
Ann. Telecommun. (2012) 67:247–255
DOI 10.1007/s12243-011-0268-5

When should I use network emulation?

Emmanuel Lochin · Tanguy Pérennou · Laurent Dairaine

Received: 4 January 2011 / Accepted: 14 June 2011 / Published online: 6 July 2011
© Institut Télécom and Springer-Verlag 2011

Abstract The design and development of a complex
system requires an adequate methodology and efficient
instrumental support in order to early detect and cor-
rect anomalies in the functional and non-functional
properties of the tested protocols. Among the various
tools used to provide experimental support for such
developments, network emulation relies on real-time
production of impairments on real traffic according to
a communication model, either realistically or not. This
paper aims at simply presenting to newcomers in net-
work emulation (students, engineers, etc.) basic princi-
ples and practices illustrated with a few commonly used
tools. The motivation behind is to fill a gap in terms of
introductory and pragmatic papers in this domain. The
study particularly considers centralized approaches, al-
lowing cheap and easy implementation in the context
of research labs or industrial developments. In addi-
tion, an architectural model for emulation systems is
proposed, defining three complementary levels, namely
hardware, impairment, and model levels. With the help
of this architectural framework, various existing tools
are situated and described. Various approaches for
modeling the emulation actions are studied, such as
impairment-based scenarios and virtual architectures,

E. Lochin (B) · T. Pérennou
CNRS; LAAS, 7 avenue du colonel Roche,
31077 Toulouse, France
e-mail: emmanuel.lochin@isae.fr

E. Lochin · T. Pérennou · L. Dairaine
Université de Toulouse, UPS, INSA, INP, ISAE; LAAS,
31077 Toulouse, France

real-time discrete simulation, and trace-based systems.
Those modeling approaches are described and com-
pared in terms of services, and we study their ability
to respond to various designer needs to assess when
emulation is needed.

Keywords Experimentation · Emulation ·
Protocol · Internet

1 Introduction

Designing and developing communication protocols
and real-time systems is a complex process where var-
ious actors participate in different phases, having only
a partial vision of the whole system. The experiment
phase, which eventually provides a global vision, is a
mandatory step in research and development process of
distributed applications and communication protocols.
In this context, three classical ways to achieve experi-
mentation are commonly used: simulation, live testing,
and more recently emulation.

Simulation, particularly event-driven simulation, is a
classical way to achieve economical and fast protocol
experimentation. It relies on an ad hoc model to work
with and it uses a logical event-driven technique to
run the experiment. The use of modeling techniques
simplifies the studied problem by concentrating on
the most critical issues. Indeed, network simulators
are essential to provide a proof of concept prior to
protocol development. Nevertheless, those tools (based
on a virtual clock) cannot replace practical protocol
evaluation that quantifies implementations’ overhead
during real-time operation. Eventually, to realize a



248 Ann. Telecommun. (2012) 67:247–255

real-time evaluation, only two solutions are left: live
testing and network emulation. For instance, network
simulation has been used to design the TFRC proto-
col internal mechanisms [24] (the TCP-Friendly Rate
Control protocol is a rate-based congestion control
mechanism for unicast flows operating in a best-effort
Internet environment); then, a user-level prototype has
been realized [37] to quantify the processing overhead
related to the inherent implementation. Throughout
the remainder of this paper, we use the TFRC case as
a running example to help understand certain concepts
presented.

In live testing, evaluations are driven with real im-
plementations. The fundamental way to do the exper-
iment is by using real technology for the underlying
networking environment. This real environment can be
the target network or an ad hoc testbed involving real
equipments. Nevertheless, this approach is considered
to be very expensive and inflexible to evaluate all as-
pects of the protocol being tested.

Emulation is considered to be at the cross-road be-
tween simulation and live testing. This approach con-
sists in executing and measuring real protocols and
application implementations over a certain network
where part of the communication architecture is sim-
ulated in real time. The aim of emulation is to allow a
distributed software to run either in realistic conditions
(e.g., over a satellite network) or specific conditions
(e.g., when specific packets are dropped such as SYN
packets in the TCP case).

This paper introduces an overview of existing net-
work emulation approaches. We particularly focus on
the study of centralized approaches, allowing simple
implementation in the context of research labs or in-
dustrial development centers. In addition, we propose
a general architectural model that allows various em-
ulation approaches to be presented and situated in
the model. These emulation approaches include mainly
impairment scenarios and virtual architectures. Fur-
thermore, a comparison of these approaches and a set
of criteria considered as requirements for emulation
systems will be proposed.

This paper is organized as follows: Section 2 situates
emulation among various experimentation approaches.
Section 3 presents main emulation requirements. Ad-
ditionally, Section 4 discusses network emulation ar-
chitecture based on three complementary levels. The
outline of main emulation approaches, as well as their
positions in the architectural model proposed will be
discussed in Section 5. Finally, some concluding re-
marks are given in Section 7.

2 Network experimentation approaches

Before diving in the world of emulation, we first present
the common experimental approaches used in research
labs and industrial development.

2.1 Simulation

As discussed above, simulation is a very effective and
efficient way to experiment with protocols. Network
simulation typically utilizes ad hoc model and logical
event-driven techniques. Classical tools such as ns-2
[10] or OPNET [14] provides a core simulation engine,
as well as a large set of protocol models. These simula-
tion tools allow experiments to be done without high
costs involvement. The modeling techniques used in
the simulators allow the studied problems to be sim-
plified by concentrating on the most important issues.
Furthermore, simulation tools do not operate in real
time. Therefore, depending on the model complexity, it
is possible to either simulate a logical hour in few real-
time milliseconds or a logical second in several real-
time days. This characteristic reflects both the benefit
and weakness of simulation tools. Due to this attribute,
it is unfeasible for simulation tools to implement sys-
tems involving man-in-the-loop. Most simulation tools
do not allow to test real-time implementations but only
models (even the most innovative and sophisticated
one).

2.2 Simulation shortcomings

As already emphasized in the introduction, network
simulators are essential to provide a proof of concept
prior to protocol development but cannot replace prac-
tical protocol evaluation. To pursue with the TFRC
example previously introduced in Section 1, the concept
of the rate-based equation has been validated within
ns-2 simulator while the feasibility of the implementa-
tion has been evaluated through real-time experiments.
Even though the core algorithm developed within ns-2
in C++ has been reused inside the kernel implemen-
tation, most of the data structure, message exchange,
and protocol framework had to be written from scratch.
This additional code has to be evaluated too.

Furthermore, it is important to ensure that the
services and performances offered by the simulation
model are consistent with the real experimental imple-
mentation of the protocol.



Ann. Telecommun. (2012) 67:247–255 249

2.3 Live experimentation

Another conventional method to test and debug dis-
tributed software during the implementation stage is
to use real hardware and/or software components. The
software can be tested either on a real target network
or on an ad hoc testbed using real equipment. However,
this approach is particularly expensive in the context of
wide area networks, especially when using specific tech-
nology such as satellite network. The cost inefficiency
of this method does not involve only the technology
cost but also the distributed man-in-the-loop manip-
ulations and synchronization required. Moreover, it
is sometimes impossible to use this approach simply
because the new technology support is not yet validated
or available, e.g., when developing an application over
a new satellite transmission technology that is not yet
operating. This method also suffers from the inherent
discrepancies between a particular test network and the
much broader range of network imperfections that will
be encountered by the software users.

Using real technology on target operational network
has been widely deployed. An example of this scheme
is well illustrated by PlanetLab [32]. PlanetLab is a
distributed platform that alleviates experiments man-
agement, offering a way to use a very large set of hosts
over the Internet. However, the purpose of PlanetLab
is to use Internet as a testbed and not to control the
network experimentation conditions. As a result, Plan-
etLab does not target reproducibility and is, thus, more
efficiently used for metrology experiments.

2.4 Network emulation

Since several years, progresses in high speed processing
and networking have allowed the rapid development
of network emulators, such as Dummynet [34], NIST
Net [16]. Network emulation is a weighted combination
of real technology and simulation. It is used to achieve
experiments using both real protocol implementations
and network models. Basically, this allows the creation
of a controlled communication environment. This com-
munication environment can produce specific target
behaviors in terms of quality of service. The objective
of emulation tools is to reproduce a real underlying
network behavior, such as configurable wired [39] or
wireless [17, 41] topologies. Additionally, emulation
aims at providing “artificial impairments” on the net-
work to test particularities of the experimented proto-
col. These impairments include loosing specific packets,

reducing the network bandwidth with a specific timing
or introducing delay over the network. Emulation is
particularly useful in the debugging and testing phase
of a system.

3 When do I need emulation?

You need emulation to assess the performance of an
end-to-end system. Although you can use emulation at
any layer of the OSI model, in the present paper, we
focus on network emulation which is a combination of
real technology (application and communication stack
above link-level) and simulation of the behavior of the
link and physical levels.

Let’s assume you want to assess the performance
of the TFRC transport protocol. You might be inter-
ested in validating the use of your implementation over
several types of terminal e.g., mobile phone, PDA,
laptop, server, etc.) and compare whether the impact of
TFRC internal algorithms behave similarly in various
network conditions. In order to drive this test, you
must evaluate as a non-exhaustive list: the memory
footprint, CPU usage, and packet processing overhead
to identify potential limits and propose implementation
and algorithmic improvements. These metrics are not
available in a simulation context. Testing TFRC with
various bandwidth size in a real setup would involve
the use of several different network setups (i.e., several
testbeds with different cards on different hosts) while
emulation provides an easy way to set the bandwidth of
a link. Anyway, network emulation is the most practical
scheme to obtain trustable metrics since you change
only one parameter of your experimental setup.

In order to assess Quality of Service (QoS), the over-
all performances obtained from an end-to-end protocol
are mainly dependent on external factors such as under-
lying technologies (e.g., RSVP establishment path, Ser-
vice Level Agreement with a DiffServ network, etc.),
interconnection topologies, current network traffic and
so on. Different types of QoS can also be offered by
the underlying network. For example, IP network ser-
vice could offer a communication channel ranging from
perfect (minimum delay, high bandwidth and no packet
loss, as in a gigabit LAN) to unsatisfactory (high delay,
low bandwidth, and high packet loss rate (PLR), as in
a noisy satellite network), depending on the underlying
protocols and many other external factors. This leads to
a large set of possibilities in the protocol experiments
that can be created. The different types of end-to-end



250 Ann. Telecommun. (2012) 67:247–255

QoS that can be produced by the underlying experi-
ment framework can focus on:

– Artif icial QoS: the experiment framework provides
a way to evaluate the protocol over specific QoS
conditions, not imperatively related to any technol-
ogy or realistic conditions. Artificial QoS allows the
user to test and focus on its experimental protocol
in target QoS conditions. This can be considered
as a form of unit testing. Furthermore, the aim
of this method is to point out errors or bugs that
are difficult to observe in a non-controlled envi-
ronment where they rarely happen. This can be
used, for instance, at the transport level to study the
impact of various packet drops in a TCP connection
(e.g., SYN/ACK packets [22], etc.).

– Realistic QoS: the experiment framework provides
a way to reproduce the behavior of some specific
network architecture as accurately as possible. This
type of experiment allows the user to evaluate the
protocol over an existing network or inter-network
without using a real testbed and all related tech-
nologies (e.g., a wireless network, a satellite net-
work, an Ethernet gigabit network, or any intercon-
nection of such technologies).

Generally, the following set of impairments are com-
monly at least supported by almost all emulators sys-
tems: round-trip time delay, jitter, packet loss rate, and
bandwidth size.

Today, there are several emulation platforms freely
available on the Internet, either remotely accessible
(e.g., EmuLab [36] and Orbit [29, 33]) or for download
and local installation (e.g., IMUNES [40], Netem [25],
Dummynet [34], and KauNet [23]). We strongly believe
it would not be appropriate to simply list and detail all
these proposals. Instead, we propose in the following
section an architectural model where essential features
are highlighted.

4 Network emulation architectural model

Network emulation systems are based on various con-
ceptual levels as illustrated in Fig. 1. In this figure,
we split an emulation system into three complemen-
tary levels, denoted model level, impairment level, and
hardware level. Each of these levels will be discussed in
more details. Note that the user system is not consid-
ered to be a part of the emulation system. It includes
the system under test, for instance a protocol or a dis-
tributed application to be evaluated or demonstrated as
well as traffic sources and sinks.

Evaluation

Demo

System under Test

Distributed
System

Centralized
System

User
Level

Kernel
Level

S
tatic A

p
p

ro
ach

T
race -B

ased
 A

p
p

ro
ach

E
ven

t -D
riven

 A
p

p
ro

ach

scenario
Impairments

Virtualization

User System

Emulation System

N
etw

o
rk M

o
d

el
M

o
d

el
H

ard
w

are
Im

p
airm

en
ts

M
o

d
el

Fig. 1 Architectural model for emulation systems

4.1 Hardware level

The lowest layer of the proposed architecture, namely
hardware layer, represents the physical devices really
used by the emulation system. These devices comprise
the real end-systems, the real network links that inter-
connect them and possibly, network components such
as switches or routers. The virtual resources of the
rest of the emulation system and the user system are
mapped on those real resources, e.g., several virtual
end-systems can reside on a single real computer. It is
crucial to understand that hardware level is not neces-
sarily composed by the technologies associated to the
emulated network conditions. For instance, emulating
a satellite link to evaluate the performance of the
TFRC protocol can be roughly done over a few desktop
stations interconnected with ethernet links by setting
appropriate PLR and delay on the resulting emulated
link (see Section 5.1.1).

The emulation system itself can be based on either
a centralized system or a distributed system. In a cen-
tralized emulation system, we only use one computer
to host the sender(s), the receiver(s), the intermedi-
ate node(s), and to manage all the impairments which
define the experiment; while a distributed emulation
system uses several computers to realize the same task.
As an example, the IMUNES [40] system falls in the
first category while Dummynet [34] or EmuLab [36]
belong to the second one.



Ann. Telecommun. (2012) 67:247–255 251

The main advantage of using distributed rather
than centralized emulation system is the computation
efficiency. However, this can also be considered as a
disadvantage as it requires more physical resources and
then, is much more complex to manage and adminis-
trate. For example, an EmuLab-like testbed requires
at least five computers: a sender, a receiver, a core
emulator, and two computers used to emulate both
links in order to drive an experiment. This raises the
problem of time synchronization of all machines that
can be solved by using the NTP protocol [30]. Despite
the use of NTP and in the context of delay estima-
tions, computers can experience clock drift that might
compromise the measurements. Although a distributed
emulation system is greedy in terms of resources, it
remains more appropriate to estimate overall resource
usage consumed by the protocol itself as it isolates the
protocol under test from the emulation system. The
advantage of a centralized emulation system is that it
shares the same clock for all its components and is
inherently synchronized.

4.2 Impairment level

The impairment level provides a mean to introduce
impairments over the exchanged packet flows. The
impairment system is a center piece of the whole
emulation because the real target network conditions
are driven by the impairment system. The accuracy
of the emulation is deeply associated to the capacity
of impairment systems to process the packets in time
and without introducing any other impairment than
those specified in the upper level. For instance, the
impairment processing overhead might bias the packets
processing time estimation.

An impairment can be introduced at either the ker-
nel level or the user level. An example of emulator that
introduces impairment at the kernel level is Dummynet
[34]. Dummynet intercepts packets at the IP forward-
ing level by implementing a queue (named pipe by
Dummynet API) able to introduce impairments on the
enqueued packets. Dummynet is configured through
the FreeBSD firewall API where each pipe is set up
as a simple forwarding rule. Another similar tool im-
plemented inside the GNU/Linux kernel is NIST Net
[16]. While Dummynet employs sophisticated queuing
models for bandwidth modeling, NIST Net includes
delay models of much statistical sophistication. Indeed,
NIST Net is able to implement a varying delay scenario
according to a given distribution while Dummynet uses
a static delay because of the use of a queue. Both
emulators cover complementary needs.

Finally, an example of user-level impairment is ONE
[11]. ONE provides similar capabilities as Dummynet
at the user level. However, the clock timer resolution is
a function of the kernel configuration and in general it
ranges from 1 to 10 ms. Indeed, several system sched-
uler runs at a default 100 Hz, meaning times based on
normal system calls cannot be more precise than 10 ms.
As a result, a user-level emulation cannot be as accurate
as a kernel level one which gets a granularity close
to the nanosecond. However, this approach is simple
to install and adapted for many simple educational
purposes.

4.3 Network model level

The model level defines two ways to control the em-
ulation behavior. A user impairment scenario consists
of an explicit list of impairment events while a vir-
tual network architecture generates implicit impairment
events based on the virtual topology, equipments, link
characteristics, communication and routing protocols.
Both models will be discussed in more details in the
next section.

5 Emulation approaches

5.1 Impairment scenario models

There are various types of scenarios. They can be
classified as impairment scenario models as described
throughout the rest of this section.

5.1.1 Static approach

In a static approach, every parameter remains constant
throughout the experiment. Therefore, the static set-
tings need to be configured before the experiment is
conducted. It does not describe the real network very
accurately since the behavior of real network changes
all over time. However, it is sufficient to reproduce
pragmatic cases of artificial quality of service (e.g.,
bounded delay which characterizes specific network
such as satellite link). The parameters that can be
defined statically include delay, packet loss rate, bit er-
ror rate, packet reordering, etc. This emulation model is
usually useful to test all the possibilities of a product or
to compare it to other already existing products. This is
the basic behavior of emulator such as Dummynet [34]
which is mostly used in this way.



252 Ann. Telecommun. (2012) 67:247–255

5.1.2 Event-driven approach

The key idea in event-driven [19] approaches is to apply
impairments according to events. The most commonly
used events are clock ticks (time-driven approach), but
other events can be used, such as packet numbers,
specific conditions observed on the traffic, or purely
random occurrences. The event-driven approach is very
useful to schematically represent a general behavior.
The tester will be able to validate the product under
several conditions and to compare it with other solu-
tions. This approach has been used in various emulation
tools. For example, Net Shaper [26] uses time oriented
emulation. In Net Shaper, a daemon is executed and
that daemon would wait for the new model to be ap-
plied to the emulation processor. The daemon is able to
successfully receive and process up to 1,000 messages/s.

In the case of clock tick events, all impairments
are triggered at user-defined times. Such approaches
may be enforced by scripts which list all time events
and associated actions. Time-driven models allow user
to define the network and to make it evolve with
time. As an example of such emulators, we can notice
IREEL [18] and W-NINE [17]. Both emulators use an
XML script containing update messages for a Dum-
mynet static emulator used as an impairment engine.
As an example, the emulated network can be designed
to behave differently during the day and during the
night.

Packet numbers in a flow can also be used as events,
as in the KauNet network emulator [23]. In that case,
the ipfw tool of FreeBSD is used to select a flow,
and data-driven patterns are used to define how the
impairments change with packet numbers. For instance,
a packet loss pattern will use zeros for packet drops
and ones for packet deliveries. KauNet also supports
bit-error patterns, bandwidth change patterns, delay
patterns and reordering patterns. Such patterns can also
be used in a time-driven way, thus offering a more
classical time-driven approach.

Other types of events have been proposed. Ran-
domly generated events can be used to emulate random
node failures. With an emulator able to read packet
contents, a specific content (I image) or header value
(DCCP handshake) can be detected and used as a
triggering event. More generally, the metrology of the
traffic can be used to detect specific conditions, such
as the amount of flow reaching some level, to trigger
specific impairments such as halving the bandwidth on
the link.

Note that the most natural way to use the event-
driven approach is the use of scripts associating im-
pairment parameters with events, either explicitly like

XML scripts IREEL or W-NINE, or implicitly like
patterns and scenarios in KauNet.

5.1.3 Trace-based approach

This approach [31] is more realistic because the behav-
ior of the network is obtained and will be reproduced
exactly in the same way.

First, a collection phase is usually done by using
probes. These probes are used to record the dates
of packets arriving or leaving a host. The results are
transmitted to a controller that evaluate the delay and
the mean loss rate to give the basic network model. This
allows the user to get dynamic network profile. The
limitation of the trace-based approach is that it cannot
reproduce all conditions a network would experience.
A single trace can only capture a snapshot of the vary-
ing performance along a particular path. Furthermore,
the traces cannot fully reproduce the network behavior
because it is non deterministic. The same situation in
another time could have produced different parame-
ters.

The advantages of the trace-based approach is to use
existing traces representing complex mobility move-
ment to evaluate a prototype [1, 35].

5.2 Virtualization

Network and system virtualization allow to easily man-
age multiple networks and systems, each of them cus-
tomized to a specific purpose at the same time over the
same shared infrastructure [38]. Nowadays, virtualiza-
tion is perceived as the best candidate to support mul-
tiple router software candidate releases simultaneously
as a long-run testing method before real deployment in
the Internet (see for instance, Ref. [28]). However, in
this paper we are more interested in the second role of
virtualization which is to run simultaneously multiple
experiments in a shared experimental facility.

The virtual architecture models are higher level
models allowing the representation of a target net-
work that is going to be emulated. It consists of two
different aspects namely System Emulation and Real-
time Discrete event simulation. This allows the design
of an emulation model according to a real network
topology where the experimented flow crosses a set of
real or virtual nodes. Another way to achieve this is to
use the Real-time Discrete Event Simulation through
the establishment of a bridge between real packets
and simulated event-driven environments as in the ns-2
emulation extension NSE [21].

The global network behavior is produced by virtually
reproducing the network topology and components.



Ann. Telecommun. (2012) 67:247–255 253

Two directions are taken depending on the way this
virtualization is achieved. In the virtual systems, all
nodes constituting the target network to be emulated
are implemented either onto a single centralized sys-
tem (several virtual nodes co-exist into the centralized
system) or distributed onto various distinct systems
(e.g., a computing grid) usually connected together by
high speed networks. Virtual links are used to con-
nect these nodes together according to the topology
of the targeted network. Real protocols such as IP or
routing ones can also be implemented into the virtual
node system. Of course, in this type of architecture,
the classical strategy to produce realistic behavior is
to introduce real traffic into the emulated network to
produce congestion, delays, losses, etc.

IMUNES [39] is an example of centralized virtual
node approach. It proposes a methodology for emu-
lating computer networks by using a general purpose

OS kernel partitioned into multiple lightweight virtual
nodes. The virtual nodes can be connected via kernel
level links to arbitrarily form complex network topolo-
gies. Furthermore, IMUNES allows to emulate fully
functional IP routers over each emulated virtual nodes.
IMUNES provides each virtual node with an indepen-
dent network stack, thus enabling highly realistic and
detailed emulation of network routers. It also enables
user-level applications to run within the virtual nodes.
At user level, IMUNES proposes a very convenient in-
terface allowing to easily define the emulated network,
namely the virtual nodes, the software, the links, and
the impairment parameters.

The Entrapid protocol development environment
[27] introduced a model of multiple virtualized net-
working kernels, which presents several variants of
the standard BSD network stack in multiple instances,
running as threads in specialized user process. Other

Table 1 Summary of the
emulators cited in this paper

Name Hardware Impairments Network Year Web
model model model
—comments

Dummynet [34] Centralized Kernel Static 1997 [2]
—FreeBSD, IP-level emulation

KauNet [22] Centralized Kernel Event driven 2006 [7]
—based on Dummynet

IREEL [18] Distributed Kernel Event driven 2006 [6]
—based on Dummynet

Netem [25] Centralized Kernel Static 2005 [8]
—GNU/Linux, IP-level emulation

NIST Net [16] Centralized Kernel Static 2003 [9]
—sophisticated statistical distributions

ONE [11] Centralized User Static 2001 [11]
—the first network emulator

PlanetLab [32] Distributed Kernel Virtualization 2003 [13]
—based on Linux virtual machines

EmuLab [36] Distributed Kernel Virtualization 2001 [3]
—based on Dummynet links

IMUNES [40] Centralized Kernel Virtualization 2003 [5]
—based on FreeBSD virtual machines

Alpine [20] Centralized Kernel Virtualization 2001 No

Entrapid [27] Centralized Kernel Virtualization 1999 No

Virtual routers [15] Centralized Kernel Virtualization 2003 No

GNS3 [4] Centralized Kernel Virtualization 2008 [4]
—based on Cisco router images

NETShaper [26] Distributed Kernel Event driven 2002 No
—link-level emulation

Orbit [33] Distributed Kernel Event driven 2005 [12]
—two-tier laboratory emulator/field trial network testbed

W-NINE [17] Distributed Kernel Event driven 2008 No
—wireless emulator

CMU [31] Centralized User Trace based 1997 No
—seminal paper on trace-based approach



254 Ann. Telecommun. (2012) 67:247–255

approaches that follow this approach is the Alpine
emulator [20] project, GNS3/dynamips [4], and Virtual
Routers [15].

The virtual architectural approach is often consid-
ered as the only mean to achieve realistic emulation of
complex network topology. As previously introduced,
PlanetLab proposes to directly use the Internet links
to obtain real measures (for metrology purpose) con-
jointly with an emulation system allowing to map sev-
eral end-hosts on a single computer in order to drive
several and different experiments in parallel. Neverthe-
less, the major problem of this approach may be the
scalability issue. Issues such as how to implement one
or several core network routers in a single machine
and how to manage the number of flows in a cen-
tralized manner remain problematic. These questions
are difficult to answer, not only in the context of total
centralization but also in the context of distributed
systems such as grids.

6 Summary

We propose in this section a summary of the main
characteristics of the emulators cited in this paper (fol-
lowing our classification model presented in Table 1).
Note that the trace-based approach is a functionality
that is already included inside some emulators (Orbit,
W-NINE, KauNet, etc.) and can be added as a pre-
processing tool to any event-driven emulator. However,
we do not list this capability when it corresponds to an
option and is not used as default network model.

7 Conclusions

This paper attempts to provide highlights concerning
network emulation which is considered to be in the
middle between simulation and live-testing schemes.
We saw that network emulation combines the advan-
tages offered by simulation and live testing at the same
time while allowing different evaluation metrics (i.e.,
processing overhead, memory footprint). Another im-
portant finding is that we can easily set up complex
measurements testbed by combining both virtualization
and network emulation tools. However, network emu-
lation is definitely not the unique answer and must be
carefully weighted as a function of the performances
an experimenter seeks to evaluate. Thus, to obtain a
clear view, we develop an architectural model which
illustrates and classifies all types of emulation tools. We
hope both model and arguments presented would help

the reader to better weight emulation in an evaluation
process and choose the right scheme to assess the per-
formances targeted.

References

1. CRAWDAD (2011) Community resource for archiving wire-
less data At Dartmouth. http://crawdad.cs.dartmouth.edu/

2. Dummynet (1997) http://info.iet.unipi.it/∼luigi/dummynet/
3. Emulab (2001) http://www.emulab.net/
4. GNS3 (2008) Graphical network simulator. http://www.

gns3.net
5. IMUNES (2003) http://imunes.tel.fer.hr/imunes/
6. IREEL (2006) http://ireel.npc.nicta.com.au/
7. KauNet (2006) http://www.kau.se/en/kaunet
8. Netem (2005) http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem”
9. Nistnet (2003) http://snad.ncsl.nist.gov/nistnet/

10. ns-2 user manual (2011) http://www.isi.edu/nsnam/ns/
11. One user manual (2001) http://irg.cs.ohiou.edu/one/manual.

html
12. Orbit (2005) http://www.orbit-lab.org/
13. Planetlab (2003) http://www.planet-lab.org/
14. Opnet technologies (1991) http://www.opnet.com
15. Baumgartner F, Braun T, Kurt E, Weyland A (2003) Virtual

routers: a tool for networking research and education. ACM
SIGCOMM Comput Commun Rev 33(3):127–135

16. Carson M, Santay D (2003) NIST Net: a linux-based network
emulation tool. ACM Comput Commun Rev 33(3):111–126

17. Conchon E, Pérennou T, Garcia J, Diaz M (2010) W-NINE:
a two-stage emulation platform for mobile and wireless sys-
tems. EURASIP Journal on Wireless Communications and
Networking 2010, Article 149075, 20 pp. See for details:
http://www.hindawi.com/journals/wcn/2010/149075/cta/

18. Dairaine L, Jourjon G, Lochin E, Ardon S (2007) Ireel: re-
mote experimentation with real protocols and applications
over an emulated network. ACM SIGCSE Bull Inroads
39(2):92–96

19. Dawson S, Jahanian F (1995) Probing and fault injection of
distributed protocols implementations. In: International con-
ference on distributed computer systems

20. Ely D, Savage S, Wetherall D (2001) Alpine: a user-level in-
frastructure for network protocol development. In: USITS’01
Proceedings of the 3rd conference on USENIX symposium
on internet technologies and systems

21. Kevin Fall (1999) Network emulation in the VINT/NS simu-
lator. In: IEEE fourth symposium on computers and commu-
nications

22. Garcia J, Alfredsson S, Brunstrom A (2006) The impact of
loss generation on emulation-based protocol evaluation. In:
PDCN’06: proceedings of the 24th IASTED international
conference on Parallel and distributed computing and net-
works. Anaheim, CA, USA

23. Garcia J, Conchon E, Pérennou T, Brunstrom A (2007)
Kaunet: improving reproducibility for wireless and mobile re-
search. In: MobiEval System evaluation for mobile platforms,
workshop of mobisys 2007, San Juan, Puerto Rico, pp 21–26

24. Handley M, Floyd S, Pahdye J, Widmer J (2003) TCP-
Friendly Rate Control (TFRC): protocol specification. Re-
quest For Comments 3448, IETF

25. Hemminger S (2005) Network emulation with netem. In:
Australia’s national linux conference (LCA) Canberra,
Australia

http://crawdad.cs.dartmouth.edu/
http://info.iet.unipi.it/~luigi/dummynet/
http://www.emulab.net/
http://www.gns3.net
http://www.gns3.net
http://imunes.tel.fer.hr/imunes/
http://ireel.npc.nicta.com.au/
http://www.kau.se/en/kaunet
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem''
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem''
http://snad.ncsl.nist.gov/nistnet/
http://www.isi.edu/nsnam/ns/
http://irg.cs.ohiou.edu/one/manual.html
http://irg.cs.ohiou.edu/one/manual.html
http://www.orbit-lab.org/
http://www.planet-lab.org/
http://www.opnet.com
http://www.hindawi.com/journals/wcn/2010/149075/cta/


Ann. Telecommun. (2012) 67:247–255 255

26. Herrscher D, Rothermel K (2002) A dynamic network sce-
nario emulation tool. In: 11th International conference on
computer communications and networks

27. Huang XW, Sharma R, Keshav S (1999) The ENTRAPID
protocol development environment In: IEEE Infocom

28. Keller E, Yu M, Caesar M, Rexford J (2009) Virtually elimi-
nating router bugs. In: ACM CoNext

29. Siracusa R, Ott M, Seskar I, Singh M (2005) Orbit testbed
software architecture: supporting experiments as a service.
In: IEEE Tridentcom 2005, Trento, Italy

30. Mills D (1992) Network time protocol (version 3) speci-
fication, implementation. Request For Comments 1305, IETF

31. Noble BD, Satyanarayanan M, Nguyen GT, Katz RH (1997)
Trace-based mobile network emulation. In: ACM SIG-
COMM Cannes, France

32. Peterson L, Culler D, Anderson T, Roscoe T (2002) A blue-
print for introducing disruptive technology into the inter-
net. In: 1st Workshop on hot topics in networks (HotNets-I)
Princeton, New Jersey, USA

33. Ramachandran K, Kaul S, Mathur S, Gruteser M, Seskar
I (2005) Towards large-scale mobile network emulation
through spatial switching on a wireless grid. In: Workshop
on experimental approaches to wireless network design and
analysis, (E-Wind), ACM Sigcomm

34. Rizzo L (1997) Dummynet: a simple approach to the eval-
uation of network protocols. ACM Comput Commun Rev
27(1):31–41

35. Scott J, Hui P, Crowcroft J, Diot C (2006) Haggle: A net-
working architecture designed around mobile users. In: The
third annual IFIP conference on wireless on-demand net-
work systems and services (WONS 2006), Les Menuires,
France

36. White B, Lepreau J, Stoller L, Ricci R, Guruprasad S,
Newbold M, Hibler M, Barb C, Joglekar A (2002) An inte-
grated experimental environment for distributed systems and
networks. In: Fifth symposium on operating systems design
and implementation, pp 255–270

37. Widmer J (2000) TFRC userspace prototype. http://aciri.org/
tfrc/code/

38. Yu M, Yi Y, Rexford J, Chiang M (2008) Rethinking vir-
tual network embedding: substrate support for path split-
ting and migration. ACM SIGCOMM Comput Commun Rev
38(2):17–29

39. Zec M, Mikuc M (2004) Operating system support for inte-
grated network emulation in IMUNES. In: First workshop
on operatings System and architectural support for the on
demand IT infraStructure, Boston, USA

40. Zec M, Mikuc M (2004) Operating system support for inte-
grated network emulation in imunes. In: 1st Workshop on op-
erating system and architectural support for the on demand
IT infraStructure/ASPLOS-XI, Boston, USA

41. Zheng P, Ni LM (2003) EMPOWER: a network emulator
for wireline and wireless networks. In: IEEE Infocom San
Francisco

http://aciri.org/tfrc/code/
http://aciri.org/tfrc/code/

	When should I use network emulation?
	Abstract
	Introduction
	Network experimentation approaches
	Simulation
	Simulation shortcomings
	Live experimentation
	Network emulation

	When do I need emulation?
	Network emulation architectural model
	Hardware level
	Impairment level
	Network model level

	Emulation approaches
	Impairment scenario models
	Static approach
	Event-driven approach
	Trace-based approach

	Virtualization

	Summary
	Conclusions
	References



