
A marketplace and its market mechanism for trading
commoditized computing resources

Jörn Altmann & Costas Courcoubetis & Marcel Risch

Received: 7 July 2009 /Accepted: 28 May 2010 /Published online: 10 June 2010
Institut Télécom and Springer-Verlag 2010

Abstract This paper presents the design and implementation
of the GridEcon Marketplace. In addition to supporting a
market mechanism for trading computing resources on a pay-
per-use basis, this marketplace also provides an environment
for integrating value-added support services. These value-
added services help consumers to use the utility computing
market more efficiently. The GridEconMarketMechanism for
virtual machines specifies in detail the unit-of-trade, the bids
and asks, as well as the matching algorithm. The marketplace
and market mechanism are validated by using the GridEcon
Platform, which is a service-oriented platform for composing
market scenarios. Our validation results show that the Grid-
Econ Marketplace fulfills all functional requirements and that
the GridEcon Market Mechanism is computationally and
economically efficient.

Keywords Grid economics . Cloud computing . Computing
resource market .Market mechanism design . Utility
computing . Grid computing . Simulation .

Market scenario emulation

1 Introduction

In recent years, many Grid platforms and Cloud computing
solutions have been proposed. However, there has only
been a lower-than-expected commercial uptake of these
technologies. Only a handful of companies (e.g., Amazon)
have entered the market successfully [1]. Nevertheless,
even those companies provide basic services only. For
example, Amazon's EC2 Cloud offering is a very simple
platform, which does not provide users with an environ-
ment for combining and sharing computing resources on
the fly, as originally envisioned by the Grid community.
The EC2 offering simply follows a B2C-like approach,
which allows a single provider to sell computing services to
consumers.

By analyzing the incentives of users to access the Cloud
and by investigating the structure of computing resource
markets, four major reasons for the limited uptake of Cloud
computing (note, in this paper, we use the terms “Grid
computing”, “utility computing”, and “Cloud computing”
interchangeably) beyond enterprise boundaries can be
identified: (a) The risk of relying on the availability of
external resources for running a business is perceived to be
high [6]; (b) the required changes for integrating Cloud
resources into the existing IT infrastructure are costly; (c)
usage-based pricing schemes introduce a large uncertainty
about the total charge for a resource; and (d) sustainable
business models for Cloud resource provisioning do not
exist.

The analysis of these issues has indicated that a solution
(for achieving an uptake of Cloud technology in the next
generation Internet) could be a market for trading comput-
ing resources. Such a market could reduce the risk of using
external resources by becoming a trusted entity that
mitigates the risk of using resources of unknown providers.

J. Altmann (*) :M. Risch
Technology Management, Economics and Policy Program;
Department of Industrial Engineering,
College of Engineering, Seoul National University,
599 Gwanak-Ro, Gwanak-Gu,
Seoul 151-744, South Korea
e-mail: jorn.altmann@acm.org

M. Risch
e-mail: marcel.risch@temep.snu.ac.kr

C. Courcoubetis
Department of Computer Science,
Athens University of Economics and Business,
47A Evelpidon Str,
Athens 11362, Greece
e-mail: courcou@aueb.gr

Ann. Telecommun. (2010) 65:653–667
DOI 10.1007/s12243-010-0183-1

The market could also provide support services in order to
help users to integrate Cloud computing services smoothly
into their existing IT infrastructure. These support services
could additionally help users to predict the usage-based
charges incurred in the Cloud accurately and, last but not
least, provide vital trading support for consumers.

Although many marketplaces and marketplace environ-
ments for commercial Grid computing have been suggested
in recent years, none of these approaches has focused on
the need for supporting the right types of services in such
environments. In most approaches, computing power has
been treated either as a traditional economic non-perishable
good (i.e., no special attributes like duration and urgency
were considered) or as a job scheduling problem (i.e., the
whole system was considered to behave as a centrally
controlled queue of jobs) [20].

Due to these shortcomings, the lack of an analysis of
support services, and the lack of an understanding of their
key economic parameters, the GridEcon project aimed at
identifying the functionality of services required for the
efficient operation of a computing resource market [4].
These services are value-added services, complementary to
the market mechanism used. They require the careful
definition of key economic attributes of purely computa-
tional services.

The result of the analysis led to the design of the
GridEcon Marketplace and the GridEcon Market Mecha-
nism for commoditized computing resources, i.e., standard-
ized virtual machines (VM). The market mechanism for
trading computing resources is an extension of a classic
double auction design. The extension allows for extra
attributes in the auction offers to include duration (i.e., a
time interval), price, urgency (i.e., the point in time when
the computing resource is needed), and maximum validity
time of the offer. Matching of buy and sell offers requires
not just a one-to-one but a many-to-many approach. The
design of the mechanism took also into account issues like
scalability and not favoring large providers of computation.
An economic analysis of the equilibrium properties of the
spot market that the GridEcon mechanism would generate
can be found in [40].

The remainder of the paper is structured as follows: In
Section 2, we provide an overview of the state-of-the-art in
market mechanisms, market environments, and Cloud
computing resource markets. Section 3 specifies the Grid-
Econ Marketplace and the GridEcon Market Mechanism.
The specification comprises the prerequisites of a market to
be successful, the market environment, the unit-of-trade, the
bids and asks, as well as the matching algorithm. After
introducing briefly the GridEcon Platform that is being
used for validating the GridEcon Marketplace and its
market mechanism, Section 4 describes the validation
scenarios and measurement results. Besides, Section 4

presents the simulation results and the discussion of the
results. The paper concludes with Section 5.

2 State-of-the-art in computing resource markets

2.1 Market environment

Only a few Grid markets (e.g., Popcorn Market [8, 9], the
Spawn system [11], the Grid Architecture for Computa-
tional Economy (GRACE) [2], and Tycoon [5]) have been
proposed. They differ in the form of value-added services
offered to consumers and the openness of the implemented
systems.

GRACE is the most sophisticated among the Grid
markets. It offers the consumer many services, e.g., the
Grid Resource Broker. However, GRACE is a monolithic
application, which would leave consumers without a choice
but to use these services. Therefore, GRACE could use its
market power to set prices for maximizing profit (e.g.,
personalized pricing), to lock in consumers to this system,
and to making this approach less attractive.

The agents proposed by the Tycoon market attempt to
perform many tasks for the consumer, such as capacity
planning, portfolio management, and risk management.
However, these agents cannot be substituted. Once a user
has decided on an agent, the user has to use this agent for
all his support service needs.

With respect to the software components developed by
GRACE and Tycoon, it seems that they were built with a
specific business model in mind. In the case of GRACE, the
broker is an entity, which shields the consumer from the
Grid market. It should ensure that the consumer is not
aware of the fact that the Grid is a distributed, non-
homogeneous environment. In the case of Tycoon, the
agents should perform all the tasks that the consumer
cannot perform on his own, such as resource discovery and
ensuring resource availability.

Some additional research on Grid Markets, in particular
on a Grid resource marketplace, comes from Pattanaik et al.
[12]. The authors pay close attention to the fact that many
resource markets are one-sided, i.e., that the providers have
to volunteer resources and the customers then have the
option to choose which services they wish to purchase.
While the points raised in this paper are valid, the authors
tacitly assume that resource consumers have sufficient
expertise to evaluate the different offers. The idea that
some consumers may require additional support services
has not been included.

In addition, some work on Grid market services has been
performed by the Gridbus [13] project. It has been the only
project that has introduced a number of services for the user
(e.g., a Workflow Engine [14], a Nimrod-G Broker [15],

654 Ann. Telecommun. (2010) 65:653–667

and a Gridbus Data Broker [16]). While these technical
services are useful for consumers with respect to executing
an application on the Grid, they do not provide support for
the economic-related issues of marketplaces. For example,
these services do not answer questions as which resources
to purchase and at what price they should be purchased.
Furthermore, the Gridbus environment assumes knowledge
on how to trade on a market.

The Globus project has also taken a look at the
development of Grid services [35]. This work has been
executed under the OGSA umbrella [36]. It has mainly
focused on services which would make the Grid run more
smoothly. The two major focuses were the development of
an accounting system and the development of data access
methods within a Grid environment [37–39]. However,
these services do not take into account that users may
require some help when working in a Cloud or Grid
environment.

In addition to this, all these projects (Popcorn Market
[8], Spawn system [11], GRACE [2], and Tycoon [5])
assume a very abstract model of a resource consumer. It
seems that it was tacitly understood that consumers had
already accepted the market environment, learned to deal
with the risks involved, participated in the market, and had
sufficient knowledge to use the market. The GridEcon
project is different in this regard, since the project is not
only focused on market-based resource allocation but also
on value-added services that support users around the
marketplace [4].

The GridEcon project did not implement an implicit
business model with certain functionalities as other projects
did [4]. Instead, it analyzed basic services that could
support consumers in a market environment. Since these
business-related, basic services can be provided by different
entities, those entities may choose to bundle some services
while others may offer them as stand-alone services,
depending on the business model of those entities. This
approach is similar to many other markets, which have
support services for consumers. Examples of such support
services include stock brokers in stock exchanges (which
perform trades on behalf of the banks' customers), travel
agents, and travel search Web sites (e.g., Expedia.com [3],
which help customers to book their trips).

2.2 Existing commercial Cloud offers

In recent years, a large number of commercial Cloud
providers have entered the utility computing market, using
virtualization. Today, there are a number of different types
of services, being sold under the label of “Cloud Comput-
ing”. Three types can be distinguished. Firstly, there are
resource providers, such as Amazon and Tsunamic Tech-
nologies [1, 28], who provide computing resources (e.g.,

EC2 [1]). Secondly, there are providers, who not only sell
their own computing resources but also their own software
services. Examples of those are Google Apps and Sales-
force.com [29, 30]. Finally, there are companies that
attempt to run a mixed approach, i.e., they allow users to
create their own software services and, at the same time,
offer users various support services (i.e., platform services).
An example of such an approach is the Sun N1 Grid or
force.com [30, 31].

In addition to this, there are providers, who sell Cloud
storage resources (e.g., EMC Atmos [41]). However, these
specialized services are still in their infancy and have not
yet taken hold in the commercial Cloud computing
environment.

All these Cloud resource providers currently operate
outside a common market. Their offers are not easily
comparable and the fact that some, like Amazon's EC2, use
proprietary VM interfaces means that it is difficult to move
VMs from one provider to the next. At the same time, none
of these providers offer any additional services to their
customers, expecting them to know how to use Cloud
resources effectively. Furthermore, many of these providers
(with the exception of Amazon and EMC) offer only a
single resource type, thereby limiting customers' options
severely.

2.3 Open Cloud market enablers

In addition to the introduction of virtualization in data
centers, several companies now offer a platform to integrate
in-house resources with externally purchased Cloud resour-
ces. One such company is Enomaly [32]. Enomaly offers a
product that not only allows users to turn their data center
into a Cloud but also allows users to act as providers for
computing resource services. Using such software, data
center operators could easily be encouraged to participate in
an open Cloud market and sell their excess capacity at
times of low demand while purchasing Cloud resources
when demand is high.

A second company that provides a similar service is
Zimory [33]. Its product turns a regular data center into an
intra-company Cloud and allowing an efficient use through
sharing of resources. However, Zimory takes this idea one
step further and allows its customers to sell spare capacity
via its own marketplace. During times of high demand, its
customers can purchase Cloud purchases via the Zimory
Cloud. Since all these providers and consumers have to use
Zimory's software package, the integration of Cloud and in-
house resources is fairly straight forward. However, any
participant faces a number of challenges. Zimory only
supports two virtualization engines [34], which means that
customers using different virtualization engines either have
to replace their virtualization infrastructure or they have to

Ann. Telecommun. (2010) 65:653–667 655

wait until their virtualization engine is supported. This
slows down the growth of Zimory's customer base.
Consequently, as long as Zimory has a few customers only,
the number of available resources on the market will be
limited, making the market illiquid. Besides, since there is
no market mechanism specified, sellers have to accept the
pricing of Zimory, which can be detrimental if not
performed correctly.

These Cloud enablers are all concerned with the
inclusion of Cloud resources into an in-house data center
management system. This represents a major facilitator for
Cloud usage, since these tools allow the consumer to treat
all resources as if they were hosted under a single roof.
They represent a first step in the move towards the
development of services for Cloud users.

The fact that Zimory and Amazon offer a marketplace
for its customers shows that the need for more efficient
usage of computing resources is a goal for many compa-
nies. However, Zimory neglected the development of
support services, which would make the computing
resource market more attractive to users who have little
experience in such matters.

2.4 Market mechanisms

Since price setting (i.e., market mechanism) is a central
point of any market, it is also fundamental for providing
incentives to users to trade their computing resources [7].
During the recent years, many market mechanisms have
been proposed, aiming at economically efficient resource
allocations. The allocations take into account the utilities of
providers and resource consumers [5, 22–24, 26]. In these
works, Grid consumers want to minimize expenses,
whereas Grid providers want to maximize their return on
investment or reduce their operating costs [10].

Weng et al. focus on the determination of prices for
resources of a Grid marketplace [22]. They introduce a
method for setting the price of differentiated goods based
on a double auction mechanism.

Sandholm et al. address the goal of predicting bids in
order to meet the time deadline for a specific job with a
given budget [23]. The authors present three high-level
prediction techniques and discuss the theory behind these
techniques.

Wolski et al. consider a Grid environment that offers two
kinds of resources, CPU and hard disk, being complemen-
tary to each other [24]. Each producer offers a single
resource to the Grid.

Lai et al. introduce the Tycoon market, which incorpo-
rates auctions into the resource allocation system [5]. A
proportional share-based scheme is introduced to assign the
resources according to the bids of the various bidders. The
authors also show how the user (agent) can calculate the

optimal bid, given a set of available machines and the bids
of the other players on each machine.

In all the aforementioned approaches the product concerns
computing power, i.e., CPU cycles. In these CPU markets,
mostly bag-of-task jobs are assigned to single CPUs.
However, since the majority of complex tasks are of workflow
nature, these solutions are limited. In addition, these
approaches cannot consider urgency and time limits of user
requirements. They also do not consider future markets for
trading resources that are needed in the future.

3 The GridEcon Marketplace for trading computing
resources

This section describes the overall framework of the Grid-
Econ Marketplace approach as well as the details of its
market mechanism.

3.1 Requirements

3.1.1 Basic prerequisites for a functioning marketplace
for computing resources

Based on the economic prerequisites for marketplaces in
general, it can be derived that a successful marketplace for
computing resources has to fulfill at least one of the
following economic prerequisites:

& The pattern of individual demand of a Cloud user for
computing resources shows variability, i.e., it is sporadic;

& There is uncertainty about the demand for computing
resources;

& The units of computing power that are needed are
smaller than the purchase of a computer could provide.

In addition to these economic prerequisites, two technical
prerequisites must be fulfilled, i.e., adequate technology for
implementing Cloud computing must be available. Firstly,
most importantly, standardized interfaces for services must
have been defined so that services developed by different
providers can communicate. Secondly, technology for com-
moditizing computing resources must be easily usable.

While these service interfaces still need to be agreed
upon in the current Cloud market, virtualization software is
available for use already [25].

3.1.2 Dependencies of a marketplace for computing
resources

A major requirement for a functioning marketplace is that
there is liquidity in the market, i.e. there is high demand for
and supply of computing resources so that market partic-
ipants can easily trade their goods. In order to enable that,

656 Ann. Telecommun. (2010) 65:653–667

commodity computing resources have to be designed. The
advantage of commodity computing resources is that it
bundles demand, which would otherwise be split across a
very large number of different types of computing
resources. Looking at the success of Amazon EC2 [27],
we can state that commodity computing resources are
certainly desirable for users.

For a marketplace for computing resources to be useful,
there must be a sufficient supply of excess computing
resources available. This condition is definitely fulfilled as
well, since there is a large amount of underutilized
computing resources at enterprises. Currently, only a few
large providers are selling their excess computing resources
(e.g., Amazon, Microsoft).

3.1.3 Requirements specific to a computing resource
marketplace

For a computing resource marketplace to be accepted by
users, it is necessary that the marketplace service meets the
following requirements specific to computing resources:

& In order to assure quality of the goods offered,
computing resource offers should be monitored. There-
fore, it can implicitly be assumed that all the goods of
the market are of the same quality;

& In order to guarantee security, customers using the same
physical machine must not be able to access the other
customers resources and data;

& In order to find acceptance of the marketplace among
customers, the marketplace service should provide
access to computing resources in a transparent and
simple way;

& In order to ensure that buyers and sellers do not make
the trading transaction directly, the anonymity of sellers
and buyers is required.

3.1.4 Operation of the marketplace

In order to bootstrap the marketplace service successfully, we
suggest that the marketplace service owns computing resour-
ces, which could be sold in case of limited computing resource
sales offers. This way, potential buyers would not experience
no supply in computing resources, which, otherwise, would
make them leave the marketplace for good.

It should also be possible to have a limited number of
instances of the market for different good quality (e.g.,
gold, silver, bronze). This is also in accordance with the
practice of Amazon EC2. Therefore, the marketplace
service should provide an environment for trading different
computing resources.

After reciprocal offers (i.e., offers for purchasing and for
selling computing resources) are matched within the

marketplace, the task of the marketplace is the timely
allocation of a resource from the provider to the buyer,
commencement of the execution of deployed applications,
and finally, termination of the execution of deployed
applications in a timely manner.

3.2 The GridEcon environment

The GridEcon Marketplace environment is shown in Fig. 1,
consisting of three tiers: the Marketplace Tier (i.e., the
GridEcon Computing Resource Marketplace), the Service
Provider Tier, and the Economics-Aware, Value-Added
Services Tier. Each of these tiers is designed according to
SOA principles.

The Marketplace Tier encompasses the main trading
facility. The trading facility is flexible enough to allow
trading based on any kind of market mechanism such as
auctions, bargaining, or posted prices.

The Service Provider Tier contains all providers of
computing resource services, which can be traded in the
marketplace. No further distinction is made with respect to
the type of hardware service.

The Economics-Aware, Value-Added Service Tier con-
tains five services, which have been identified as being
important for the functioning and acceptance of a market-
place for commodity computing resources. The five
services allow a consumer to determine which resources

Fig. 1 The GridEcon Marketplace Environment

Ann. Telecommun. (2010) 65:653–667 657

are required, which resources should be purchased, and
how applications should be mapped to the resources. Those
services are a Capacity Planning Service, a Fixed Price
Quotation Broker, a Workflow Broker [19], a Portfolio
Broker, and an Insurance Broker. Since these services are
described in the analysis section of this paper (Sec-
tion 4.1.2), we do not explain them here in detail.

3.3 User interaction with the marketplace environment

All interactions between the user and the market environ-
ment occur through a Web Interface. Figure 2 illustrates the
interactions of a consumer with the GridEcon marketplace
environment. It depicts seven steps, starting from deter-
mining the resource requirements to interacting with the
deployed application.

In particular, for executing the first three steps, the
consumer may consult the Capacity Planning Service [17].
It can help determining the resource requirements, the
optimum price, and the best course of action. That means,
the consumer actually decides how many computing
resources are needed to cover his needs. At step 4, the
consumer either bids for computing resources in the market
directly or uses a workflow broker that performs the actions
on behalf of the consumer. In case of a successful bid for
computing resources, the user may opt to also purchase an
insurance contract for the resources (step 5). After this step,
the user has at his disposal a set of machines in the Cloud
environment that he can use to deploy (step 6) and run his
applications (step 7). The deployment of the application can

also be supported by the workflow broker. Finally, the user
can interact with his application (step 8).

3.4 GridEcon market mechanism

The core of the marketplace is the market mechanism. The
market mechanism allows a resource provider to register
with the marketplace an unused computing resource for sale
(i.e., submit an ‘ask’). It also allows a resource buyer to
register the intent to buy a resource that is for sale within
the marketplace (i.e., submit a ‘bid’). In the following three
subsections, the GridEcon Market Mechanism is described
in detail. In particular, it explains the design of the offers
(i.e., bids and asks), how bids and asks are matched in a
timely manner, and the general format of the specification
of a unit of trade.

3.4.1 Unit of trade

The format of the specification of a unit of trade (i.e., the
good) is defined through the following three attributes:

& Start Time: The start time is defined as the time, at
which the resource is available at the provider, or at
which the resource is required by the buyer.

& Unit Duration: The Unit Duration defines a standard
time period that the resource will be made available at
least by the provider or the duration that the resource is
required at least by the buyer. The Unit Duration is set
based on the acceptance of users within the market-

Fig. 2 User interaction with the
GridEcon Market Environment

658 Ann. Telecommun. (2010) 65:653–667

place. For the remaining of the paper, we consider one
hour as the only standard unit duration available in the
marketplace.

& Resource Type: It defines the type of resource offered
by the provider or required by the buyer. In detail, the
resource type specifies a virtual machine (VM) that is
defined through the processor type, the main memory,
the size of the hard drive, and the network bandwidth
available (i.e., through the quality of the different
resources). If two units of trade differ in any of these
attributes, then the two units of trade are different, i.e.,
the quality differs.

3.4.2 Bids and asks

Based on the unit of trade, the bids and asks can be defined.
A bid is submitted by an entity that is in need of one or
more units of trade. An ask is submitted by an entity that
owns one or more units of trade that it would like to make
available to others. Beside the unit of trade, the bid and ask
also comprise the following additional attributes:

& Expiration Time: This attribute indicates the time when
the bid (or ask) will be removed from the system if not
‘matched’ with a reciprocal ask (or bid);

& Price: This attribute sets the minimum price that a
provider will accept or the maximum price a buyer is
willing to pay for a unit of trade. The price is expressed
in €/unit-of-trade;

& Number of Resources: This attribute sets the number of
units of trade, i.e. the number of resources of the
specified type of virtual machine.

& Duration: The duration is set to a multiple of the Unit
Duration.

Besides these attributes, a bid also specifies the
Application ID attribute:

& Application ID: This attribute specifies the identifier of
the application that is supposed to be deployed on a
provider's resource at the Start Time.

Figure 3 shows an example of a bid for three virtual
machines (b, c, d), starting at 11:00 for a duration of 2 h.

3.4.3 Matching algorithm

The rationale behind the matching algorithm can be
summarized as follows:

& If satisfied, then bids are always completely satisfied,
i.e., there are never remainder bids (a remainder bid is a
piece of the same bid that is still pending). This is not
the case for asks. They can be partly matched in order
to serve bids.

& To satisfy a bid, it can be served by multiple providers.
However, in order to ensure that the demanded VMs are
allocated throughout the service duration, so that the user
does not have to switch between VMs over time, it is
mandatory that (bid) horizontal atomicity holds. This
property is well-suited for applications such as Web
servers.

& The matching algorithm considers as candidate matches
of a bid, whose price is pbid , only those asks, whose
price pask is such that pbid ≥ pask. If several asks would
could serve a bid, then the ask with the smallest price is
selected. Besides, we omit examining higher-priced
asks (i.e., pbid<pask) and trying combining them with
lower-priced asks, even if such combinations could in
fact serve the bid and the bidder attains positive net
benefit from the overall price of the service. If the bid
price is higher than the ask price, the average price of
both orders is used as the matching price.

& The matching algorithm periodically checks for expired
bids and asks. It removes those from the respective queue.

& The matching module assumes that the owners of
expired bids or asks are notified of the removal of their
bids or asks.

& The matching algorithm is always executed when a new
bid or new ask is submitted.

The matching algorithm is simple, since the time span of
all bids and asks is uniquely defined. The start time and the
end time of bids/asks are decided upon their submission.

The task of the matching algorithm with respect to bids
(which demand a fixed number of VMs (denoted as M)
throughout a certain time interval) is to return the M
cheapest asks (if any) that are idle in the demanded time
interval. Assuming that time is split into time slots, the
pseudo code of the matching algorithm can be expressed as
shown in Fig. 4.

If a new ask arrives, then the ask is entered into the ask
queue and the bid queue is searched for bids, whose price is
greater than or equal to that of the new ask. Afterwards, the
Bid Matching Algorithm (Fig. 4) is executed for all those
bids found.

Resource

User demands 3 VMs
for 2 hours
in the interval from
11:00-13:00

10:00 11:00 Time14:00 13:00 12:00

e

d

c

b

a

Fig. 3 Example of an order

Ann. Telecommun. (2010) 65:653–667 659

4 Validation

For validating the economic models that have been
introduced in Section 3, we use the GridEcon Platform
[21], which has been developed within the GridEcon
project [4]. Besides providing an overview about the
Platform, we describe the actual implementation of the
Marketplace and present the measurement results.

4.1 The GridEcon platform

4.1.1 Architecture and implementation

Since the GridEcon Platform follows a service-oriented
approach, all platform services are independent of each
other. In order to design a market environment according to
a user’s specification, the GridEcon Platform allows its user
to configure the interaction of the services. In particular,
this is supported by the Workflow Engine. By feeding the
Workflow Engine with a workflow, which describes the
interaction between the different economic-aware services,
the Workflow Engine orchestrates the communication
between the platform services. Once the appropriate
interactions have been orchestrated, it ensures that all
communications between the required services are executed
as defined in the workflow.

For the implementation of the GridEcon Platform, JavaEE
was used. Apache Tomcat 6.x was used for the deployment
and MySQL Server for the database layer. In addition, the
following libraries and frameworks were employed: Spring,
Hibernate, Axis2, and Quartz. For the client-side services, the
ExtJS and jQuery frameworks were utilized.

4.1.2 Platform services

The GridEcon Platform Services can be divided into three
groups: Economic-Aware Services, Middleware Services,
and Auxiliary Services.

The Economic-Aware Services comprise an Insurance
Broker Service, a Fixed-Price-Quotation Broker Service, a
Capacity Planner Service [17], a Workflow Broker, and a
Marketplace Service. The Insurance Broker Service takes
the details of a proposed contract and calculates the risk of
a contract breach. Based on the results of the calculation
and the coverage type, it calculates a premium. The user
has to pay this premium, if he opted for insurance coverage.

The Fixed-Price-Quotation Broker Service offers a fixed
price contract to a user, who wants to use a specific
computing capacity on a future date. However, since it is
assumed that the broker does not own any resources, the
broker has to buy them at the marketplace.

The Capacity Planner Service offers decision support,
helping the user to determine an economically sound
resource trading plan. This can include the purchase of
Cloud resources, the purchase of in-house resources, and
even the sale of resources on the marketplace [17].

The Workflow Broker Service performs actions on the
marketplace on behalf of the user [19].

The Marketplace Service provides an environment for
trading different computing resources and performs match-
ing operations on available resources. This core component
is responsible for running a market mechanism.

The Middleware Services that are necessary to perform
real calculations on distributed computing resources are
the Execution Engine, the Supplier Component, and the
Monitoring Service. The Execution Engine connects the
Marketplace to the Computing Grid of the supplier. It
accepts requests for starting, stopping, and scaling clusters
in the Cloud.

The Supplier Component is executed on the provider's
computing resources, metering and monitoring the usage of
the Cloud resources (e.g., CPU, Memory). It provides
feedback to the buyer of the resource.

The Monitoring Service monitors the resource usage of
the allocated resources and makes the data available to the
economic-aware Services.

Finally, the Auxiliary Services are comprised of the
Workflow Engine, the History Service, the Web User
Interface, and the User Emulation Service. The Workflow
Engine is responsible for orchestrating the interactions
between the services according to the workflow of the
platform user (Section 4.1.1).

The History Component stores all information that is
generated during the runtime of the system.

The Web User Interface provides a single User Interface
to the platform. A platform user can use the interface to

If a new Bid requesting M machines in [tfrom, tend] arrives
Then {

serviceFound = true;
}

Foreach slot j of Bid /* Start from slot 1,… , to slot N of Bid */
If (exists(Aski) && isOverlappingInTime(Bid,Aski) &&
(priceOf(Bid)>=priceOf(aski)))
Then {

serviceBid(slotj,Cheapest(aski)); /* find the cheapest ask
providing service in this slot and serve it there */
updateServiceCost();
}

Else {
serviceFound = false;
break;
}

If (serviceFound)
Then {

serveBidWithMatchingAsks(); /* the original asks partly
matched are removed from the directory; owners of asks are
informed that remainder has been removed from queue */
performReservationsAndAccounting();
}

Fig. 4 Bid Matching Algorithm

660 Ann. Telecommun. (2010) 65:653–667

connect to its platform configuration and to test his design
of the market environment.

4.1.3 User emulation service

The User Emulation Service is not used during the real
operation of the system. It has been developed for testing
the system against some defined usage scenarios. A simple
command line interface is provided in order to configure
the test/simulation scenario. After reading input data that
describes a specific usage scenario, it allows changing any
subset of the input data (e.g., number of requests, and the
duration of the test).

This service generates requests towards a Web Service
interface implemented by the Workflow Engine specifically
for this purpose. This Web Service offers the same
functionality as the nominal Web User Interface, but it
facilitates the development of a simulation. For example,
this service can generate bids and asks towards the
Marketplace Service.

In particular, the User Emulation Service allows speci-
fying the model according to which demand and supply are
generated. For each simulation scenario, the basic market
parameters can also be specified. This comprises the
number of time slots, N, for which the market will be
simulated, the number of providers, P, the number of
customers, B, which will participate, as well as the number
of bids and asks that each of them will submit.

4.2 Simulation parameters of the user emulation service

With respect to the model for generating supply, we have
opted for a randomization of the ask parameters in order to
create a realistic market supply. This randomization allows
us to generate a wide variety of asks. In order for these asks
to be able to be meaningful under realistic market
conditions, we have decided that the values of the various
parameters are drawn from uniform distributions having
support over certain intervals. We have chosen uniform
distributions since they provide varying load conditions
within a simulation run. Therefore, we can ensure that the
difference of demand minus supply fluctuates over time
with highest competition experienced towards the middle of
simulation. This enables us to simulate varying load
competitions within a simulation run.

In particular, we generate users' bids and asks such that
some variance in the willingness-to-pay is both expected
and reasonable. This way, the resulting values for the price,
duration, and quantity are what we expect to see in an
actual system under various load conditions (e.g., high
supply with few large providers offering large numbers of
resources, or a more competitive system, in which a few
large providers coexist with many smaller cheaper pro-

viders that offer computing resources for shorter time
intervals). In detail, the various ask parameters are selected
as follows:

& Ask price: This is the price wanted per VM and slot by
the provider. This value is generated in the [1,
maxPrice] interval. In our model we specify two classes
of providers, namely “High” and “Low” price pro-
viders.

◦ Providers of “High Price” draw each of their ask
price from a uniform distribution in the [maxPrice/
2+1, maxPrice] interval.

◦ Providers of “Low Price” draw each of their ask price
from a uniform distribution in the [1, maxPrice/2]
interval.

& Quantity of VMs: The quantity of virtual machines
offered in the market per ask, denoted as q, is drawn
from a uniform distribution in the [s_min, s_max]
interval. The actual values of this interval may vary in
order to generate various types of providers (e.g., large
or smaller).

& Ask duration: This parameter defines the number of
slots that the quantity of VMs will be offered in the
market. In our simulation model, we specify two classes
of providers with respect to this parameter, namely
providers of “High Supply Duration” and “Low Supply
Duration”.

◦ Providers of “High Supply Duration” choose their
ask duration value from a uniform distribution in the
[N/2+1, N] interval.

◦ Providers of “Low Supply Duration” choose their ask
duration value from a uniform distribution in the [1,
N/2] interval.

& Time interval: For the exact time interval [from, to]
when the resources will be offered, it suffices to define
the from parameter, since we have already specified the
ask duration. The parameter to calculates as to = from +
duration. The value of the start of the ask time interval
from is drawn from a uniform distribution in the [1, N –
duration] interval. This interval ensures that all ask time
intervals are valid with respect to the simulation time of
the system, N.

& Submission time: The submission time determines the
time when each ask will be submitted to the system.
Since it is only reasonable to set this value prior to the
from value, this is chosen randomly to a time smaller
than from.

The model used to generate demand is equivalent to that
of supply. Therefore, we do not describe in detail the bid
price, quantity of VMs, bid duration, time interval, and
submission time.

Ann. Telecommun. (2010) 65:653–667 661

It is worth noting that the aforementioned User Emula-
tion Service, though simple and intuitive, can be used to
simulate a wide variety of market conditions. It also ensure
randomization of demand and supply.

4.3 Implementation of the GridEcon Market Environment

In order to implement the GridEcon Market environment
that has been introduced in Section 3, we use the GridEcon
Platform (Section 4.1). The implementation of the Grid-
Econ Market Environment and the interactions between the
different services are depicted in the following figure.

In particular, Fig. 5 highlights that the buyers and sellers
only interact via the marketplace, which connects to the
middleware and auxiliary services. The Capacity Planner,
Insurance Broker, and the Fixed Price Quotation Broker
interact with the buyer as well as with the middleware and
auxiliary services.

In more detail, Fig. 6 visualizes the main sequence of
transactions between the services, as specified by the
GridEcon Market Environment. Note, in order to better
visualize interactions of the Marketplace, the Marketplace
service has been split into two components (Marketplace
and Marketplace Scheduler).

Figure 6 also depicts that the Workflow Engine
(synchronously or asynchronously) interconnects all serv-
ices. A bid/ask submitted by the user is forwarded by the
Workflow Engine to the Marketplace. The Marketplace
informs the Workflow Engine about matched bids and asks
and the Workflow Engine notifies in turn the user. When an
application is to be started, the Marketplace Scheduler
notifies the Workflow Engine, and, then, the appropriate
request is sent to the Execution Engine. The Execution
Engine is responsible for instantiating and terminating a
cluster in the Cloud.

Based on the sequence diagram of Fig. 6, the Web User
Interface has been developed. An example of the imple-
mented Web User Interface is given in Fig. 7. It depicts a
snapshot of the market panel, showing the current asks and
bids in the market. As can be seen in Fig. 7 as well, there
are three more panels, allowing the user to submit orders, to
view existing orders, and to logout. The emulation panel
allows the user to set the simulation parameters.

4.4 Discussion

Through the implementation of the GridEcon Marketplace
prototype, we could verify the validity of the design of the
GridEconMarketplace Environment as described in Section 3.
In particular, we could demonstrate that the data exchange
required between the user and the envisioned value-added
services could be realized through a service-oriented archi-
tecture. Besides, it could be shown that the GridEcon double
auction market mechanism for commodity resources (i.e.,
VMs) can be offered in a simple way. In particular, the
market mechanism can run in parallel with other market
mechanisms or be substituted without effort.

In addition to this, the implemented GridEcon Market
Environment can be used for analyzing the performance of
the GridEcon Market Mechanism. For this analysis, instead
of having actual users submitting bids, we use the User
Emulation Service. The simulation results (i.e., the data
about bids and asks, the matches, and point in time when
the match happened) are stored in the database of the
History Service. The detailed results are presented in the
following section.

4.5 Measurement results

4.5.1 Measures

In this subsection, we present the technical evaluation
metrics, which we use to evaluate specific aspects of the
GridEcon market mechanism by means of simulations
using the GridEcon Platform. In particular, we consider
the following three metrics:

Impact of frequency of invocation Though user demand/
supply is expressed in discretized time slots, the frequency
of invocation of the matching algorithm remains an open
issue. Therefore, we have to investigate how often the
matching module should be invoked so that the system
performance is optimized. In particular, we examine various
invocation methods of the matching module:

& Asynchronous Invocation Method: Whenever a new
ask/bid is submitted to the system, the matching
module is invoked. This way the matching module's

Fixed Price
Quotation Broker

Insurance
Broker

History
Service

User Support Services

Middleware and Auxiliary Services

Monitor Provider
A

Execution
Engine

Marketplace

Buyer
A

Service Group Services

Interfaces connected through Workflow Engine

Capacity
Planner

Fig. 5 Service configuration of the platform for validating the
GridEcon Market Environment

662 Ann. Telecommun. (2010) 65:653–667

invocation frequency is the maximum possible with
respect to the data (asks and bids) stored in the market
directory.

& Per-Time-Slot Invocation Method: Rather than invoking
the matching algorithm on every ask/bid submission, it
is invoked once prior to the beginning of the next time
slot. This way, the market directory is updated with all
asks and bids submitted in the system between the next
time slot and the previous time slot. Compared with the
asynchronous invocation, the frequency of invocation is
less, while the data set that the matching algorithm
processes is larger.

& Per-Many-Time-Slots Invocation Method: The match-
ing algorithm is being processed every T time slots,
where T>1. For our experiments, we have set three
values of T, namely 5, 10, and 15. This approach
invokes the matching algorithm less frequently, com-
pared with the previous approaches. However, it also
may operate on a large amount of bids and asks.

Impact of price indexing Rather than keeping all asks and
bids in a common list, we can partition them in different
indexes with respect to price. The idea is that there is no
need to waste time by trying to match a bid with higher
price asks. A set of indexes that group bids and asks with
respect to their price may improve the system performance.
The number of price indexes can be set to any value that is
greater than one. For our simulations, the number of price
indexes is set to five (for both bids and asks, respectively).

Impact of time indexing The idea here is similar to that of
price indexing. We partition the bids and asks with respect
to the time interval where they try to sell or buy resources.

4.5.2 Simulation scenarios and results

We conducted simulation runs for two simulation scenarios.
The first simulation scenario comprised 1,000 time slots

Fig. 6 Sequence diagram of implemented services

Ann. Telecommun. (2010) 65:653–667 663

with 30 providers submitting 300 asks and ten bidders
submitting 100 bids. The experiments with these simulation
parameters were run on a laptop with AMD Turion TL50
processor with 1 GB DDR2 running Windows XP. In order
to check on the correct workings of the implementation, we
verified the matches of bids and asks. Indeed, the number
of possible matches (i.e., 90), which could be performed,
were found by the algorithm. Besides, in order to account
for the variation of simulation results, we repeated the
simulation experiment 50 times. Based on these simulation
results, we computed the average values of the different
system performance parameters. The average execution
time of the different variations of the matching algorithm is
shown in Fig. 8.

The performance differences of the various flavors of the
GridEcon market mechanism are distinct. In particular,
asynchronous invocation is the most efficient solution. This
is due to the fact that most of the complexity of the
matching algorithm comes from sorting and searching the
bids and asks indexes. Since the asynchronous invocation
tends to have indexes of smaller sizes, given a certain set of
bids and asks, this also optimizes the overall system
performance. Per slot invocation performs worst, however,

it is substantially improved by means of price and time
indexing. It is worth noting that in this case time indexing
outperforms price indexing due to the much larger spread of
bids and asks over time, as compared with their spread over
price values. The performance of the system deteriorates
substantially, if the matching module is invoked rarely
(only every 5, 10, or 15 slots).

It is also worth emphasizing that due to the fact that the
market directory reveals full information, the matching
algorithm is always efficient and optimal, i.e., it computes a
match for a bid (if possible) and this match is the cheapest
possible for the two customers. Consequently, the number
of matches found by the market matching algorithm is also
the maximum possible.

A second simulation scenario was designed to estimate
the execution times under increased load (compared to the
first simulation scenario). Therefore, the simulation experi-
ments of the market mechanism were performed for 1,000
time slots with 75 providers submitting 750 asks and 75
bidders submitting 750 bids. As for the previous simulation
scenario, 50 simulations experiments were executed on the
same computer as before. Based on these simulation results,
the average execution time over the 50 experiments was

Fig. 7 Snapshot of the market

664 Ann. Telecommun. (2010) 65:653–667

calculated. The average number of matches feasible and
actually found by the algorithm was 739. Figure 9 depicts
the average execution times of the different variations of the
matching algorithm.

As Fig. 9 shows, the asynchronous invocation still
outperforms all other approaches. The per-slot invocation
results in a delay that is almost double the delay that an
asynchronous invocation incurs. The performance of price
and time indexing is very good due to the large number of
bids and asks in the directory. Both indexing methods result
in an impressive system performance, which is similar to
that of asynchronous invocation. Periodic invocation of the
matching module results in much worse performance, due
to the larger size of the market directory.

In general, since the number of bids and asks is high in
the market directory in the second scenario, the matching
algorithm typically works over larger directory sizes than in
the case of the first simulation scenario. For clarification,
assuming the simple case, in which asks are stored in the
directory without additional indexing, the matching algo-
rithm needs to perform two tasks for finding potential
matching asks for a bid: Firstly, it has to check all the ask
prices and time durations to see if an ask is indeed a
candidate match for the bid; Secondly, it has to sort the
candidate asks so that the cheapest unit-of-trades (i.e.,
VMs) are returned as a matching solution. Therefore, the
complexity of invoking the matching algorithm for one
active bid can be defined as O(#asks) + O(#candidate_asks
* log(#candidate_asks)), i.e. the complexity is proportional
to the number of asks in the directory. Moreover, whenever
a new ask is submitted to the directory, the matching
algorithm must check for all the active bids whether they
can be served. Subsequently, it must also compute the

cheapest solution for them. Therefore, the time that the
matching algorithm needs to be executed is an increasing
function of the number of asks and bids that remain
unmatched in the market directory.

4.5.3 Discussion

The main findings of the experimental assessment of the
matching algorithm are independent of the load of the
system. However, the more the system is loaded the clearer
the differences in the system performance become. The
main conclusions are as follows:

Impact of frequency of invocation The more frequently the
matching module is invoked, the better the system
performance is. In fact, simulations indicate that the best
solution is that the matching module is invoked asynchro-
nously. On the contrary, invoking the matching module
periodically per T>1 time slots results in poor performance.
These results are caused by the fact that most of the
algorithm complexity is due to the searching and sorting of
the list of active bids and asks. The more frequently the
module is invoked, the less the length of the market data
and, thus, the better the performance. Note also that this
approach minimized the delay of the system response to a
user on whether a match for his bid/ask has been found or
not.

Impact of price indexing Price indexing accelerates the
matching. The higher the variance of the prices, the better
the system performs with price indexing. The best number
and ranges of price indexes can be obtained ex post (i.e.,
upon the deployment of the system) by analyzing the bid

Fig. 8 Results of simulation
scenario 1

Fig. 9 Results of simulation
scenario 2

Ann. Telecommun. (2010) 65:653–667 665

prices and ask prices stored in the system. The analysis can
provide a good answer to the optimality question. Never-
theless, it is also possible to use a simple clustering
algorithm that operates on-the-fly on bid prices and ask
prices and dynamically reconfigures these indexes. How-
ever, the specification and implementation of such algo-
rithms are beyond the scope of this analysis.

Impact of time indexing Results are similar to that of price
indexing. For the simulations conducted, we used a time
index, which groups those bids (and asks respectively)
together that overlap in time. The results indicate that the
shorter the length of the duration of the asks (and bids) is,
the better the classification of bids and asks in the various
indexes is and, therefore, the better the overall system
performance is. However, finding the optimal grouping
algorithm is also not in the scope of this analysis.

Concluding, throughout all experiments conducted, the
difference on the performance of the various flavors of the
GridEcon market mechanism is significant. Therefore, we
recommend that the GridEcon marketplace should opt for
an architecture that allows invoking the matching module
asynchronously. User actions that modify the market status
(i.e. the bids and/or the asks in the system) should trigger
the asynchronous invocation of the matching module. We
can also argue that price and time indexes should be used to
further speed up the system performance. It is also worth
noting that the matching algorithm could be performed in
parallel, if each index runs on a separate computer. Though
this was not actually simulated, it is expected to further
improve the system performance.

5 Conclusion

Within this paper, we designed a technical and economic
framework for trading computing resources. In particular,
we designed the GridEcon Marketplace (along with its
value-added support services) and its market mechanism.
The market mechanism design comprises a detailed
specification of the unit-of-trade, the bids and asks, as well
as the matching algorithm.

The unique feature of our marketplace is the opportunity
of users to buy and sell computing resource services. This
feature allows users of the marketplace to adapt their usage
strategies (e.g. buy more and own less computing power;
compute during the night only) based on their demand and
the supply of the market. Therefore, the GridEcon
Marketplace provides an alternative to the existing oligop-
oly in the market for Cloud computing (e.g., Amazon, HP,
IBM, Google, Sun). Finally, it allows new businesses (i.e.,
value-added service providers) to emerge on top of this
marketplace, offering value-added support services.

We validated the GridEcon Marketplace and the Grid-
Econ Market Mechanism, using the service-oriented Grid-
Econ Platform. This platform can be used for testing and
validating new business models and business scenarios in
the Cloud. In detail, for validating the market mechanism,
we used the User Emulation Service of the platform. It
helped finding the most efficient variation of the basic
market mechanism.

The validation results show that the market mechanism
is efficient with respect to handling bids and asks. The most
efficient variation of the basic market mechanism is the one
that invokes the matching algorithm immediately after the
arrival of a bid or ask. Our results also indicate that the
performance of the matching algorithm can be improved
even further, if price or time indexing is used in
combination with the asynchronous invocation option.
However, this is to be validated in our future studies.

In addition to this, our future work will use the GridEcon
Marketplace for simulating different capacity planning
strategies in a market for Cloud computing resources. In
particular, we will focus on the effect of the market
mechanism on different capacity planning decisions.

Acknowledgement This research has been supported by the
European Commission within the framework of the FP6 ICT
GridEcon project (contract no. 033634). The authors would also like
to thank the members of the GridEcon consortium for their
contributions. Special acknowledgement is due to George Stamoulis,
Manos Dramitinos, Kostas Giannakakis, Thierry Rayna, Alan Flem-
ing, and Alon Lahav.

References

1. Amazon, Elastic Compute Cloud (Amazon EC2). Available at:
http://www.amazon.com/gp/browse.html?node=201590011.
Accessed December 2008

2. Buyya R, Abramson D, Giddy J (2001) An economy grid
architecture for service-oriented grid computing. 10th IEEE
International Heterogeneous Computing Workshop (HCW 2001).
San Francisco, IEEE Computer Society Press, Los Alamitos, CA

3. Expedia. Available at: http://www.expedia.com/Accessed January
2010

4. Altmann J, Courcoubetis C, Stamoulis GD, Dramitinos M, Rayna
T, Risch M, Bannink C (2008) “GridEcon—a market place for
computing resources”, GECON 2008. Workshop on Grid Eco-
nomics and Business Models, Springer LNCS, Las Palmas, Spain,
August

5. Lai K, Rasmusson L, Adar E, Zhang L, Huberman BA (2005)
Tycoon: an implementation of a distributed market-based resource
allocation system. Multiagent Grid Systems 1(3):169–182

6. Musil, S (2008) Amazon's S3 Experiences Outage. Cnet News.
com. Available at: http://news.cnet.com/8301-1023_3-9995301-
93.html. Accessed January 2010

7. Neumann J v, Morgenstern O (2007) Theory of games and
economic behavior. Princeton University Press, Princeton, NJ 60
Anv. edition

8. The Popcorn Project. Available at: http://www.cs.huji.ac.il/~pop
corn/. Accessed 2008

666 Ann. Telecommun. (2010) 65:653–667

http://www.amazon.com/gp/browse.html?node=201590011
http://www.expedia.com/
http://news.cnet.com/8301-1023_3-9995301-93.html
http://news.cnet.com/8301-1023_3-9995301-93.html
http://www.cs.huji.ac.il/~popcorn/
http://www.cs.huji.ac.il/~popcorn/

9. Regev O, Nisan N (1998) The POPCORN Market—–an Online
Market for Computational Resources. In: Proceedings of the First
International Conference on Information and Computation Econ-
omies. ICE 1998. ACM, New York, NY

10. Risch M, Altmann J (2008) Cost Analysis of Current Grids and its
Implications for Future Grid Markets. In: Proceedings of the Grid
Economics and Business Model Workshop. GECON 2008.
Springer LNCS, Heidelberg. pp 13–27

11. Waldspurger CA, Hogg T, Huberman BA, Kephart JO, Stornetta
WS (1992) Spawn: a distributed computational economy. IEEE
trans softw eng 18(2):103–117

12. Pattanaik KK, Singh R, Sahoo G (2007) An e-resource trading
paradigm for computational grids, IJCSNS international. J
Comput Sci Netw Secur 7(7):302–309

13. The gridbus project. Available at: http://www.gridbus.org/
Accessed 2009

14. Rahman M, Buyya R (2008) An Autonomic Workflow Manage-
ment System for Global Grids. Proceedings of the Eighth IEEE
International Symposium on Cluster Computing and the Grid,
CCGrid. IEEE Computer Society, Washington, DC, In, pp 578–583

15. Buyya R, Abramson D, Giddy J (2000) Nimrod-G: an Architecture
for a Resource Management and Scheduling System in a Global
Computational Grid, The 4th International Conference on High
Performance Computing in Asia-Pacific Region (HPC Asia 2000),
Beijing, China. IEEE Computer Society Press, New York, USA

16. Venugopal S, Buyya R, Winton L (2004) A Grid Service Broker
for Scheduling Distributed Data-Oriented Applications on Global
Grids. In: Proceedings of the 2nd Workshop on Middleware for
Grid Computing, MGC 2004, vol.76, ACM, New York, NY,
USA. pp 75–80

17. Risch M, Altmann J, Makrypoulias Y, Soursos S (2008)
Economics-Aware Capacity Planning for Commercial Grids. In:
Collaborations and the Knowledge Economy, pp.1197-1205. IOS
Press, Amsterdam

18. Quan DM (2006) “Mapping heavy communication Workflows
onto Grid Resources within SLA context”, Proceedings of the
Second International Conference on High Performance Comput-
ing and Communications (HPCC). Munich, Germany

19. Quan DM, Altmann J (2007) “Mapping of SLA-Based Workflows
with Light Communication onto Grid Resources”, GSEM 2007,
4th International Conference on Grid Service Engineering and
Management. Leipzig, Germany

20. Quan DM, Kao O (2005) Mapping workflows onto grid resources
within an SLA context. Proc Eur Grid Conf EGC LNCS
3470:1107–1116

21. RischM,Altmann J, Guo L, FlemingA, Courcoubetis C (2009) “The
GridEcon Platform: A Business Scenario Testbed for Commercial
Cloud Services,” GECON 2009, Workshop on Grid Economics and
Business Models. Springer LNCS, Delft, Netherlands

22. Chuliang Weng, Minglu Li, Xinda Lu, Qianni Deng (2005)
“Economic Based Resource Management Framework,” CCGrid
2005, Cardiff, Wales, UK

23. Sandholm T, Lai K, Ortiz JA, Odeberg J (2006) “Market-Based
Resource Allocation Using High Performance Computing Grid for
Scientific Applications,” In: Proceedings of IEEE HPDC

24. Wolski R, Brevik J, Plank JS, Bryan T (2003) “Grid resource
allocation and control using computational economies,” In: Grid
computing: making the Global infrastructure a reality. Wiley, New
York

25. Xen. Available at: http://www.xen.org/. Accessed May 2009
26. Meinl T, Neumann D (2009) “A Real Options Model for Risk

Hedging in Grid Computing Scenarios,” HICSS '09. 42nd Hawaii
International Conference on System Sciences. pp 1–10

27. Eric Schonfeld, TechCrunch. Available at: http://www.techcrunch.
com/2008/01/30/amazon-earnings-call-details-web-services-use-up-
more-bandwidth-than-amazoncom-the-kindle-is-a-hit/. Accessed
January 2008

28. Tsunamic Technologies Inc. Available at: http://www.clusteronde
mand.com/. Accessed December 2009

29. Google Apps. Available at: http://www.google.com/apps/.
Accessed March 2009

30. Salesforce.com. Available at: http://www.salesforce.com.
Accessed March 2009

31. Sun Grid. Available at: http://www.sun.com/service/sungrid/index.
jsp. Accessed December 2008

32. Enomaly. Available at: http://www.enomaly.com/. Accessed De-
cember 2009

33. Zimory. Available at: http://www.zimory.com/. Accessed December
2009

34. Zimory restrictions. Available at: http://www.zimory.com/index.
php?id=33#c94. Accessed December 2009

35. Globus. Available at: http://www.globus.org/. Accessed January
2010

36. OGSA. Available at: http://www.globus.org/ogsa/. Accessed Jan-
uary 2010

37. Elmroth E, Gardfjäll P, Mulmo O, Sandgren A, Sandholm T
(2004) An OGSA-Based Bank Service for Grid Accounting
Systems; 2nd International Conference on Service Oriented
Computing. pp 279–288

38. Sandholm T, Gardfjäll P, Elmroth E, Johnsson L, Mulmo O (2004)
“An OGSA-based accounting system for allocation enforcement
across HPC centers.” In: Proceedings of the 2nd International
Conference on Service Oriented Computing, New York, NY,
USA. ICSOC, ACM, New York)

39. Karasavvas K, Antonioletti M, Atkinson M, Hong NC, Sugden T,
Hume A, Jackson M, Krause A, Palansuriy C (2005) Introduction
to OGSA-DAI services. In Lect Notes Comput Sci 3458:1–
12

40. Mason R, Courcoubetis C, Miliou N (2009) “A Framework for
Analyzing the Economics of a Market for Grid Services,” 6th
International Workshop on Grid Economics and Business Models,
GECON 2009, Delft, The Netherlands

41. EMC CIS. Available at: http://www.emccis.com. Accessed
January 2010

Ann. Telecommun. (2010) 65:653–667 667

http://www.gridbus.org/
http://www.xen.org/
http://www.techcrunch.com/2008/01/30/amazon-earnings-call-details-web-services-use-up-more-bandwidth-than-amazoncom-the-kindle-is-a-hit/
http://www.techcrunch.com/2008/01/30/amazon-earnings-call-details-web-services-use-up-more-bandwidth-than-amazoncom-the-kindle-is-a-hit/
http://www.techcrunch.com/2008/01/30/amazon-earnings-call-details-web-services-use-up-more-bandwidth-than-amazoncom-the-kindle-is-a-hit/
http://www.clusterondemand.com/
http://www.clusterondemand.com/
http://www.google.com/apps/
http://www.salesforce.com
http://www.sun.com/service/sungrid/index.jsp
http://www.sun.com/service/sungrid/index.jsp
http://www.enomaly.com/
http://www.zimory.com/
http://www.zimory.com/index.php?id=33#c94
http://www.zimory.com/index.php?id=33#c94
http://www.globus.org/
http://www.globus.org/ogsa/
http://www.emccis.com

	A marketplace and its market mechanism for trading commoditized computing resources
	Abstract
	Introduction
	State-of-the-art in computing resource markets
	Market environment
	Existing commercial Cloud offers
	Open Cloud market enablers
	Market mechanisms

	The GridEcon Marketplace for trading computing resources
	Requirements
	Basic prerequisites for a functioning marketplace for computing resources
	Dependencies of a marketplace for computing resources
	Requirements specific to a computing resource marketplace
	Operation of the marketplace

	The GridEcon environment
	User interaction with the marketplace environment
	GridEcon market mechanism
	Unit of trade
	Bids and asks
	Matching algorithm

	Validation
	The GridEcon platform
	Architecture and implementation
	Platform services
	User emulation service

	Simulation parameters of the user emulation service
	Implementation of the GridEcon Market Environment
	Discussion
	Measurement results
	Measures
	Simulation scenarios and results
	Discussion

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

