
Ann. Telecommun. (2011) 66:339–355
DOI 10.1007/s12243-010-0208-9

Virtual networks: isolation, performance, and trends

Natalia C. Fernandes · Marcelo D. D. Moreira · Igor M. Moraes ·
Lyno Henrique G. Ferraz · Rodrigo S. Couto · Hugo E. T. Carvalho ·
Miguel Elias M. Campista · Luís Henrique M. K. Costa ·
Otto Carlos M. B. Duarte

Received: 1 February 2010 / Accepted: 30 September 2010 / Published online: 7 October 2010
© Institut Télécom and Springer-Verlag 2010

Abstract Currently, there is a strong effort of the re-
search community in rethinking the Internet architec-
ture to cope with its current limitations and support
new requirements. Many researchers conclude that
there is no one-size-fits-all solution for all of the user
and network provider needs and thus advocate for a

This work was supported by CNPq, CAPES, FAPERJ,
FUJB, FINEP, and FUNTTEL.

N. C. Fernandes · M. D. D. Moreira · I. M. Moraes ·
L. H. G. Ferraz · R. S. Couto · H. E. T. Carvalho ·
M. E. M. Campista · L. H. M. K. Costa ·
O. C. M. B. Duarte (B)
Grupo de Teleinformática e Automação (GTA),
Universidade Federal do Rio de Janeiro (UFRJ),
Rio de Janeiro, Brazil
e-mail: otto@gta.ufrj.br

N. C. Fernandes
e-mail: natalia@gta.ufrj.br

M. D. D. Moreira
e-mail: marcelo@gta.ufrj.br

L. H. G. Ferraz
e-mail: lyno@gta.ufrj.br

R. S. Couto
e-mail: souza@gta.ufrj.br

H. E. T. Carvalho
e-mail: hugo@gta.ufrj.br

M. E. M. Campista
e-mail: miguel@gta.ufrj.br

L. H. M. K. Costa
e-mail: luish@gta.ufrj.br

I. M. Moraes
Instituto de Computação (IC), Universidade Federal
Fluminense (UFF), Niterói, RJ, Brazil
e-mail: igor@gta.ufrj.br

pluralist network architecture, which allows the coexis-
tence of different protocol stacks running at the same
time over the same physical substrate. In this paper,
we investigate the advantages and limitations of the
virtualization technologies for creating a pluralist envi-
ronment for the Future Internet. We analyze two types
of virtualization techniques, which provide multiple
operating systems running on the same hardware, rep-
resented by Xen, or multiple network flows on the same
switch, represented by OpenFlow. First, we define the
functionalities needed by a Future Internet virtual net-
work architecture and how Xen and OpenFlow provide
them. We then analyze Xen and OpenFlow in terms of
network programmability, processing, forwarding, con-
trol, and scalability. Finally, we carry out experiments
with Xen and OpenFlow network prototypes, identify-
ing the overhead incurred by each virtualization tool
by comparing it with native Linux. Our experiments
show that OpenFlow switch forwards packets as well as
native Linux, achieving similar high forwarding rates.
On the other hand, we observe that the high complexity
involving Xen virtual machine packet forwarding limits
the achievable packet rates. There is a clear trade-off
between flexibility and performance, but we conclude
that both Xen and OpenFlow are suitable platforms for
network virtualization.

Keywords Future Internet · Virtual networks ·
Routing

1 Introduction

The Internet is a great success with more than one
billion users spread over the world. The Internet model

340 Ann. Telecommun. (2011) 66:339–355

is based on two main pillars, the end-to-end data trans-
fer service and the TCP/IP stack [2]. Indeed, those
two pillars guarantee that the network core is simple
and transparent, while all the intelligence is placed
on the end systems. This architectural choice makes it
easy to support new applications because there is no
need to change the network core. On the other hand,
this model ossifies the Internet, making it difficult to
solve structural problems like scalability, management,
mobility, and security [6]. Today, there is a rough con-
sensus that upgrade patches are not enough to meet
current and future requirements. Then, the Internet
must be reformulated to provide a flexible infrastruc-
ture that supports innovations in the network, which
is being called the Future Internet [3, 6]. We divide
the models for the Future Internet into two types:
monist, described in Fig. 1a, and pluralist, described
in Fig. 1b [1]. According to the monist model, the
network has a monolithic architecture that is flexible
enough to provide support to new applications. On the
other hand, the pluralist approach is based on the idea
that the Internet must support multiple protocol stacks
simultaneously. Hence, the pluralist model establishes
different networks, according to the needs of network
applications. A characteristic in favor of the pluralist
model is that it intrinsically provides compatibility with
the current Internet, which can be one of the supported
protocol stacks. Other specialized networks could be
used to provide specific services, such as security, mo-
bility, or quality of service. This is a simpler approach
than trying to design a network that could solve all the
problems that we already know in the network, as well
as all the other problems that we still do not know, as
suggested by the monist model.

All pluralist proposals are based on the same idea
that multiple virtual networks should run over the same
physical substrate [9], even though they differ in packet
formats, addressing schemes, and protocols. Indeed,
the virtual networks share the same physical medium,

but run different protocol stacks independently from
each other.

This paper addresses the issue of sharing the network
physical substrate among different virtual networks.
We analyze two of the main approaches for virtualiz-
ing the physical network, Xen [7] and OpenFlow [12],
and discuss the use of these technologies for running
virtual networks in parallel. The main objective of this
paper is to investigate the advantages and limitations
of the network virtualization technologies for creating
a virtual environment that could be used as the basis of
a pluralist architecture for the Future Internet.

The performance of Xen and OpenFlow in personal
computers used as routers/switches has been previously
evaluated. Egi et al. [7] evaluate the performance of
different forwarding schemes using Xen. Authors ob-
serve that forwarding packets using virtual machines
severely impact system performance. Therefore, they
evaluate the forwarding performance in a specialized
domain, improving the performance of Xen to near
non-virtualized environments. Egi et al. argue that each
virtual machine requires CPU time to process its oper-
ations. Therefore, the number of virtual-machine con-
text switches increases proportionally to the number
of instantiated virtual machines, decreasing the per-
formance of the whole system. Mateo analyzes packet
forwarding using OpenFlow [11]. He investigates
the network aggregated throughput under normal
and saturated conditions. In addition, he also an-
alyzes different OpenFlow configurations. Mateo
shows that OpenFlow throughput can be as high as
non-virtualized environments. Nevertheless, this per-
formance is affected by the flow table size. He shows
that flow tables configured using a hash algorithm
reaches high aggregated throughput even under heavy
traffic conditions.

The contributions of this paper are threefold. First,
we establish the functionalities and primitives required
by a virtual network architecture and show how Xen

Fig. 1 Models for the a
monist and b pluralist
network architectures

(a) Current monist architecture model. Only one protocol
stack running over the physical substrate.

(b) Pluralist architecture model. Different protocol stacks run-
ning, at the same time, over the same physical substrate.

Ann. Telecommun. (2011) 66:339–355 341

and OpenFlow satisfy such requirements. We then
provide a detailed comparison of Xen and Open-
Flow virtualization models, showing how they impact
network scalability, programmability, processing, for-
warding, control, and management. We show that a
network virtualization model using Xen is a powerful
and flexible solution because the whole network ele-
ment can be virtualized into virtual slices that have
total control of hardware components. This power-
ful flexibility, however, impacts the packet forwarding
performance [7]. A solution to this problem seems
to be the sharing of data planes among virtual slices.
OpenFlow follows this approach by defining a central-
ized element that controls and programs the shared
data plane in each forwarding element. Finally, we
carry out experiments to compare Xen and OpenFlow
performance acting as a virtualized network element
(router/switch) in a personal computer. Both Xen and
OpenFlow are deployed in a Linux system. Hence, we
use native Linux performance as a reference to mea-
sure the overhead introduced by each virtualization
tool. We analyze the scalability of Xen and OpenFlow
with respect to the number of parallel networks. Our
experiments show that, using shared data planes, Xen
and OpenFlow can multiplex several virtual networks
without any measurable performance loss, comparing
with a scenario where the same packet rate is handled
by a single virtual network element. Delay and jitter
tests show similar results, with no measurable overhead
introduced by network virtualization tools, except for
the case in which the traffic is forwarded by Xen virtual
machines. Even in this worst case, which presents per-
hop delays of up to 1.7 ms, there is no significant impact
on real-time applications such as voice over IP (VoIP).
Finally, our forwarding performance experiments show
that OpenFlow switch forwards packets as well as na-

tive Linux, achieving about 1.2 Mp/s of packet forward-
ing rate without any packet loss. On the other hand,
we observe a high complexity involving Xen virtual
machine packet forwarding that limits the forwarding
capacity to less than 200 kp/s. Differently from previous
work, we also analyze how the allocation of processing
resources affects Xen forwarding performance.

Based on our findings, we conclude that both Xen
and OpenFlow are suitable platforms for network virtu-
alization. Nevertheless, the trade-off between flexibility
and performance must be considered in the Future
Internet design. This trade-off indicates that the use of
shared data planes could be an important architectural
choice when developing a virtual network architecture.

The remainder of this paper is structured as follows.
In Section 2, we discuss the approaches for network
virtualization according to data plane and control plane
structure. In Section 3, we describe both Xen and
OpenFlow, and in Section 4, we discuss the use of these
technologies for network virtualization. We describe
the performance test environment and the obtained
results in Section 5. Finally, in Section 6, we present our
conclusions.

2 Approaches for network virtualization

We consider virtualization as a resource abstraction
that allows slicing a resource into several slices, as
shown in Fig. 2. This abstraction is often implemented
as a software layer that provides “virtual sliced in-
terfaces” quite similar to the real resource interface.
The coexistence of several virtual slices over the same
resource is possible because the virtualization layer
breaks the coupling between the real resource and

(a) The concept of slicing resources
by using virtualization.

(b) Virtual slices on a computer
hardware.

(c) Virtual slices on a network.

Fig. 2 Obtaining “sliced” resources by means of virtualization for different scenarios

342 Ann. Telecommun. (2011) 66:339–355

the above layer. Figure 2 shows two examples of vir-
tualization: computer virtualization and network vir-
tualization. The computer virtualization abstraction is
implemented by the so-called virtual machine monitor
(VMM), which provides to virtual machines (VMs) an
interface (i.e., the hardware abstraction layer) quite
similar to a computer hardware interface, which in-
cludes processor, memory, input/output devices, etc.
Thus, each VM has the impression of running directly
over the physical hardware, but actually the physical
hardware is shared among several VMs. We call slic-
ing this kind of resource sharing because the virtual
machines are isolated: One VM cannot interfere with
other VMs. Computer virtualization is widely used in
data centers to allow running several servers in a sin-
gle physical machine. This technique saves energy and
reduces maintenance costs, but flexibility is the most
important virtualization feature because each virtual
machine can have its own operating system, application
programs, configuration rules, and administration pro-
cedures. The flexibility of running whatever is desired
into virtual slices, such as different and customized
protocol stacks is the main motivation of applying
the virtualization idea to networks [1]. As shown in
Fig. 2, network virtualization is analogous to com-
puter virtualization, but now the shared resource is
the network.

2.1 Network virtualization for accomplishing
the pluralist approach

Network virtualization allows to instantiate/delete and
monitor virtual networks and also to migrate network
elements and set its resource-allocation parameters.
Such functionalities make the network virtualization a
suitable technology for creating multiple virtual net-
works and, as a consequence, for supporting the plural-
ist approach because several requirements are satisfied,
as explained below.

Functionality 1: creation of multiple customized net-
works In a pluralist architecture, we have multiple
networks running in parallel. The instantiate primitive
can be used to instantiate virtual network elements,
such as virtual routers and/or virtual links, and there-
fore multiple virtual networks can be rapidly deployed
and run simultaneously. Each virtual network has its
own protocol stack, network topology, administration
policy, etc. This enables network innovation and new
business models [9]. With network virtualization, a ser-
vice provider can allocate an end-to-end virtual path
and instantiate a virtual network tailored to the offered
network service, e.g., a network with quality-of-service

guarantees. Hence, new services can be easily deployed
and new players can break the barrier to enter in the
network service market.

Functionality 2: f lexible management The network vir-
tualization layer breaks the coupling between the logic
used to construct the forwarding table and the phys-
ical hardware that implements the packet forwarding
task [17]. Therefore, the migrate primitive allows mov-
ing a virtual network element from a physical hard-
ware to another, without changing the logical/virtual
network topology. In addition, traffic engineering and
optimization techniques can use the migrate primitive
to move virtual network elements/links along the phys-
ical infrastructure in order to minimize energy costs,
distance from servers to specific network users, or other
objective functions.

Functionality 3: real-time control The virtual networks
architecture also supports real-time control of virtual
network resources because resource-allocation para-
meters can be set for each virtual network element
(router, switch, link, gateway, etc.). We can set the allo-
cated memory, bandwidth, maximum tolerated delay,
etc. Even specific hardware parameters can be set, for
instance, the number of virtual processors, priority of
processor usage in a contention scenario, etc. Thus,
we can dynamically adapt the resources allocated to
each virtual network according to the current network
condition, number of users, priority of each virtual
network, service level agreements, etc.

Functionality 4: monitoring Network virtualization
also comes with a set of monitoring tools required to
measure variables of interest, such as available band-
width, processor and memory usage, link and end-
to-end delay, etc. The monitor primitive is called to
measure the desired variables. Furthermore, an intru-
sion detection system can also be active to detect ma-
licious nodes. In this case, the delete primitive can be
used to delete a virtual network element/link or even
an entire network if an attack (e.g., distributed denial
of service) is detected.

2.2 Network virtualization approaches

Network virtualization platforms must provide the
above-mentioned functionalities. We now evaluate the
main approaches for creating these models according to
the level at which the network virtualization is placed.

Figure 3 compares two basic approaches for virtu-
alizing a network element. Figure 3a shows the con-
ventional network element architecture, with a single
control and data plane. For a router, the control plane

Ann. Telecommun. (2011) 66:339–355 343

(a) Conventional architecture
or monist model: only one
network.

(b) Pluralist model virtualizing
the control plane (CP).

(c) Pluralist model virtualizing
the control plane (CP) and
the data plane (DP).

Fig. 3 Approaches for network virtualization differ on the level
at which the virtualization layer is placed: a no virtualization in
the monist model; b pluralist model with several virtual networks

with the same data plane, but differing in control plane; and
c pluralist model with several virtual networks differing in control
and data planes

is responsible of running the network control software,
such as routing algorithms (e.g., RIP, OSPF, and BGP)
and network control protocols (e.g., ICMP), whereas
the data plane is where forwarding tables and hardware
data paths are implemented. To virtualize the routing
procedure means that a virtualization layer is placed
at some level of the network element architecture in
order to allow the coexistence of multiple virtual net-
work elements over a single physical network element.
Assuming a virtualization layer placed between the
control and data planes, then only the control plane
is virtualized, as shown in Fig. 3b. In this case, the
data plane is shared by all virtual networks and each
virtual network runs its own control software. Com-
pared to the conventional network architecture, this
approach greatly improves the network programma-
bility because now it is possible to run multiple and
customized protocol stacks, instead of a single and fixed
protocol stack. For instance, it is possible to program a
protocol stack for network 1, which is different from
networks 2 and 3, as illustrated in the figure. In the sec-
ond network virtualization approach, both control and
data planes are virtualized (Fig. 3c). In this case, each
virtual network element implements its own data plane,
besides the control plane, improving even more the net-
work programmability. This approach allows customiz-
ing data planes at the cost of some performance loss
because the data plane is no longer dedicated to a com-
mon task. This trade-off between network program-
mability and performance is investigated in detail in
Sections 4.1 and 4.2.

It is worth mentioning that the approach that virtu-
alizes only the control plane can be further divided into
more subcategories depending on the isolation level
in data plane sharing among virtual network elements.
If there is a strong isolation, then each virtual control
plane has access to only a part of the data plane and
cannot interfere with the other parts. On the other
hand, if the data plane is really shared among virtual
control planes, then it is possible that a virtual con-

trol plane interferes with other virtual control planes.
For instance, it is possible that a single virtual control
plane fills the entire forwarding table with its own
entries, which can lead to packet drops on the other
virtual networks. The decision between strong isolation
(slicing) and weak isolation (sharing) is analogous to
the decision between circuit and packet switching.

3 Network virtualization technologies

In this section, we present two technologies that can be
used to network virtualization: Xen and OpenFlow.

3.1 Xen

Xen is an open-source VMM, also called hypervisor,
that runs on commodity hardware platforms [7]. Xen
architecture is composed of one VMM located above
the physical hardware and several domains running
simultaneously above the hypervisor, called virtual ma-
chines, as shown in Fig. 4. Each virtual machine has
its own operating system and applications. The VMM
controls the access of the multiple domains to the hard-
ware and also manages the resources shared by these
domains. Hence, virtual machines are isolated from
each other, i.e., the execution of one virtual machine
does not affect the performance of another. In addition,
all the device drivers are kept in an isolated driver
domain, called domain 0 (dom0), in order to provide
reliable and efficient hardware support [7]. Domain 0
has special privileges compared with the other domains,
referred to as user domains (domUs), because it has
total access to the hardware of the physical machine.
On the other hand, user domains have virtual drivers
that communicate with dom0 to access the physical
hardware.

Xen virtualizes a single physical network interface
by demultiplexing incoming packets from the physical

344 Ann. Telecommun. (2011) 66:339–355

Fig. 4 The Xen architecture

interface to the user domains and, conversely, mul-
tiplexing outgoing packets generated by these user
domains. This procedure, called network I/O virtual-
ization, works as follows. Domain 0 directly access
I/O devices by using its native device drivers and also
performs I/O operations on behalf of domUs. On the
other hand, user domains employ virtual I/O devices,
controlled by virtual drivers, to request dom0 for device
access [13], as illustrated in Fig. 4. Each user domain has
virtual network interfaces, called front-end interfaces,
required by this domain for all its network commu-
nications. Back-end interfaces are created in domain
0 corresponding to each front-end interface in a user
domain. The back-end interfaces act as the proxy for
the virtual interfaces in dom0. The front-end and back-
end interfaces are connected to each other through an
I/O channel. In order to exchange packets between
the back-end and the front-end interfaces, the I/O
channel employs a zero-copy mechanism that remaps

the physical page containing the packet into the target
domain [13]. It is worth mentioning that as perceived by
the operating systems running on the user domains, the
front-end interfaces are the real ones. All the back-end
interfaces in dom0 are connected to the physical inter-
face and also to each other through a virtual network
bridge. This is the default architecture used by Xen and
it is called bridge mode. Thus, both the I/O channel
and the network bridge establish a communication path
between the virtual interfaces created in user domains
and the physical interface.

Different virtual network elements can be imple-
mented using Xen as it allows multiple virtual machines
running simultaneously on the same hardware [7], as
shown in Fig. 5a. In this case, each virtual machine runs
a virtual router. Because the virtualization layer is at a
low level, each virtual router can have its own control
and data planes. The primitives for virtual networks,
defined in Section 2.1, are easily enforced by using Xen

(a) Xen: one data plane (DP) and one control plane
(CP) per virtual router.

(b) OpenFlow: a shared data plane (DP) per node and
all the control planes (CPs) on the controller.

Fig. 5 Virtual networks with a Xen and b OpenFlow

Ann. Telecommun. (2011) 66:339–355 345

to build virtual routers. First, the execution of one vir-
tual router does not affect the performance of another
one because user domains are isolated with Xen. In
addition, virtual routers are instantiated, configured,
monitored, and deleted on demand. Finally, the live-
migration mechanism implemented by Xen [5] allows
virtual routers to move over different physical routers.

3.2 OpenFlow

OpenFlow [12] allows the use of the wiring closets on
university campus not only for the production network
but also for experimental networks. The OpenFlow
project, proposed by Stanford University, aims at cre-
ating virtual environments for innovations in parallel
with the production network using network elements
such as switches, routers, access points, and personal
computers.

OpenFlow presents a new architecture for provid-
ing virtual network environments. The key idea is the
physical separation of the network forwarding function,
carried out by the data plane, and the network control
function, carried out by the control plane. Hence, data
and control planes are performed by different network
elements. The virtualization of the forwarding elements
is accomplished by a shared flow table, which repre-
sents the data plane, and all control planes are cen-
tralized in a network element, called controller, which
runs applications that control each virtual network. An
example of network using OpenFlow is on Fig. 5b.

The OpenFlow protocol defines the communication
between forwarding elements and the controller. It is
based on the establishment of a secure channel between
each forwarding element and the controller, which uses
this channel to monitor and configure the forwarding
elements. Basically, OpenFlow defines a flow as a se-
quence of packets and performs forwarding based on
flows. Every time the first packet of a not yet classified
flow reaches a forwarding element, it is forwarded to
the controller. Then, the controller sets a path for the
following packets of the flow by setting forwarding
rules in each forwarding element that belongs to the
chosen path. The controller may also set the action of
normal processing for a flow to be forwarded according
to conventional layer-2 (L2) and layer-3 (L3) routing,
as if OpenFlow did not exist. That is the reason why

OpenFlow can be used in parallel to the production
network without affecting production traffic.

The data plane in OpenFlow is a flow table described
by header fields, counters, and actions. The header
fields are a 12-tuple structure that describes the packet
header, as shown in Fig. 6. These fields specify a flow
by setting a value for each field or by using a wild-
card to set only a subset of fields. The flow table also
supports the use of subnet masks, if the hardware in
use also supports this kind of match [15]. This 12-tuple
structure gives high flexibility for the forwarding func-
tion because a flow can be forwarded based not only
on the destination IP, as in the conventional TCP/IP
network, but also on the TCP port, the MAC address,
etc. Because the flows can be set based on layer-2
addresses, the forwarding elements of OpenFlow are
also called OpenFlow switches. This, however, does
not imply that forwarding in OpenFlow must be based
on layer 2. Moreover, one of the future objectives of
OpenFlow is that the header fields are user-described,
which means that the packet header will not be de-
scribed by fixed fields in a flow, but by a combination
of fields specified by the administrator of the virtual
network. Thus, OpenFlow will be able to forward flows
belonging to networks with any kind of protocol stack.

After the header fields, the flow description is fol-
lowed by the counters, which are used for monitor-
ing forwarding elements. Counters compute data such
as the flow duration and the amount of bytes that
were forwarded by one element. The last fields in the
flow description are the actions, which are a set of
instructions that can be taken over each packet of a
specific flow in the forwarding elements. These actions
include not only forwarding a packet to a port but also
changing header fields such as VLAN ID, priority, and
source/destination addresses.

The controller is a central element in the network,
which communicates with all the nodes to configure
the flow tables. The controller runs a network operat-
ing system, which provides the basic functions of net-
work configuration to the applications that manage the
virtual networks. Hence, the controller in OpenFlow
works as an interface between the network applica-
tions and the forwarding elements, providing the basic
functions for accessing the first packet in flows and for
monitoring network elements. OpenFlow works with
any controller that is compatible with the OpenFlow

Fig. 6 A flow entry in an OpenFlow forwarding element

346 Ann. Telecommun. (2011) 66:339–355

Fig. 7 The OpenFlow controller model

protocol, such as Nox [10]. In this case, each control
plane is composed of a set of applications running over
Nox. Hence, a virtual network in OpenFlow is defined
by its control plane and by the flows that are being
controlled by this control plane, as shown in Fig. 7.
Hence, the virtual network topology depends on the
current flows in the network.

Using the single controller model, it is possible to
create many virtual networks. It is important noticing,
however, that different applications running over the
same operating system are not isolated. As a conse-
quence, if one application uses all the available re-
sources or crashes it can stop the controller, harming
all the other virtual networks. FlowVisor is a tool used
with OpenFlow to allow different controllers working
over the same physical network [16]. FlowVisor works
as a proxy between the forwarding elements and the
controller, assuming, for instance, one controller per
network. Using this model, it is possible to guarantee
that failures in one virtual network will not impact the
other virtual networks.

OpenFlow provides a flexible infrastructure based
on the idea of distributed forwarding elements, which
provide basic functions for operating a network and
centralized control planes. Using this infrastructure, it
is possible to slice the physical network into multiple
virtual networks. In OpenFlow, the instantiation of a
network is just the creation of sets of applications in
the controller. The new network flows will be created
on demand, according to the packets that enter the net-
work. OpenFlow also provides a flexible infrastructure
for reallocating network resources, which means only
to reprogram the flow table in each element of the
network. This is a simple operation for the controller
because it knows where the physical elements are and
how they are connected.

4 Characteristics of Xen and OpenFlow
virtualization technologies

Neither Xen nor OpenFlow were developed for sup-
porting a pluralist architecture for Internet, but they are

the best commodity alternatives for a virtual network
substrate. We evaluate the main characteristics of each
of these technologies, emphasizing the advantages and
the disadvantages for supporting multiple networks and
providing flexibility for innovations.

Xen and OpenFlow have different virtualization
concepts. Xen creates virtual networks by slicing physi-
cal network elements into different concurrent virtual
routers. Consequently, a virtual network is seen as a
set of interconnected virtual routers distributed over
the physical infrastructure. Differently, OpenFlow cre-
ates virtual networks by slicing the network control
into many control planes, which create the forwarding
tables in each network element. Hence, when using
OpenFlow, a virtual network is a set of flows with
common characteristics, which are controlled by the
same set of applications of the OpenFlow controller.
The differences between Xen and OpenFlow virtual-
ization models impact scalability, programmability, and
network-data processing/forwarding.

4.1 Network-data processing and programmability

One of the main advantages of the pluralist model is
to support innovation. As a consequence, the network
must be flexible enough providing end-to-end paths
over the available physical infrastructure, guaranteeing
to the administrator the whole control of the network,
which includes the choice of the protocol stack, the
forwarding rules, the network-data processing, etc.

Because Xen virtualization layer is directly placed
over the hardware, each virtual router has access to
all computer components, such as memory, processor,
and I/O devices. Therefore, the network administrator
is free to choose everything that runs over the virtual-
ization layer of Xen. Thus, different operating systems,
forwarding tables, forwarding rules, and so on can be
defined for each virtual network. Furthermore, both
data and control plane can be completely virtualized,
as shown in Fig. 3c. Therefore, Xen provides a power-
ful and flexible platform for the network control and
management, allowing hop-by-hop packet processing
and forwarding. This way, virtual networks with new
functionalities can be easily deployed. For instance,
a virtual network with support for packet signature
can be instantiated to guarantee authentication and
access control. This functionality would solve security
problems of the current Internet that cannot be im-
plemented due to the network “ossification” [6]. Even
disruptive network models can be implemented due to
Xen flexibility for packet processing.

The OpenFlow virtualization model is different from
Xen because the virtual slice is a set of flows and, as

Ann. Telecommun. (2011) 66:339–355 347

a consequence, the actions concern flows, instead of
packets. OpenFlow provides a simple packet forward-
ing scheme in which the network element looks for a
packet entry on the flow table to forward the packet.
If there is no entry, the packet is forwarded to the
controller that sets a forwarding rule in each node on
the selected route to forward the packet. Hence, the
main disadvantage of the OpenFlow is that all virtual
networks have the same forwarding primitives (flow
table lookup, wildcard matching, and actions) because
the data plane is shared by all the virtual networks in
each network node. This, however, does not imply in a
completely inflexible packet processing. Indeed, Open-
Flow protocol version 1 specifies that the controller can
set flow actions that define that a header field can be
modified before forwarding the packet. Hence, Open-
Flow provides a fine-grained forwarding table, much
more flexible than the current TCP/IP forwarding table.
For instance, the forwarding element could change the
destination address to forward the packet to a middle
box before forwarding it to the next network element.
On the other hand, packet-level features, such as packet
signature verification, are not easily implemented in
OpenFlow because such features must be executed by
the controller or by a middle box, which causes a great
loss in the network performance.

Opposing to the OpenFlow shared-data-plane model,
Xen provides independent data planes for different
virtual networks. Nevertheless, Xen is still based on the
current TCP/IP forwarding table. Currently, Xen pro-
vides a forwarding table which is based on IP routing,
which means that the forwarding plane is only based
on the source and destination IP addresses. In contrast,
OpenFlow flow space definition is composed of n di-
mensions, where n is the number of fields in the header
that could be used to specify a flow, as shown on Fig. 8.
Hence, we define a flow based on all the dimensions
or based on a wildcard that defines which header fields

are important for forwarding packets of that flow [12].
The consequence of this kind of forwarding table is
that the packets are forwarded based not only on the
destination IP but also on other parameters, such as
the kind of application that is in use. This kind of
forwarding table is also possible in Xen, but it is still
not available.

Another key difference between Xen and OpenFlow
in what concerns programmability is the control plane
model. In Xen, each virtual network node has both
the data and the control plane, and consequently, the
network control is decentralized. In OpenFlow, the
network node has only the data plane. The control
plane is centralized on the controller, which is a special
node in the network. The use of a centralized control
plane makes it easier to develop algorithms for network
control, when compared to the use of a decentralized
approach. A centralized control, however, creates the
need for an extra server in the network and also creates
a single failure point in the network.

4.2 Performance on network-data forwarding

One important feature of a technology to provide an
environment with multiple virtual networks for the
Future Internet is a high forwarding performance. The
efficiency of network-data forwarding does not only
depend on the hardware but also on the logic provided
by each technology. In this section, we assume that
both Xen and OpenFlow run in the same hardware to
evaluate which losses each technology imposes to the
network-data forwarding.

Xen performance depends on the location where
packet forwarding is performed. For each virtual
router, packet forwarding can be performed by the
operating system running on the user domain corre-
sponding to the virtual router or by domain 0. In
the first case, we have more flexibility in the packet

Fig. 8 Models of flow space
to define the forwarding table
in a TCP/IP based networks
and in b OpenFlow based
networks

(a) Flow space definition in the
 TCP/IP model.

(b) Flow space definition in the
OpenFlow model.

348 Ann. Telecommun. (2011) 66:339–355

processing, but the costs associated with moving pack-
ets between dom0 and domU, to perform forwarding,
introduces control overhead and impact Xen perfor-
mance. In the second case, packets to and from all
virtual routers are forwarded by dom0, which deals with
multiple forwarding tables simultaneously.

The Xen performance of packet forwarding also de-
pends on the two possible modes used to move packets
among virtual machines [7]: bridge and router modes.
The bridge mode is the default network architecture
used by Xen, presented in Fig. 4. Nevertheless, this
architecture does not apply for a router because we
need more than one physical interface in each device.
Figure 9a shows an example of the bridge mode with
two physical interfaces. We have two bridges on dom0,
one per physical interface, connecting the back-end
interfaces and the physical ones. Packet forwarding, in
this case, can be performed at dom0 by using layer-2

(a) The bridge mode.

(b) The router mode.

Fig. 9 The a, b Xen network architectures for packet forwarding

or layer-3 forwarding. Let p be a packet arriving at
physical interface ph0 that must be forwarded to phys-
ical interface ph1. First, p is handled by the device
driver running on dom0. At this time, p is in ph0, which
is connected to bridge br0. This bridge demultiplexes
the packet p and moves it to back-end interface be00
based on the MAC address of the frame destination.
After that, p is moved from be00 to the front-end
interface fe0 by using the I/O channel through the
hypervisor. The packet p is then forwarded to the front-
end interface fe1 and after that another I/O channel
is used to move p to the back-end interface be01.
This interface is in the same bridge br1 of the physical
interface ph1. Thus, p reaches its outgoing interface. It
is worth mentioning that the hypervisor is called twice
to forward one packet.

In the router mode, illustrated by Fig. 9b, the domain
0’s interfaces are the physical ones with an IP address
associated to each one. As a consequence, the router
mode does not require bridges connecting each physical
interfaces and I/O channels, i.e., packet forwarding
from a physical interface to another one at dom0 is
performed as well as in native Linux. In this case,
if domain 0 is used as shared data plane (Fig. 3b),
there are no calls to the hypervisor. With the router
mode, the hypervisor is called only when each virtual
router implements its own data plane, as illustrated in
Fig. 3c. In this case, packets are routed to the back-
end interface associated to the destination domU and
then are moved to the front-end interface by using the
I/O channel through the hypervisor. Then, packets are
moved to the back-end interface and finally routed to
the outgoing physical interface. In order to allow user
domains to send and receive packets, IP addresses are
also assigned to back-end interfaces in contrast to the
bridge mode.

OpenFlow does not assume virtualized data planes
on forwarding elements and, consequently, follows the
model of one data plane for all the networks. Con-
sequently, it is expected for OpenFlow performance
the same performance of the native packet forward-
ing. OpenFlow, however, shows a disadvantage when
the flow is not configured. As we explained before,
when a packet reaches an OpenFlow switch, if the
flow is not configured on the table, it is forwarded
through the network to the controller. The controller,
then, configures the OpenFlow switches to route the
packet through the network. This mechanism intro-
duces a greater delay when forwarding the first packet
of each flow, due to the transmission and the controller
processing delays. If the traffic is mostly formed of
small flows, it can imply in a performance decrease in
OpenFlow.

Ann. Telecommun. (2011) 66:339–355 349

4.3 Scalability to the number of virtual networks

Scalability is related to the number of virtual net-
works running over the same physical node. The new
Internet requisites are still an open issue, and the new
architecture should not restrict the number of networks
running over the available physical infrastructure. The
Xen approach is less flexible in this sense because the
virtual network element is a virtual machine, which de-
mands much more hardware resources, such as process-
ing power and memory space, than a simple set of
flows in an OpenFlow switch. Indeed, context switching
and datapath in Xen are much more complex than in
OpenFlow. The concept of virtual networks in Open-
Flow is given by a set of flows which corresponds to a
specific set of characteristics that define that virtual net-
work. For this reason, OpenFlow supports thousands
of virtual networks running in parallel, while Xen is
restricted to the number of virtual machines that can
be multiplexed over the same hardware. It is worth
mentioning that Xen scalability can be improved if
domain 0 is used as a shared data plane.

5 Performance evaluation

We evaluate the performance of Xen and OpenFlow
in a testbed composed of three machines, as shown
in Fig 10. The traffic generator (TG) machine sends
packets to the traffic receiver (TR) machine, through
the traffic forwarder (TF) machine, which simulates a
virtual network element. The TF machine is an HP Pro-
liant DL380 G5 server equipped with two Intel Xeon
E5440 2.83 GHz processors and 10 GB of RAM. Each
processor has four cores; therefore, TF machine can run
eight logical CPUs. When not mentioned, TF machine
is set up with one logical CPU. TF machine uses the two
network interfaces of a PCI-Express × 4 Intel Gigabit
ET Dual Port Server Adapter. The traffic generator

Fig. 10 Testbed used in the evaluation. The TF machine is set as
Xen, OpenFlow, or native Linux, according to each experiment

and traffic receiver are both general-purpose machines
equipped with an Intel DP55KG motherboard and an
Intel Core I7 860 2.80 GHz processor. TG and TR are
directly connected to the TF via their on-board Intel
PRO/1000 PCI-Express network interface.

In the following experiments, we test packet for-
warding using native Linux, Xen, and OpenFlow.

In native Linux experiments, the traffic forwarder
runs a Debian Linux kernel version 2.6.26. This kernel
is also used in OpenFlow experiments with an addi-
tional kernel module to enable OpenFlow. In Xen
experiments, domain 0 and user domains run a Debian
Linux system with a paravirtualized kernel version
2.6.26. For traffic generation, we use the Linux Kernel
Packet Generator [14], which works as a kernel module
and can generate packets at high rates. In the following,
we explain the packet forwarding solutions evaluated in
our experiments.

5.1 Xen, OpenFlow, and native Linux scenarios

In the Xen scenario, we test three different network
configurations. In the two first ones, Xen works in
the bridge mode, explained in Section 4.2. In the first
configuration, called Xen-VM, virtual machines work
as complete virtual routers, which means that both data
and control plane are on the virtual machine. In the sec-
ond configuration, called Xen-Bridge, we assume that
virtual machines contain only the control plane. The
data plane, running in domain 0, is shared by all virtual
routers. The Xen-Bridge configuration is expected to
give a higher performance on packet forwarding, but
it reduces the flexibility on packet processing when
compared with the Xen-VM configuration. Finally, in
the third configuration, Xen works in the router mode.
In this case, we evaluate only the packet forwarding
through domain 0, and we call this configuration Xen-
Router. We assume, for this configuration, the exis-
tence of a forwarding table in domain 0 corresponding
for each virtual machine. We use the Xen hypervisor
version 3.4.2 for all configurations.

In the OpenFlow scenario, the TF acts as an Open-
Flow switch. An OpenFlow controller is connected to
TF, using a third network interface. TF runs OpenFlow
Reference System version 0.8.9. The controller is an
IBM T42 Laptop that runs a Debian Linux system. We
choose Nox version 0.6.0 [10] as the network controller.
We use the pyswitch application, which is available in
Nox to create flow rules in the OpenFlow switch.

In the native Linux scenario, we test three different
packet forwarding configurations. In the first one,
Native-Router, TF works as a router. For this test, we
used the standard Linux kernel routing mechanism with

350 Ann. Telecommun. (2011) 66:339–355

static routes. The Native-Bridge configuration uses the
Linux kernel bridge, which implements a software-
based switch on the PC. Since we compare layer-2 and
layer-3 solutions with OpenFlow and Xen, we need
to compare their performance with both bridge and
router modes of native Linux to evaluate the impact of
virtualization on packet forwarding. Xen in the bridge
mode, however, has a different configuration from the
native Linux with bridge. This is because Linux bridge
does L2 forwarding between two physical interfaces
and Xen goes up to L3 forwarding. To perform a fair
comparison between Xen in bridge mode and native
Linux, we create an hybrid mode (bridge and router)
for native Linux, which we call Native-Hybrid. In this
hybrid mode, TF’s physical network interfaces are con-
nected to different software bridges and kernel routing
mechanism forwards packet between the two bridges.
This configuration simulates in native Linux what is
done on Xen bridge mode, illustrated in Fig. 9a.

5.2 Experimental results

Our first experiments measure the forwarding rate
achieved by the different packet forwarding solutions.
The packet forwarding rate analysis is accomplished
with minimum (64 bytes) and large (1,512 bytes)
frames. We use 64-byte frames to generate high packet
rates and force high packet processing in TF and 1,512-
byte frames to saturate the 1 Gb/s physical link.

Figure 11a, b show the forwarding rate obtained with
native Linux, which gives an upper bound for Xen and
OpenFlow performances. We also plot the Point-to-
Point packet rate, which is achieved when TG and TR
are directly connected. Any rate achieved below the
Point-to-Point packet rate is caused by loss between
TG and TR. The results show that native Linux in
router mode performs as well as the Point-to-Point sce-
nario. This is explained by the low complexity on ker-
nel routing mechanism. In the bridge mode, however,

0 0.4 0.8 1.2
0

0.4

0.8

1.2

Generated packet rate (Mp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(M

p/
s)

Point-to-Point

Native-Router

Native-Bridge

Native-Hybrid

(a) Native Linux.

0 0.4 0.8 1.2
0

0.4

0.8

1.2

Generated packet rate (Mp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(M

p/
s)

Xen-Router

Xen-Bridge

XenVM-1

XenVM-2

Native-Router

(b) Xen.

0 0.4 0.8 1.2
0

0.4

0.8

1.2

Generated packet rate (Mp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(M

p/
s)

OpenFlow

Native-Router

(c) OpenFlow.

Fig. 11 Packet rate for different forwarding elements, using 64-byte frames

Ann. Telecommun. (2011) 66:339–355 351

native Linux performs worse than in router mode. Ac-
cording to Mateo [11], this result may be due to the
Linux bridge implementation, which is not optimized
to support high packet rates. Finally, we observe that
native Linux in the hybrid mode has the worst forward-
ing performance. This is an expected result due to the
previously mentioned limitations of bridge mode and
the incremental cost required to forward packets from
the bridge to IP layer in TF.

The forwarding rate results for Xen are shown in
Fig. 11b. First, we analyze a scenario where domain 0
forwards the packets. In this scenario, no virtual ma-
chine is running, although the same results are expected
when virtual machines are up and they do not forward
packets [7]. In this experiment, we test the Xen bridge
and router modes. Xen-Bridge uses the Linux bridge
to interconnect the virtual machines, as explained in
Section 4.2. Xen-Bridge suffers the same limitations of
native Linux in bridge mode, since the bridge imple-
mentation is the same. In addition, Xen-Bridge for-
wards packets from the bridge to IP layer, as in hybrid
mode, combined with hypervisor calls necessary in this
mode. As expected, Xen-Bridge performs worse than
all native Linux forwarding schemes. On the other
hand, Xen-Router performs better than Xen-Bridge
because the Linux bridge is not used and Xen hyper-
visor is not called when domain 0 forwards packets.
Nevertheless, Xen-Router is still worse than Native-
Router. The forwarding rate rapidly decreases after
about 1.2 Mp/s load. This behavior is also observed for
Xen-Bridge and in the following experiments with vir-
tual machine forwarding. This performance penalty is
related to Xen interrupt handling implementation and
needs further investigation. Next, we analyze a scenario
where a virtual machine forwards traffic using Xen
bridge mode, the default Xen network configuration.
In XenVM-1 configuration, both virtual machine and
domain 0 share the same CPU core. This result shows
a drop in performance compared with previous results,
in which domain 0 was the forwarding element. At first
glance, this poor performance could be caused by high
contention for CPU resources due to the fact that a
single CPU core is shared between the domains. To
eliminate the contention for CPU resources, we exper-
iment with XenVM-2 configuration in Fig. 11b, where
we give one exclusive core to each domain. The per-
formance obtained with XenVM-2 experiment is better
than with XenVM-1, but it is still lower than domain 0
results. This can be explained due to the high complex-
ity involving virtual machine packet forwarding. When
the traffic is forwarded through the virtual machines,
it must undergo a more complex path before reach-
ing TR. Upon packet receiving, it is transferred via

DMA to domain 0 memory. Domain 0 demultiplexes
the packet to its destination, gets a free memory page
associated with the receiving virtual machine, swaps the
free page with the page containing the packet, and then
notifies the virtual machine. For a virtual machine to
send a packet, it must put a transmission request along
with a reference to the memory area where the packet
is into Xen I/O ring. Domain 0 then polls the I/O ring,
and when it receives the transmission request, it maps
the reference into the physical page address and then
sends it to the network interface [4]. This increased
complexity is partially responsible for the lower packet
rate obtained in the two curves where virtual are used
to forward packets.

Figure 11c shows that OpenFlow performs near na-
tive Linux in router mode. In addition, the compar-
ison between OpenFlow and XenVM results shows
the trade-off between flexibility and performance. On
XenVM, we have more flexibility because the data
and control planes are under total control of each
virtual network administrator. In OpenFlow, however,
the flexibility is lower because the data plane is shared
by all virtual networks. On the other hand, due to
lower processing overhead, OpenFlow performs better
than XenVM in our scenario. Xen performance can be
raised if the data plane is moved to domain 0, as we
can see in Xen-Router and Xen-Bridge results. In this
case, however, the flexibility of customizing data planes
is decreased.

We also carried out packet-forwarding experiments
with 1,470-byte data packets, shown in Fig. 12. With
large packets, all forwarding solutions but XenVM-1
and XenVM-2 have the same behavior as in the Native-
Router scenario. It means that there is no packet loss in
TF, and the bottleneck in this case is the 1-Gb/s link.
Nevertheless, with XenVM-1, where a virtual machine
shares the same core with domain 0, the packet rate
is achieved is lower. In XenVM-2 experiments, where
we give one exclusive CPU core for each domain, the
behavior is similar to Native-Router. Thus, we conclude
that, in this case, the performance decrease in XenVM-1
result is caused by high contention for CPU resources
between domains and giving an exclusive CPU core to
domain 0 solves the problem.

Next, we analyze how each type of virtual network
element impacts the traffic latency. We create back-
ground traffic with different rates to be forwarded
by the network element. For each of those rates, an
ICMP echo request is sent from the generator to the
receiver, to evaluate the round trip time (RTT) and
the jitter according to the generated background traffic.
By analyzing the jitter, defined as the mean of the
standard deviation of RTT measures, we investigate

352 Ann. Telecommun. (2011) 66:339–355

0 30 60 90
0

30

60

90

Generated packet rate (kp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(k

p/
s)

Native-Router, Native-Bridge,
Native-Hybrid, Point-to-Point

(a) Native Linux.

0 30 60 90
0

30

60

90

Generated packet rate (kp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(k

p/
s)

XenVM-2

XenVM-1

Xen-Router,
Xen-Bridge,

Native-Router

(b) Xen.

0 30 60 90
0

30

60

90

Generated packet rate (kp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(k

p/
s)

OpenFlow,
 Native-Router

(c) OpenFlow.

Fig. 12 Packet rate for different forwarding elements, using 1,512-byte frames

if the network element inserts a fixed or a variable
delay in the network, which could affect some real-time
applications.

Figure 13 shows the results for the RTT and the
jitter. As the generated traffic increases, the RTT and

jitter of the ICMP messages increase only for the
configuration in which the traffic passes through the
virtual machine, which we call XenVM-1 in the graph.
The difference in the RTT between XenVM-1 and
native Linux experiments is up to 1.5 ms in the worst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 100 200 300 400 500

R
T

T
 (

m
s)

Background traffic (Mb/s)

XenVM-1

Other Configurations

(a) Round trip time (RTT).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 100 200 300 400 500

Ji
tte

r
(m

s)

Background traffic (Mb/s)

XenVM-1

Other Configurations

(b) Jitter.

Fig. 13 Analyzing network delays according to the network element which forwards the traffic, assuming 128-byte packets

Ann. Telecommun. (2011) 66:339–355 353

 0

 50

 100

 150

 200

 250

1 2 4 8

A
gg

re
ga

te
d

pa
ck

et
 r

at
e

(k
p/

s)

Number of parallel networks

XenVM-1

Native-BridgeOpenFlow

Xen-Bridge

(a) Effect of the number of networks.

 0

 50

 100

 150

 200

 250

1 2 4 8

A
gg

re
ga

te
d

pa
ck

et
 r

at
e

(k
p/

s)

Number of flows

Native-Bridge

Xen-Bridge

XenVM-1

XenVM-2

OpenFlow

(b) Effect of the number of flows.

Fig. 14 Aggregated packet rate according to the number of virtual networks

scenario, with background traffic of 500 Mb/s. The
RTT and the jitter of OpenFlow have the same order
of magnitude as the RTT and jitter of native Linux.
Despite of the delay difference between XenVM-1 and
the other configurations, Xen virtual machines can han-
dle network traffic without a significant impact on the
latency. Because the RTT is always smaller than 1.7 ms,
even in the worst case, virtual routers running over Xen
do not significantly impact real-time applications such
as VoIP, which tolerates up to 150 ms delay without
disrupting the reliability of the communication, even if
one considers multiple hops [8].

We also analyze how each virtualization platform
behaves with multiple networks and multiple flows per
network. In this scenario, each network is represented
as a flow of packets between the TG and TR for Open-
Flow and as a virtual machine for Xen. The packet size
and the generated packet rate are fixed in 64 bytes and
200 kp/s, respectively. If there is more than one parallel
flow, the aggregated generated traffic is still the same.
For example, if the test is performed with four parallel
flows, each of them receives a packet rate of 50 kp/s,
generating an aggregated rate of 200 kp/s.

Figure 14a shows the aggregated packet rate as a
function of the number of virtual networks, with one
flow per network. OpenFlow acts like a software switch
despite the fact that the first packet of the flow must
go to the OpenFlow controller. The performance ob-
tained is very similar to a software bridge running over
native Linux, maintaining the received rate close to the
generated rate of 200 kp/s. Although Xen’s domain 0
must have its interrupts first handled by the hypervisor,
Xen-Bridge performs almost as well as native Linux
in bridge mode. On the other hand, in the case where
multiple virtual machines are simultaneously forward-
ing traffic (XenVM-1 configuration), the performance

degrades as the number of parallel virtual machines
increases. This is mainly because of the CPU scheduler,
which must multiplex the processor among an increas-
ing number of machines, each one requiring to forward
its own flow.

Figure 14b shows the aggregated packet rate as a
function of the number of flows, considering a single
virtual network. As expected, OpenFlow and Xen-
Bridge present the same behavior as in Fig. 14a because
both share the data plane, and consequently, there is
no difference between a virtual network with multiple
flows and multiple networks with one flow each. On the
other hand, when the traffic is forwarded through the
virtual machines (XenVM-1 configuration), the traffic
must undergo a more complex path before reaching
TR, as seen in previous results. In order to verify if
the complex path is the only bottleneck, the test was
repeated in a configuration where the virtual machine
does not share the same physical core with domain 0,
referred to as XenVM-2. In this configuration, the per-
formance is increased by up to 50 kp/s, which indicates
that the lack of processor availability is an important
issue in network virtualization.

To analyze the impact of CPU allocation on virtual
machine forwarding, we have conducted a CPU vari-
ation test in which we send packets from TG to TR
at a fixed rate of 200 kp/s through virtual machines
and vary the number of dedicated CPU cores given to
domain 0. The 200 kp/s rate is used because near this
rate we obtain the best performance in the one-virtual
machine scenario. According to previous results, the
forwarding performance increases when both domain
0 and virtual machine have a dedicated CPU core.
This test aims to complement those results by analyz-
ing the forwarding performance when the number of
domain 0’s exclusive CPU cores increases and more

354 Ann. Telecommun. (2011) 66:339–355

0 1 2 3 4
80

100

120

140

160

180

Number of Domain 0 dedicated CPU cores (n)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(k

p/
s)

1 VM

2 VMs

4 VMs

Fig. 15 Received packet rate when varying the number of CPUs
allocated to domain 0

virtual machines forward packets. When more than
one virtual machine is used, the global sent rate of
200 kp/s is equally divided among virtual machines.
Figure 15 shows the aggregated received rate in a
scenario in which each virtual machine has one single
core, and the number n of CPU cores dedicated to
domain 0 is varied. According to Fig. 15, the worst
performance is obtained when all domains share the
same CPU core (i.e., n = 0), due to a high contention
for CPU resources. As expected, when n = 1, the per-
formance increases because each virtual machine has
a dedicated CPU core and, consequently, has more
time to execute its tasks. In addition, when domain
0 receives more than one dedicated CPU core (i.e.,
n ≥ 2), the performance is worse than when domain 0
has a single dedicated CPU core, even when more vir-
tual machines forward packets. These results show that
the network tasks that domain 0 executes when each
virtual router has two interfaces are single-threaded,
and these tasks are under-performing in a multi-core
environment.

6 Conclusions

In this paper, we investigate the advantages and limita-
tions of Xen and OpenFlow as network virtualization
platforms for creating a pluralist architecture for the
Future Internet. We show that both Xen and OpenFlow
allow the creation of multiple customized virtual net-
works, but using different approaches. Xen enables a
network virtualization model in which the network ele-
ment is totally virtualized, with both control and data
planes residing into a virtual machine. This construction
provides a powerful and flexible environment in which
the network administrator can program new network

protocol stacks and also customized network-data for-
warding structures and lookup algorithms. Neverthe-
less, our experimental results show that this flexibility
comes with a performance cost. Our experiments in
a personal computer used as a software router re-
veal a high complexity involving Xen virtual machine
packet forwarding that limits the forwarding capacity
to less than 200 kp/s. We also observe that moving
the data planes from virtual machines to privileged
domain of Xen avoids hypervisor calls, and thus, Xen
forwarding capacity improves near to the native Linux
performance. In this configuration, however, we lose
the flexibility of customizing each virtual router data
plane because shared data planes require the use of the
same forwarding mechanisms for all virtual networks.
OpenFlow network virtualization model follows the
shared data plane approach by defining a centralized
element that controls and programs the flow table in
each network element. Our results demonstrate that
the generalization of a flow to an n-tuple of header
fields enables a flexible and yet performant forwarding
structure. Our PC-based OpenFlow prototype forwards
packets as fast as native Linux. Other experiments show
that both Xen and OpenFlow are suitable platforms
for network virtualization because they are proved
to support multiple instances of virtual network ele-
ments with no measurable performance loss, using the
shared data-plane configuration. We will investigate
in a future work the benefits of modern hardware-
assisted I/O virtualization technologies. We expect that
direct access to I/O devices will significantly improve
the packet forwarding efficiency through Xen virtual
machines.

References

1. Anderson T, Peterson L, Shenker S, Turner J (2005) Over-
coming the Internet impasse through virtualization. IEEE
Comput 38(4):34–41

2. Baran P (1964) On distributed communications networks.
IEEE Trans Commun Syst 12(1):1–9

3. Blumenthal MS, Clark DD (2001) Rethinking the design of
the Internet: the end-to-end arguments vs. the brave new
world. ACM Trans Internet Technol 1(1):70–109

4. Chisnall D (2007) The definitive guide to the Xen Hyper-
visor. Prentice Hall, Upper Saddle River

5. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach
C, Pratt I, Warfield A (2005) Live migration of virtual ma-
chines. In: Symposium on Networked Systems Design &
Implementation—NSDI, pp 273–286

6. Clark D, Braden R, Sollins K, Wroclawski J, Katabi D, Kulik
J, Yang X, Faber T, Falk A, Pingali V, Handley M, Chiappa
N (2004) New arch: future generation Internet architecture.
Technical report, USC Information Sciences Institute Computer

Ann. Telecommun. (2011) 66:339–355 355

Networks Division, MIT Laboratory for Computer Science
and International Computer Science Institute (ICSI)

7. Egi N, Greenhalgh A, Handley M, Hoerdt M, Mathy L,
Schooley T (2007) Evaluating Xen for router virtualization.
In: International Conference on Computer Communications
and Networks—ICCCN, pp 1256–1261

8. Fathi H, Prasad R, Chakraborty S (2005) Mobility man-
agement for VoIP in 3G systems: evaluation of low-latency
handoff schemes. IEEE Wirel Commun 12(2):96–104

9. Feamster N, Gao L, Rexford J (2007) How to lease the Inter-
net in your spare time. ACM SIGCOMM Comput Commun
Rev 37(1):61–64

10. Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown
N, Shenker S (2008) NOX: towards an operating system
for networks. ACM SIGCOMM Comput Commun Rev
38(3):105–110

11. Mateo MP (2009) OpenFlow switching performance.
Master’s thesis, Politecnico Di Torino, Torino, Italy

12. McKeown N, Anderson T, Balakrishnan H, Parulkar G,
Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM
Comput Commun Rev 38(2):69–74

13. Menon A, Cox AL, Zwaenepoel W (2006) Optimizing net-
work virtualization in Xen. In: USENIX annual technical
conference, pp 15–28

14. Olsson R (2005) Pktgen the Linux packet generator. In:
Linux symposium, pp 11–24

15. Pfaff B, Heller B, Talayco D, Erickson D, Gibb G,
Appenzeller G, Tourrilhes J, Pettit J, Yap K-K, Casado M,
Kobayashi M, McKeown N, Balland P, Price R, Sherwood
R, Yiakoumis Y (2009) OpenFlow switch specification ver-
sion 1.0.0 (wire protocol 0x01). Technical report, Stanford
University

16. Sherwood R, Chan M, Covington A, Gibb G, Flajslik M,
Handigol N, Huang T-Y, Kazemian P, Kobayashi M, Naous
J, Seetharaman S, Underhill D, Yabe T, Yap K-K, Yiakoumis
Y, Zeng H, Appenzeller G, Johari R, McKeown N, Parulkar
G (2010) Carving research slices out of your production net-
works with OpenFlow. ACM SIGCOMM Comput Commun
Rev 40(1):129–130

17. Wang Y, Keller E, Biskeborn B, van der Merwe J, Rexford
J (2008) Virtual routers on the move: live router migration
as a network-management primitive. In: ACM SIGCOMM,
pp 231–242

	Virtual networks: isolation, performance, and trends
	Abstract
	Introduction
	 Approaches for network virtualization
	Network virtualization for accomplishing the pluralist approach
	Network virtualization approaches

	Network virtualization technologies
	Xen
	OpenFlow

	Characteristics of Xen and OpenFlow virtualization technologies
	Network-data processing and programmability
	Performance on network-data forwarding
	Scalability to the number of virtual networks

	Performance evaluation
	Xen, OpenFlow, and native Linux scenarios
	Experimental results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

