 10−6 (M = 6 for MMA,
M = 9 for PMA and M = 10 for FMA).
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Table 2 N̄t+1
s for C(7, 4, 4),

Eb/N0 = 6 dB and γ = 10−6
Algorithm Section t

0 1 2 3 4 5 6

MMA (M = 6) 10.58 21.16 14.29 15.89 15.89 16.00 16.00
PMA (M = 9) 13.76 17.81 12.88 15.17 8.99 14.88 9.00
FMA (M = 10) 14.24 19.79 9.09 14.99 9.97 15.52 10.00

Supposing the use of the minimal trellis, the average
number of edges starting in section t and reaching state
i in section t + 1, N̄it

e , can be written as a function of N̄t
s,

M, b̃ t and ν̃t, such that for the MMA, we have:3

N̄it
e =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2b̃ t N̄t
s

N̄t+1
s

, if 0 < t ≤ (n − 1)

2b̃ t min
{

M, N̄t
s

}

N̄t+1
s

, if t = 0

(8)

for the PMA

N̄it
e = 2b̃ t min

{
2ν̃t−ν M, N̄t

s

}

N̄t+1
s

(9)

while for the FMA

N̄it
e = 2b̃ t min

{
M, N̄t

s

}

N̄t+1
s

. (10)

The minimal operator in expressions (9) and (10) ap-
pears because, during the operation of the FMA or the
PMA, N̄t

s can be smaller than the maximum number
of surviving states allowed by each algorithm (this is
illustrated in Table 2 for the case of the FMA in section
t = 2, for instance). Then, we equate from Eqs. 7–10
the average arithmetic complexity of each proposed
algorithm over the minimal trellis as

�FMA
min =

n−1∑

t=0

2b̃ t min
{

M, N̄t
s

}
(X + S)

+
(

2b̃ t min
{

M, N̄t
s

} − N̄t+1
s

)
C (11)

�PMA
min =

n−1∑

t=0

2b̃ t min
{
2ν̃t−ν M, N̄t

s

}
(X + S)

+
(

2b̃ t min
{
2ν̃t−ν M, N̄t

s

} − N̄t+1
s

)
C (12)

�MMA
min =

n−1∑

t=0

2b̃ t N̄t
s (X + S) +

(
2b̃ t N̄t

s − N̄t+1
s

)
C. (13)

Moreover, since the number of states reached at any
trellis section varies, the effort to select the best states

3Note that, based on the trellis module definition, N̄0
s = N̄n

s .

(when required) also varies. From Table 2, we see that
when running the FMA with γ = 10−6, for instance, in
the first section the best 10 states have to be selected, on
average, out of around 14 (N̄1

s = 14.24 in Table 2), in the
second section 10 states have to be selected out of about
20 (N̄2

s = 19.79) and so on. Such an effort, in terms of
comparisons, of selecting the M largest elements within
a vector of N̄t+1

s elements can be approximated by [33]:4

�t(M, N̄t+1
s ) = N̄t+1

s − M +
N̄t+1

s∑

i=N̄t+1
s −M+1

log2 i. (14)

Therefore, in order to fairly compare the proposed
algorithms, we have to take into account the effort
required to select the best states, an action carried out
at each section in the PMA and FMA and only at the
end of the module in the MMA. Then, the complexity
of the proposed algorithms over the minimal trellis can
be written as

�total
min = �min +

(
n−1∑

t=0

�t

)
C (15)

where �min is calculated according to Eqs. 11–13 and �t

is the average number of comparisons required at sec-
tion t to select the best states, as defined in Eq. 14, and
as function of M, N̄t+1

s and to the particular operation
of the algorithm.

Based on Eq. 15, we can present the average number
of arithmetic operations required by each of the pro-
posed algorithms, considering the minimal value of M
given in Table 1 for a given tolerance with respect to the
performance of the VA. The values of N̄t

s, t = 0, · · · , n,
used in Eqs. 11–15 are obtained by simulations. The
case of the C(7, 4, 4) code is shown in Table 3, while
Table 4 deals with the case of the C(5, 3, 4) code. The
number of operations required by the VA, over the
conventional (VAc) and minimal trellises (VAm), are
also shown.

From Table 3, we conclude that all algorithms based
on the minimal trellis required much less operations

4Note that, alternatively, one could determine the N̄t+1
s − M

smallest elements within a vector of N̄t+1
s elements. If that is

simpler (less comparisons required), then one should select the
survivors that way. In our numerical results, we always consider
the case that requires less comparisons.
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Table 3 Arithmetic operations required for decoding C(7, 4, 4) at Eb/N0 = 6 dB

Algorithm γ = 10−6 γ = 5 × 10−6 γ = 10−5

VAc 1,792S + 1,792X + 240C
VAm 192S + 192X + 64C
MMA 146.44S + 146.44X + 65.63C 136.28S + 136.28X + 58.44C 124.85S + 124.85X + 50.65C
PMA 107.79S + 107.79X + 152.90C 107.79S + 107.79X + 152.90C 95.81S + 95.81X + 136.41C
FMA 109.76S + 109.76X + 135.56C 98.79S + 98.79X + 124.67C 87.81S + 87.81X + 110.54C

Table 4 Arithmetic operations required for decoding C(5, 3, 4) at Eb/N0 = 6 dB

Algorithm γ = 10−6 γ = 5 × 10−6 γ = 10−5

VAc 640S + 640X + 112C
VAm 128S + 128X + 48C
MMA 96.18S + 96.18X + 51.48C 88.55S + 88.55X + 44.50C 88.55S + 88.55X + 44.50C
PMA/FMA 79.82S + 79.82X + 90.64C 71.84S + 71.84X + 82.46C 71.84S + 71.84X + 82.46C

than VAc. Moreover, the MMA algorithm requires less
S, X and C than VAm for the tolerances γ = 5 × 10−6

and γ = 10−5, while requiring less S and X and basi-
cally the same number of C than VAm for a tolerance
of γ = 10−6. The savings can be considerable, being of
35% in terms of S and X and of 21% in terms of C for
the case of γ = 10−5. The PMA and FMA can reduce
even more the required number of S and X , even to
less than half of those of the VAm (e.g. FMA with
γ = 10−5), but they require an increase in the number
of C. It is interesting to note that FMA requires less
operations than PMA.

Analysing Table 4, we reach similar conclusions, with
the PMA and FMA considerably reducing the number
of required S and X , while increasing the number of
C with respect to the VAm.5 Again, the MMA requires
less S and X than VAm for the three tolerances, while
requiring basically the same number of C than VAm for
γ = 10−6 and reducing it for larger γ . The above re-
sults explicitly show the performance-complexity trade-
off that can be operated by means of the proposed
algorithms. Depending on the applications, it may be
interesting to lose just a little bit of performance in
exchange of a reduced complexity, which may reflect
on the device battery lifetime. Moreover, we can also
conclude that PMA and FMA are the best option only
if summations and multiplications have a cost that is
similar to that of comparisons in the specific receiver
architecture. However, if comparisons cost more, what
is more usual, then MMA would be the best choice
among our proposed algorithms.

5Similar results were obtained considering other codes of
different rates and memory orders and are omitted here for the
sake of brevity.

6 Final comments

In this paper, we proposed sub-optimum decoding al-
gorithms to be used with the minimal trellis associ-
ated to the convolutional code. The algorithms are
all variations of the M-algorithm, and their operation
is matched to characteristics inherent to the minimal
trellis. Three algorithms were proposed. Numerical re-
sults showed that considerable complexity reductions
can be obtained with respect to the Viterbi algorithm
operating over the conventional and the minimal trellis,
at the cost of a very small reduction in the BER perfor-
mance. Moreover, the best choice among the proposed
algorithms, in terms of complexity reduction, depends
on the minimal trellis topology and on the particular
receiver architecture. As a future work, we intend to
investigate the performance of the proposed algorithms
in the fast fading channel (or the Rayleigh channel)
scenario.
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