
An ID-based proxy signature schemes
without bilinear pairings

He Debiao & Chen Jianhua & Hu Jin

Received: 20 September 2010 /Accepted: 10 February 2011 /Published online: 27 February 2011
Institut Télécom and Springer-Verlag 2011

Abstract The proxy signature schemes allow proxy signers
to signmessages on behalf of an original signer, a company, or
an organization. Such schemes have been suggested for use in
a number of applications, particularly in distributed comput-
ing, where delegation of rights is quite common. Many
identity-based proxy signature schemes using bilinear pair-
ings have been proposed. But the relative computation cost of
the pairing is approximately twenty times higher than that of
the scalar multiplication over elliptic curve group. In order to
save the running time and the size of the signature, in this
letter, we propose an identity-based signature scheme without
bilinear pairings. With the running time being saved greatly,
our scheme is more practical than the previous related
schemes for practical application.

Keywords Digital signature . Identity-based proxy
signature . Bilinear pairings . Elliptic curve

1 Introduction

In order to simplify the public-key authentication, Shamir
[1] introduced the concept of identity-based (ID-based)
cryptosystem problem. In this system, each user needs to
register at a key generator center (KGC) with identity of
himself before joining the network. Once a user is accepted,
the KGC will generate a private key for the user and the
user’s identity (e.g., user’s name or email address) becomes
the corresponding public key. In this way, in order to verify
a digital signature or send an encrypted message, a user

only needs to know the “identity” of his communication
partner and the public key of the KGC.

Mambo et al. [2] introduced the notion of proxy signature
scheme. A proxy signature scheme allows an entity called
original signer to delegate his signing capability to another
entity, called proxy signer. Since it is proposed, the proxy
signature schemes have been suggested for use in many
applications, particularly in distributed computing where
delegation of rights is quite common. In order to adapt
different situations, many proxy signature variants are pro-
duced, such as one-time proxy signature, proxy blind signature,
multi-proxy signature, and so on. Since the proxy signature
appears, it attracts many researchers’ great attention. Using
bilinear pairings, people proposed many new ID-based
signature schemes [3–5] and ID-based proxy signature (IBPS)
scheme [6–10]. All the above IBPS schemes are very practical,
but they are based on bilinear pairings and the pairing is
regarded as the most expensive cryptography primitive. The
relative computation cost of a pairing is approximately twenty
times higher than that of the scalar multiplication over elliptic
curve group [11]. Therefore, IBPS schemes without bilinear
pairings would be more appealing in terms of efficiency.

In this paper, we present an IBPS scheme without
pairings. The scheme rests on the elliptic curve discrete
logarithm problem (ECDLP).With the pairing-free realiza-
tion, the scheme’s overhead is lower than that of previous
schemes [6–10] in computation.

2 Preliminaries

2.1 Background of elliptic curve group

Let the symbol E/Fp denote an elliptic curve E over a prime
finite field Fp, defined by an equation

H. Debiao (*) :C. Jianhua :H. Jin
School of Mathematics and Statistics, Wuhan University,
Wuhan 430072, China
e-mail: hedebiao@163.com

Ann. Telecommun. (2011) 66:657–662
DOI 10.1007/s12243-011-0244-0

y2 ¼ x3 þ axþ b; a; b 2 Fp ð1Þ
and with the discriminant

$ ¼ 4a3 þ 27b2 6¼ 0: ð2Þ
The points on E/Fp together with an extra point O called

the point at infinity form a group

G ¼ x; yð Þ : x; y 2 Fp;E x; yð Þ ¼ 0
� � [Of g: ð3Þ

Let the order of G be n. G is a cyclic additive group
under the point addition “+” defined as follows: Let P, Q∊
G, l be the line containing P and Q (tangent line to E/Fp if
P = Q), and R, the third point of intersection of l with E/
Fp. Let l′ be the line connecting R and O. Then P “+” Q is
the point such that l′ intersects E/Fp at R and O and P “+”
Q. Scalar multiplication over E/Fp can be computed as
follows:

tP ¼ P þ P þ � � � þ P t timesð Þ ð4Þ
The following problems defined over G are assumed to

be intractable within polynomial time.
Eliptic curve discrete logarithm problem: For x2RZ»

n and
G the generator of G , given P=x I G compute x.

2.2 ID-based proxy signatures

In this paper, unless stated otherwise, let O be the original
signer with identity IDO and private key DO. He delegates
his signing rights to a proxy signer A with identity IDA and
private key DA. A warrant is used to delegate signing right.
In [6], Gu and Zhu gave a formal security model for ID-
based proxy signature schemes.

Definition 1 An ID-based proxy signature scheme is
specified by the following polynomial-time algorithms with
the following functionalities [6].

& Setup: The parameters generation algorithm, takes as
input a security parameter k, and returns a master secret
key x and system parameters Ω. This algorithm is
performed by KGC.

& Extract: The private key generation algorithm, takes an
identity IDU∊{0, 1}*as input, and outputs the secret key
DU corresponding to IDU. KGC uses this algorithm to
extract the users’ secret keys.

& Delegate: The proxy-designation algorithm, takes O’s
secret key DO and a warrant mω as input, and outputs
the delegation WO→A.

& DVerify: The designation-verification algorithm, takes
IDO, WO→A as input and verifies whether WO→A is a
valid delegation come from O.

& PKgen: The proxy key generation algorithm, takes
WO→A and some other secret information z (for

example, the secret key of the executor) as input, and
outputs a signing key Dp for proxy signature.

& PSign: The proxy signing algorithm, takes a proxy
signing key Dp and a message m∊{0, 1}* as input, and
outputs a proxy signature (m, δ).

& PVerify: The proxy verification algorithm, takes IDO,
IDAand a proxy signature (m, δ) as input, and outputs 0
or 1. In the later case, (m, δ) is a valid proxy signature
of O.

We consider an adversary A which is assumed to be a
probabilistic Turing machine which takes as input the
global scheme parameters and a random tape.

Definition 2 For an ID-based proxy signature scheme
IBPS, we define an experiment ExpIBPSF ðkÞ of adversary
A and security parameter k as follows [6]:

1. A challenger C runs Setup and gives the system
parameters Ω to A .

2. Clist←f, Dlist←f, Glist←f, Slist←f. (f means null.)
3. Adversary A can make the following requests or

queries adaptively.

& Extract(.): This oracle takes a user’s IDi as input,
and returns the corresponding private key Di. If A
gets Di←Extract(IDi), let Clist←Clist ∪ {(IDi, Di)}.

& Delegate(.): This oracle takes the designator’s
identity ID and a warrant mw as input, and outputs
a delegation W. If A gets W←Delegate(ID, mw), let
Dlist←Dlist ? {(ID, mw, W)}.

& PKgen(.): This oracle takes the proxy signer’s ID
and a delegation W as input, and outputs a proxy
signing key Dp. If A gets Dp←PKgen(ID, W), let
Glist←Glist ? {(ID, mw, W)}.

& PSign(.): This oracle takes the delegation W and
message m∊{0, 1}*as input, and outputs a proxy
signature created by the proxy signer. If A gets
(m, τ)←PSign(W, m), let Slist←Slist ? {(m, t)}.

4. A outputs (ID, mw, W) or (W, m, t).
5. If A ’s output satisfies one of the following terms, A ’s

attack is successful.

& The output is (ID, mw, W), and satisfies: DVerify(W,
ID)=1, (ID,I) ∉ Clist, (ID,I) ∉ Glist and (ID, mw,I) ∉
Dlist. Exp

IBPS
F ðkÞ returns 1.

& The output is (W, m, t), and satisfies PVerify((m, t),
IDi, IDj)=1, (W, m,I) ∉ Slist and (IDj,I) ∉ Clist (IDj,
W,I) ∉ Glist, where IDi and IDj are the identities of
the designator and the proxy signer defined by W,
respectively. ExpID ExpIBPSF ðkÞ returns 2.

Otherwise, ExpIBPSF ðkÞ returns 0.

658 Ann. Telecommun. (2011) 66:657–662

Definition 3 [6]. An ID-based proxy digital signature
scheme IBPS is said to be existential delegation and
signature unforgeable under adaptive chosen message and
ID attacks (DS-EUF-ACMIA), if for any polynomial-time
adversary A, Pr ExpIBPSF ðkÞ ¼ 1

� �
and Pr ExpIBPSF ðkÞ ¼ 2

� �

are negligible.

3 Our scheme

3.1 Scheme description

In this section, we present an ID-based proxy signature
scheme without pairing. Our scheme rests on the ECDLP.

Setup Takes a security parameter k, returns system param-
eters and a master key. Given k, KGC does as follows.

1) Choose a k-bit prime p and determine the tuple {Fp, E/Fp,
G, P} as defined in Section 2.

2) Choose the master private key x 2 Z
»
n and compute the

master public key Ppub=xIP.
3) Choose two cryptographic secure hash functions H1 :

0; 1f g» ! Zn
»
and H2 : 0; 1f g» � G! Zp

»
.

4) Publish {Fp, E/Fp, G, P, Ppub, H1, H2} as system
parameters and keep the master key x secretly.

Extract Takes system parameters, master key, and a user’s
identifier as input, returns the user’s ID-based private key.
With this algorithm, KGC works as follows for each user U
with identifier IDU.

1) Choose at random rU 2 Z
»
n , compute RU=rUIP and

hU=H1(IDU, RU).
2) Compute DU ¼ rU þ hUx.

U’s private key is the tuple (DU, RU) and is transmitted
to U via a secure out-of-band channel. U can validate her

private key by checking whether the equation

DU � P ¼ RU þ hU � Ppub ð5Þ

holds. The private key is valid if the equation holds and
vice versa.

Delegate Takes O’s secret key DO and a warrant mω as
input, and outputs the delegation WO→A. As shown in
Fig. 1, the user O does as the follows.

1) Generate a random a and compute K=aIP.
2) Compute e1=H2(mw, K, IDA) and s ¼ e1DO þ amod n.

The delegation is WO→A=(IDO, RO, IDA, mw, K, σ).

DVerify As shown in Fig. 1, to verify the delegation WO→A

for message mw, the user A first computes e1=H2(mw, K,
IDA), hO=H1(IDO, RO) and then checks whether

s � P ¼ e1 RO þ hO � Ppub

� �þ K ð6Þ

Accept if it is equal. Otherwise reject.

PKgen If A accepts the delegation WO→A, as shown in
Fig. 1, he computes the proxy signing key Dp as
Dp ¼ s þ DAe2 mod n, where e2=H2(mw, K, IDO).

Sign Takes system parameters, the proxy signing key Dp

and a message m as inputs, returns a signature of the
message m. The user A does as follows.

1) Choose at random b∊Zn* to compute R=bIP.
2) Compute h=H2(m, R).
3) Verify whether the equation gcd (b+h, n)=1 holds:

Continue if it does and return to step 1 otherwise.
4) Compute s ¼ l þ hð Þ�1Dp mod n.
5) The resulting signature is (IDO, RO, IDA, RA, mw, K,

σ, R, s).

The original signer The proxy signer

(, , , , ,)O A O O A wW ID R ID m K σ→ =

*

1 2

1

1)Delegate Algorithm

Generate random number ;

;

(, ,);

mod

R n

w A

O

a Z

K a P

e H m K ID

e D a nσ

∈
= ⋅
=
= +

1 2

1

?

1

2 2

2

2)DVerify Algorithm

(, ,);

(,);

()

3)PKgen Algorithm

(, ,);

mod ;

w A

O O O

O O pub

w O

p A

e H m K ID

h H ID R

P e R h P K

e H m K ID

D D e n

σ

σ

=
=

⋅ = + ⋅ +

=
= +

Fig. 1 The process of Delegate,
DVerify, and PKgen

Ann. Telecommun. (2011) 66:657–662 659

Verify To verify the signature (IDO, RO, IDA, RA, mw, K, σ,
R, s) for message m, a verifier first checks if the proxy signer
and the message conform to mw, then he computes, hO =
H1(IDO, RO),hA=H1(IDA, RA), e1=H2(mw, K, IDA), e2=
H2(mw, K, IDO), h = H2(m, R), and then checks whether

s Rþ h � Pð Þ ¼ e1 RO þ hO � Ppub

� �

þ e2 RA þ hA � Ppub

� �þ K ð7Þ

Accept if it is equal. Otherwise reject.
Since R=b⋅P and s ¼ bþ hð Þ�1Dp mod n, we have

s � Rþ h � Pð Þ ¼ bþ hð Þ�1 � Dp � b � P þ h � Pð Þ

¼ bþ hð Þ�1 � Dp � bþ hð Þ � P

¼ Dp � P ¼ s þ DAe2ð ÞP ¼ s � P þ e2DA � P

¼ e1 RO þ hO � Ppub

� �þ K þ e2 RA þ hA � Ppub

� �

ð8Þ
Then the correctness of our scheme is proved.

3.2 Security analysis

Assume there is an adversary A who can break our ID-
based proxy signature scheme ~. We will construct a
polynomial-time algorithm F that, by simulating the
challenger and interacting with A , solves the ECDLP.

Theorem 1 Consider an adaptively chosen message attack
in the random oracle model against ~. If there is an
attacker A that can break ~ with at most qH2 H2-queries
and qS signature queries within time bound t and non-
negligible probability ε. Then we can solve the ECDLP
with non-negligible probability.

Proof Suppose that there is an attacker A for an adaptively
chosen message attack against Σ. Then, Pr ExpIBPSF ðkÞ� ¼ 1�
or Pr ExpIBPSF ðkÞ ¼ 2

� �
are non-negligible. We show how to

use the ability of A to construct an algorithm F solving the
ECDLP.

SupposeF is challenged with a ECDLP instance (P, Q) and
is tasked to compute x 2 Z

»
n satisfying Q = x IP. To do so, F

sets {Fp, E/Fp, G, P, Ppub=Q, H1, H2} as the system parameter
and answersA ’s queries (described in definition 2) as follows.

Extract-query: A is allowed to query the extraction
oracle for an identity IDU. S simulates the oracle as follows.
It chooses aU ; bU 2 Z

»
n at random and sets

RU ¼ aU � Ppub þ bU � P; DU ¼ bU ;

hU ¼ H1 IDU ;RUð Þ �aU mod n:

ð9Þ

Note that (DU, RU) generated in this way satisfies the
equation DU � P ¼ RU þ hU � Ppub in the extract algorithm.
It is a valid secret key. F outputs (DU, RU, hU) as the secret
key of IDU and stores the value of (DU, RU, hU) in the Clist-
table(we modify the content of Clist-table).

Delegate-query: A queries the delegate oracle for a
warrant mw, IDO and IDA, F first checks that whether IDO

and IDA have been queried for the extraction oracle before.
If yes, it just retrieves (DO, RO, hO) from the table and uses
these values to delegate a warrant mw, according to the
delegate algorithm described in the scheme. It outputs the
delegation WO→A=(IDO, RO, IDA, mw, K, σ) for mw, IDO

and IDA and stores the value WO→A in the hash table Dlist

for consistency. If IDO or IDA has not been queried to the
extraction oracle, F executes the simulation of the
extraction oracle and uses the corresponding secret key to
sign the message.

Since F knows every user’s private key(described in
Extract-query), he can simulate Delegate-query, DVerify-
query, PKgen-query, PSign-query, and PVerify-query as he
simulates Delegate-query.

1. If A can forge a valid delegation on warrant mw with
t he p robab i l i t y " � 10 qH2 þ 1ð Þ qH2 þ qSð Þ=2k, i . e .
Pr ExpIBPSF ðkÞ ¼ 1
� � � 10 qH2 þ 1ð Þ qH2 þ qSð Þ=2k , whe r e

mw has not been queried to the signature oracle, then a
replay of F with the same random tape but different
choice of H2 will output two valid delegation (IDO, RO,
IDA, mw, K, σ, e1) and IDO;RO; IDA;mw;K; s 0; e

0
1

� �
. Then

we have

s � P ¼ e1 RO þ hO � Ppub

� �þ K; ð10Þ

and

s 0 � P ¼ e01 RO þ hO � Ppub

� �þ K: ð11Þ

Let K=a I P, RO ¼ aO � Ppub þ bO � P, Ppub ¼ Q ¼ x � P,
then we have

s � P ¼ e1 aO � Ppub þ bO � P þ hO � Ppub

� �þ a � P; ð12Þ

and

s 0 � P ¼ e01 aO � Ppub þ bO � P þ hO � Ppub

� �þ a � P: ð13Þ
then we have

s � P ¼ e1 � aO � x � P þ e1 � bO � P þ e1 � hO � x � P
þ a � P; ð14Þ

and

s 0 � P ¼ e01 � aO � x � P þ e01 � bO � P þ e01 � hO � x � P
þ a � P: ð15Þ

660 Ann. Telecommun. (2011) 66:657–662

Hence, we have

e1 � aO þ e1 � hO � e01 � aO � e01 � hOð Þ � x � P
¼ s � s 0 � e1 � bO þ e01 � bOð Þ � P ð16Þ

Let u ¼ e1 � aO þ e1 � hO � e01 � aO � e01 � hOð Þ�1 mod n
and v ¼ s � s 0 � e1 � bO þ e01 � bOð Þmod n, then, we get
x ¼ uvmod n. According to [12, Lemma 4], the ECDLP
can be solved with probability ε′≥1/9 and time
t0 � 23qH2 t=".

2. From case 1, we know the adversary A cannot
generate a valid delegation. In this case we will prove, if A
can forge a valid signature on message m under the
delegation WO→A=(IDO, RO, IDA, mw, K, σ) with the
p r o b a b i l i t y " � 10 qH2 þ 1ð Þ qH2 þ qSð Þ=2k, i . e .
Pr ExpIBPSF ðkÞ ¼ 2
� � � 10 qH2 þ 1ð Þ qH2 þ qSð Þ=2k , where m

has not been queried to the signature oracle, then a replay
of F with the same random tape but different choice of H2

will output two valid signatures (IDO, RO, IDA, RA, mw, K,
σ, R, s, e1, e2, h), and (IDO, RO, IDA, RA, mw, K, σ′, R, s, e′1,
e′2, h′). Then we have

s Rþ h � Pð Þ ¼ e1 RO þ hO � Ppub

� �

þ e2 RA þ hA � Ppub

� �þ K; ð17Þ
and

s0 Rþ h0 � Pð Þ ¼ e01 RO þ hO � Ppub

� �

þ e02 RA þ hA � Ppub

� �þ K: ð18Þ

L e t K = a IP , R = b IP , RO ¼ aO � Ppub þ bO � P,
Ppub ¼ Q ¼ x � P, then we have

s bþ hð Þ ¼ e1 aOxþ bOð Þ þ hOxð Þ
þ e2 aAxþ bAð Þ þ hAxð Þ þ amod n; ð19Þ

and

s0 bþ h0ð Þ ¼ e01 aOxþ bOð Þ þ hOxð Þ
þ e02 aAxþ bAð Þ þ hAxð Þ þ amod n: ð20Þ

In these equations, only b and x are unknown to F. F
solves for these values from the above like he does in case
1, and outputs x as the solution of the discrete logarithm
problem.

According to [12, Lemma 4], the ECDLP can be solved
with probability ε′≥1/9 and time t0 � 23qH2 t=".

4 Comparison with previous scheme

In this section, we will compare the efficiency of our new
scheme with Gu et al.’s scheme [6], Zhang’s scheme [7],
Wu et al.’s scheme [8], Gu et al.’s [9], and Ji et al.’s scheme
[10]. In the computation efficiency comparison, we obtain
the running time for cryptographic operations using
MIRACAL [13], a standard cryptographic library.

The hardware platform is a PIV 3-GHZ processor with
512-MB memory and a Windows XP operation system. For
the pairing-based scheme, to achieve the 1,024-bit RSA
level security, we use the Tate pairing defined over the
supersingular elliptic curve E=Fp : y2 ¼ x3 þ x with em-
bedding degree 2, where q is a 160-bit Solinas prime
q ¼ 2159 þ 217 þ 1 and p a 512-bit prime satisfying
pþ 1 ¼ 12qr. For the ECC-based schemes, to achieve the

Table 1 Cryptographic operation time (in milliseconds)

Modular exponentiation Pairing Pairing-based sca.mul ECC-based sca.mul. Map-to-point hash General hash

5.31 20.04 6.38 2.21 3.04 <0.001

Table 2 Performance comparison of different schemes

Running time

Extract Delegate Dverify PKgen Psign PVerify

Gu et al.'s scheme [6] 9.42 11.69 45.39 6.38 11.69 57.09

Zhang et al.'s scheme [7] 9.42 32.78 51.71 20.04 84.51 52.8

Wu et al.'s scheme [8] 9.42 6.38 60.06 – 31.6 112.26

Gu et al.'s scheme [9] 6.38 17.02 43.4 6.38 11.69 43.4

Ji et al.'s scheme [10] 6.38 12.76 46.42 6.38 19.14 46.42

Our scheme 2.21 2.21 4.42 – 2.21 8.84

Ann. Telecommun. (2011) 66:657–662 661

same security level, we employed the parameter secp160r1
[14], recommended by the Certicom Corporation, where
p ¼ 2160 � 231 � 1. The running times are listed in Table 1,
where sca.mul. stands for scalar multiplication.

To evaluate the computation efficiency of different
schemes, we use the simple method from [15, 16]. For
example, the Extract algorithm of our scheme requires a
KGC to carry out one ECC-based scale multiplication; thus,
the computation time of the sign algorithm is 2.21×1=
2.21 ms; the Delegate algorithm has to carry out one ECC-
based scalar multiplications, and the resulting running time
is 2.21×1=2.21 ms; the Dverify algorithm has to carry out
two ECC-based scalar multiplications, and the resulting
running time is 2.21×2=4.42 ms; the PKgen algorithm has
to carry out one modular multiplications, we will ignore
running time; the Psign algorithm has to carry out one
ECC-based scalar multiplications, and the resulting running
time is 2.21×1=2.21 ms; the PVerify algorithm has to carry
out four ECC-based scalar multiplications, and the resulting
running time is 2.21×4=8.84 ms. As another example, in
Gu et al.’s scheme [6], the Extract algorithm of requires a
KGC to carry out one pairing-based scale multiplication
and a map-to-point hash function; thus, the computation
time of the sign algorithm is 6.38×1+3.04=9.42 ms; the
Delegate algorithm has to carry out one pairing -based
scalar multiplications and a modular exponentiation, and
the resulting running time is 6.38×1+5.31=11.69 ms; the
Dverify algorithm has to carry out two pairing operations
and a modular exponentiation, and the resulting running
time is 20.04×2+5.31=45.39 ms; the PKgen algorithm has
to carry out one pairing -based scalar multiplications, and
the resulting running time is 6.38×1=6.38 ms; the Psign
algorithm has to carry out one pairing -based scalar
multiplications and a modular multiplication, then the
resulting running time is 6.38+5.31=11.69 ms; the PVerify
algorithm has to carry out two pairing, one pairing-based
scalar multiplications and two modular exponentiations,
then the resulting running time is 20.04×2+6.38+5.31×2=
57.09 ms. Table 2 shows the results of the performance
comparison.

According to Table 2, the running time of the Psign
algorithm of our scheme is 18.9% of Gu et al.’s schemes
[6], 2.61% of Zhang et al.’s scheme [7], 6.99%of Wu et
al.’s scheme [8], 18.9% of Gu et al.’s scheme [9], and
11.55% of Ji et al.’s scheme [10], the running time of the
Pverify algorithm of our scheme is 15.27% of Gu et al.’s
schemes [6], 16.74% of Zhang et al.’s scheme [7], 7.87%
of Wu et al.’s scheme [8], 20.37% of Gu et al.’s scheme
[9], and 19.04% of Ji et al.’s scheme [10]. Thus our
scheme is more efficient than the previous schemes
[6–10].

5 Conclusion

In this paper, we have proposed an efficient identity-based
proxy signature scheme. We also prove the security of the
scheme under random oracle. Compared with previous
scheme, the new scheme reduces the running time heavily.
Therefore, our scheme is more practical than the previous
related schemes for practical application.

Acknowledgments The authors thank the anonymous reviewers and
Dr. Guy Pujolle for their valuable comments. This research was
supported by the Fundamental Research Funds for the Central
Universities under Grants 201275786.

References

1. Shamir A (1984) Identity-based cryptosystems and signature
schemes. In: Proceedings of CRYPTO 1984. Lecture Notes in
Computer Science. vol 196, pp. 47–53

2. Mambo M, Usuda K, Okamoto E (1996) Proxy signature:
delegation of the power to sign messages. IEICE Trans Funda-
mentals E79-A(9):1338–1353

3. Cha JC, Cheon JH (2002) An identity-based signature from gap
Diffie-Hellman groups. In: Desmedt YG (ed) PKC 2003. LNCS.
vol 2567. Springer, Heidelberg, pp 18–30

4. Hess F (2003) Efficient identity based signature schemes based on
pairings. In: Nyberg K, Heys HM (eds) SAC 2002. LNCS, vol
2595. Springer, Heidelberg, pp 310–324

5. Barreto PSLM, Libert B, McCullagh N, Quisquater J (2005)
Efficient and provably-secure identity-based signatures and sign-
cryption from bilinear maps. In: Roy B (ed) ASIACRYPT 2005.
LNCS, vol 3788. Springer, Heidelberg, pp 515–532

6. Gu C, Zhu Y (2005) Provable security of ID-based proxy
signature schemes. In: Lu X, Zhao W (eds) ICCNMC 2005.
LNCS, vol 3619. Springer, Heidelberg, pp 1277–1286

7. Zhang J, Zou W (2007) Another ID-based proxy signature scheme
and its extension. Wuhan Univ J Nat Sci 12:133–136

8. Wu W, Mu Y, Susilo W et al. (2007) Identity-based proxy
signature from pairings, ATC 2007, LNCS 4610, pp. 22–31.

9. Gu C, Zhu Y (2008) An efficient ID-based proxy signature
scheme from pairings. Inscrypt 2007, LNCS 4990, pp. 40–50

10. Ji H, Han W, Zhao L et al (2009) An identity-based proxy
signature from bilinear pairings, 2009 WASE International
Conference on Information Engineering, pp 14–17

11. Chen L, Cheng Z, Smart NP (2007) Identity-based key agreement
protocols from pairings. Int J Inf Secur (6):213–241.

12. David P, Jacque S (2000) Security arguments for digital signatures
and blind signatures. J Cryptol 13(3):361–396

13. Shamus Software Ltd., Miracl library, http://www.shamus.ie/
index.php?page=home

14. The Certicom Corporation, SEC 2: Recommended Elliptic Curve
Domain Parameters, www.secg.org/collateral/sec2_final.pdf

15. Cao X, Kou W, Du X (2010) A pairing-free identity-based
authenticated key agreement protocol with, minimal message
exchanges. Inf Sci 180:2895–2903

16. He D, Chen J, Hu J. An ID-based client authentication with key
agreement protocol for mobile client-server environment on ECC
with provable security, Information Fussion, doi:10.1016/
j.inffus.2011.01.001.

662 Ann. Telecommun. (2011) 66:657–662

http://www.shamus.ie/index.php?page=home
http://www.shamus.ie/index.php?page=home
http://www.secg.org/collateral/sec2_final.pdf
http://dx.doi.org/10.1016/j.inffus.2011.01.001
http://dx.doi.org/10.1016/j.inffus.2011.01.001

	An ID-based proxy signature schemes without bilinear pairings
	Abstract
	Introduction
	Preliminaries
	Background of elliptic curve group
	ID-based proxy signatures

	Our scheme
	Scheme description
	Security analysis

	Comparison with previous scheme
	Conclusion
	References

