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Abstract This paper introduces a novel approach to
a qualitative assessment of images affected by multi-
modal distortions. The idea is to assess the image qual-
ity perceived by an end user in an automatic way in
order to avoid the usual time-consuming, costly and
non-repeatable method of collecting subjective scores
during a psycho-physical experiment. This is achieved
by computing quantitative image distortions and map-
ping results on qualitative scores. Useful mapping mod-
els have been proposed and constructed using the
generalised linear model (GLZ), which is a gener-
alisation of the least squares regression in statistics
for ordinal data. Overall qualitative image distortion
is computed based on partial quantitative distortions
from component algorithms operating on specified im-
age features. Seven such algorithms are applied to suc-
cessfully analyse the seven image distortions in relation
to the original image. A survey of over 12,000 subjective
quality scores has been carried out in order to deter-
mine the influence of these features on the perceived
image quality. The results of quantitative assessments
are mapped on the surveyed scores to obtain an over-
all quality score of the image. The proposed models
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have been validated in order to prove that the above
technique can be applied to automatic image quality
assessment.
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1 Introduction

Nowadays, several processing and transmission opera-
tions are commonly applied to digital images. Examples
could be compression that allows reduction of a size
of images or transmission over a telecommunications
network based on connectionless protocols. This may
result in introducing image distortions and (in con-
sequence) an imperfect reconstruction of the original
image. As a result, mono-modal (e.g., noise or blur)
or, rather, multi-modal distortions (e.g., combination of
noise and blur) may be introduced. This paper presents
a uniform approach allowing for independent quanti-
tative assessment of isolated distortion types and map-
ping them onto qualitative scores representing both
isolated distortions and overall quality. Most image
quality evaluation systems provide only a single score
representing overall image quality, while the proposed
independent assessment allows for specifying a particu-
lar source of image degradation as well.

Image quality metrics can be classified using three
orthogonal classification schemes: by the amount of
reference information required to specify the quality,
by the metric calculation method, and by the way the
quality is expressed. If the amount of reference infor-
mation required to specify the quality is taken into
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account, “full reference”, “reduced reference” and “no
reference” scenarios can be specified.

If the metric calculation method is taken into ac-
count, then metrics include a plethora of possible scalar
parameters based on algorithms ranging from simple
data (pixel-to-pixel) comparisons up to sophisticated
image analysis. Data metrics look at the fidelity of the
signal without considering its content. Examples of such
measures are: peak signal-to-noise ratio (PSNR), mean
square error (MSE) and similar. There are also several
metrics based on sophisticated image analysis. Image
metrics treat the data as the visual information that it
contains. These metrics include a wide range of possible
scalar parameters of the human visual system (HVS)
that analyses the spectrum of the digital image in order
to reproduce human perception. As an example of a
metric, authors of picture quality scale (PQS) [15] de-
fined an overall measure combined from several error
scalars. In this solution, however, no detailed informa-
tion can be obtained on specific image distortions.

Image quality metrics can also be classified by the
way the quality is expressed and, furthermore, into
the qualitative or quantitative. Quantitative criteria are
usually expressed by a numerical value that can be eas-
ily calculated. However, there are no straightforward
mappings between those values and user experience.
In order to find such mapping function, subjective tests
have to be run. On the other hand, metrics trained
upon results obtained in subjective experiments are
commonly referred to as qualitative. These criteria are
considered with graphical (e.g. Hosaka plots [6]), tex-
tual (e.g. mean opinion score—MOS [9]) or numerical
measures (e.g. R value and MOS).

An example of a quality metric providing the overall
quality score (MOS) is the perceptual evaluation of
video quality (PEVQ) [16] based on ITU-T J.144 [11]
and ITU-T J.247 [10]. It is designed to estimate the
video quality degradation occurring through a network;
however, it can be simplified to the image quality met-
ric since it operates on a decompressed video stream
(frames level).

The main idea of the presented approach is to de-
velop a set of cross-distortion robust1 algorithms for in-
dependent assessment of the selected image distortions.
Assessment of any mono-modal distortion of an image
quality is not a very challenging research issue when
mono-modally distorted images are considered (only
one type of distortion). The task becomes much more
complex when an image is multi-modally distorted (e.g.
both noised and blurred). As the final step of the

1Being insensitive to other distortions introduced to the image.

presented approach, a mapping between automatically
obtained quantitative values and qualitative responses
of a simulated user has been assured, based on psycho-
physical experiments (subjective tests) previously
executed.

There are two contributions introduced within the
presented research. The first one is a set of the algo-
rithms for independent quantitative assessment of se-
lected image distortions being robust to cross-distortion
influence. The second one is the mapping of quantita-
tive metrics onto qualitative scores that allows for elimi-
nation of difficult-to-organise, inaccurate and resource-
consuming subjective tests, while retaining their clarity.

The paper is structured as follows: the next section
describes the methodology details for metrics and com-
pensations. Section 3 presents subjective quality evalu-
ation, and Section 4 presents user response mapping. In
the third section, the results are validated. The fourth
section presents the implementation, while the fifth
section concludes the paper.

2 Quantitative metrics and compensations

This section presents details of the quantitative metrics
for assessment of selected image distortions being re-
silient to cross-distortion influence.

2.1 Quantitative metrics

The authors have developed metrics for quantitative
assessment of the following seven distortion types: con-
trast distortion, blur, granularity, geometry distortion,
noise, colour distortion and gamma distortion. The
output of each algorithm is in a different metric scale,
e.g. 0. . . 1 or −infinity. . . infinity, and it has a different
meaning each time, e.g., brightness2 or motion vec-
tor length; however, user response mapping functions
convert the different outputs into a common measure
scare—MOS. Please refer forwards to Sections 4 and 5,
as well as to Fig. 13, for more details. Two proposed
metrics are based on some well defined approaches,
examples of similar blur and noise metrics can be found
in [5] and [6] respectively. The remaining part of the
metrics represents a novel approach. Telekomunikacja
Polska R&D (Polish Telecom), the orderer of the
work, has specified the distortion types (quality para-
meters) list. The choice was motivated and justified by
HVS characteristics and quality parameters of existing
metrics (PQS, PEVQ). Figure 1 presents the general
methodology for assessment of particular distortion
types (including compensations that allow elimination
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Fig. 1 Assessment
methodology overview

of harmful influence of some distortions; the issue has
been described in detail in Subsection 2.2).

2.1.1 Contrast distortion assessment

In order to calculate contrast distortion ConD, a
method illustrated in Fig. 2 is used. The histograms
of the original F and the reconstructed image ̂F are
normalised. Afterwards, two pairs of the images (one
pair consists of the images F and its normalised equiva-
lent F N) are compared using the PSNR metric defined
by Eq. 2. The PSNR metric returns similarity levels
in the decibel scale. The result of the PSNR values’
subtraction stands for the comparison indicator (as a
subtraction in the decibel scale is equal to a division in

the linear scale). The experiment has proved that the
applied approach assures insensitivity to any other type
of image distortion.

ConD = PSNR
(

F, F N) − PSNR
(

̂F, ̂F N)

(1)

PSNR
(

F, ̂F
) = 20 log10

⎛

⎝

Fmax
√

MSE
(

F, ̂F
)

⎞

⎠ (2)

MSE
(

F, ̂F
) =

∑M
i=1

∑N
j=1

[(

F ( j, k) − ̂F ( j, k))
)]2

M · N
(3)

Assuming F ( j, k) as an original image luminance
function, ̂F ( j, k) as a reconstructed image luminance
function, F N ( j, k) as a normalised original image
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Fig. 2 Contrast distortion
detection

luminance function, ̂F N ( j, k) as a normalised recon-
structed image luminance function and Fmax as a max-
imum luminance value, contrast distortion assessment
algorithm ConD can be described by Eq. 1.

2.1.2 Blur assessment

The blur (also commonly referred to as a sharpness
distortion) is one of the most significant factors that
have an influence on the subjective opinion about the
image quality. It is closely related to the amount of the
details that an image can provide. The blur is defined as
the shortest distance between the areas having different
tones of colours (e.g. black and white). An edge detec-
tor seems to be an appropriate image blur indicator.
The more edges detected on images, the better the
image sharpness.

The first step to calculate an image blur is to convert
both input images to gray scale (see Fig. 3). Afterwards,
all the edges on the images are detected using the canny
edge detection method (CED) [4]. The next step is to
calculate power P of the images, which directly reflects
an absolute edges amount. The result of the subtraction
of the images’ power defines the blur comparison value,

which is returned as the output of the script. The ex-
periment has proved that the applied approach assures
insensitivity to any other type of image distortion.

B = P(F) − P
(

̂F
)

(4)

P(F) =
∑M

i=1

∑N
j=1

[

CED (F( j, k))
]2

M · N
(5)

P
(

̂F
) =

∑M
i=1

∑N
j=1

[

CED
(

̂F( j, k)
)]2

M · N
(6)

The blur assessment algorithm B is defined by Eq. 4,
provided that P(F) and P(̂F) are correspondingly an
original image power and a reconstructed image power.

2.1.3 Granularity assessment

Two images showing the same object, having exactly
the same resolution, can present diverse qualities – they
can provide completely different amounts of details.
The reason why it can happen is a decrease of the
number of effective pixels contained in an image. In
other words, the effective size of a single pixel on an
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Fig. 3 Blur detection

image can be significantly enlarged, which will result in
higher granularity of an image. The type of distortion
applies to the whole image.

Calculation of image granularity is performed in a
few steps, as illustrated in Fig. 4. At the beginning,
l random points are chosen from an image (Lbegin

l ).
Starting from each point, the total number of pixel-
changes PixChl is calculated for the vertical VL(l) (see
Eq. 9) and horizontal HL(l) (see Eq. 10) lines (a pixel-
change Ch appears when at least one of the R, G or B
values is different from the previous one). Line length
is described as Lend

l − Lbegin
l and was set to 100 pixels

in the experiment (each Lend
l point is 100 pixels distant

from corresponding Lbegin
l point). The maximum num-

ber of pixel-changes for all the lines is the image resolu-
tion (see Eq. 8). It is possible that the real (maximum)
value of the image resolution will not be found, as the
whole image area is not being analysed. However, it
is not a problem since the same lines are analysed on
both images (original and reconstructed). As a result of
the granularity comparison process, a quotient of the
maximum found resolution for reference and distorted
images is obtained. The experiment has proved that

Fig. 4 Granularity detection

the applied approach assures insensitivity to any other
types of image distortion.

G = EffRes(F)/EffRes
(

̂F
)

(7)

EffRes = max ((PixCh(VL(l)), PixCh(HL(l)))) (8)

PixCh(VL(l)) =
Lend

l
∑

i=Lbegin
l

Ch( f ( j, i ), f ( j, i + 1)) (9)

PixCh(HL) =
Lend

l
∑

i=Lbegin
l

Ch( f (i, k), f (i + 1, k)) (10)

Ch =
⎧

⎨

⎩

1
when R or G or B value is
different for two pixels

0 other cases
(11)
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The granularity assessment algorithm G is defined by
Eq. 7, where EffRes(F) and EffRes(̂F) are an effec-
tive resolution of the original image and the effective
resolution of the reconstructed image, respectively.

2.1.4 Geometry distortion assessment

The geometric distortions may be introduced into the
image during the analog processing stage. The analysis
of geometric distortions is based on motion detection.
Although the measurement is performed on still im-
ages, the original and reconstructed images are treated
as the concurrent frames in order to apply the motion
detection algorithm. The geometric distortion is treated
as a movement between two frames. The motion detec-
tion algorithm is similar to motion estimation used in
video compression in the MPEG standard applications.
The algorithm is executed in several steps. In the first
step, a set of uniformly distributed square blocks (n)
is chosen on both original and distorted images. For
each block from the original image, a similar image
is searched for in the distorted image. The search is
performed in a set radius (r) from the original location
of the block, i.e., all blocks in this radius are analysed
(see Fig. 5). The similarity here is understood as the
smallest difference between the original block and all
possible blocks within the set radius in the distorted
image. The difference between blocks is calculated with
the use of MSE. In the next step, for each pair of
blocks—the one from the original image b and the one
from the distorted (̂b) image—a motion vector (V) is
calculated. Moving vector is a vector defining vertical
and horizontal distance that moved the original block.
Finally, the total length of the movement vectors is
taken into account in order to allow assessment of the
geometrical distortion using the following formula:

GeD =
∑n

i=1 |V|
n· r

(12)

2.1.5 Noise assessment

Noise assessment is roughly based on an idea of Hosaka
plots. The algorithm starts with quad-tree image de-
composition, and then noise is assessed in square pixel
blocks divided into a couple of classes Ci, i = 0, . . . , n
(usually where n = 4), thus in blocks beginning from
1 × 1, usually up to 16 × 16. Both noise and recon-
struction inaccuracy parameters are represented by an
equal number of Hosaka values: DS (Ci) (noise coeffi-
cients) and DM (Ci) (inaccuracy coefficients), accord-
ingly (DS (C0) ≡ 0). The Hosaka plots are drawn at a
polar chart, where one hemi-disk is related to DS and

Fig. 5 Geometry distortion detection

the second to DM. The shape of the Hosaka plot spec-
ifies if noise is introduced for details (represented by
small blocks) or for larger, homogeneous areas (large
blocks). Please refer to [6] for more details on Hosaka
plots, which are not presented here due to space limits.

The distortion value N has been defined as be-
ing proportional to the area of the noise part of the
Hosaka plot; thus, a sum of areas of O (0, 0) Si(θi,

DS (Ci))Si+1 (θi+1, DS (Ci+1)) triangles, where point co-
ordinates are given in a polar coordination system, and
θi is an angle at which the DS (Ci) value has been
presented

N =
n−1
∑

i=0

1

2
sin |θi+1 − θi| DS (Ci) DS (Ci+1) (13)

Considering that |θi+1 − θi| ≡ π
n−1 , as well as the fact

that the distortion value is not normalised, all constant
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values can be excluded, resulting altogether in a simpli-
fied N notation as

N = 1

2
sin

π

n − 1

n−1
∑

i=0

DS (Ci) DS (Ci+1)

∝
n−1
∑

i=0

DS (Ci) DS (Ci+1) (14)

Please consult Fig. 6 for the graphical algorithmic
presentation of the noise level assessment algorithm.
The output metric starts from 0 and is increasing along
with squared noise distortions (the highest observed
was around 200).

2.1.6 Colour distortion assessment

The colour distortion of an image is perceived by the
quality of hue component representation in a hue-
saturation-value (HSV) colour space. We consider all
pairs of corresponding pixels in the original and dis-
torted image. A difference histogram is created based
on hue distortions of each pixel pair. During experi-
ments, it has been found that certain types of distortion
produce large peaks in a difference histogram (see
Fig. 7).

Fig. 6 Noise detection

Fig. 7 Colour distortion algorithm

This is concerned especially with either contrast or
geometric distortions. Elimination of these peaks is
crucial for a reduction of a metric variance. Therefore,
a peak threshold T is defined

T = M · N
360

. (15)

Differences lower than the threshold T can only
be included into a difference histogram. Each hue is
represented in the histogram by its number of pixels in
the image. Threshold T is the average number of pixels
per hue and, thus, depends on image size. The colour
quality assessment is considered as the sum of all the
hue differences between image histograms (measured
in number of pixels) divided by total number of pixels.
This division is carried out for measure normalisation.
The output metric lies in the range 0 . . . 1 and is increas-
ing along with colour distortions.
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Fig. 8 Gamma distortion algorithm

2.1.7 Gamma distortion assessment

The gray-scale distortion of an image is mostly caused
by the changes in a gamma level. This type of distortion
can be successfully assessed by gradual degradation of
the original image and its direct comparison to the
distorted image. We use the following algorithm to
assess gray-scale distortion of an image (Fig. 8).

First, we empirically determine the limits of gamma
that are the levels of the highest perceivable darkening
and brightening (selected range was between 0.3 and
2.3). Then, we degrade the original image by applying
gamma distortion using two different levels selected
from the range (middle points of each half, i.e. 0.8
and 1.8 in the first step). Calculation of PSNR value
between each original image and the same distorted
one allows to narrow initial gamma range (half of the
gamma range with lower PSNR metric is discarded).
This step is repeated a number of times. Each step
leads to consecutive game range narrowing. At the end,
the centre gamma value from the sub-range with the
highest corresponding PSNR value is considered as the
distortion level. It is a simple numerical method used
to find the point within the continuous range, using a
limited number of steps. We decided to use seven steps,
which allows us to achieve accuracy equal to 2−7 of the
initial range width.

2.2 Compensation

Assessment of any distortion of an image quality is
not a very challenging research issue as far as mono-
modally distorted images are considered (only one type

of distortion). The task becomes much more complex
when an image is multi-modally distorted (e.g. com-
bining contrast distortion, blur and gamma distortion).
According to performed research, only contrast distor-
tion, blur and granularity assessment algorithms are
insensitive to other types of distortions. This means
that evaluations of some of the distortions cannot be
performed properly when at least one additional algo-
rithm appears (distortion disables proper calculation of
the quantitative quality). In order to enable accurate
assessment of a single distortion of a multi-modally
distorted image, a number of compensations were ap-
plied. The authors considered each particular distortion
metric to be insensitive (or fully compensated) to other
distortions even if, for other maximum distortion val-
ues, the distortion being evaluated was not affected by
one point in the MOS scale. Compensations allow to
eliminate harmful influence of some distortions, based
on improvement of the reconstructed image (applicable
only for fully reversible distortions) or distorting the
original image (for irreversible distortions).

2.2.1 Contrast distortion compensation

A compensation of the contrast distortion allows to cal-
culate other quality metrics more precisely. Moderate
losses in a contrast level are fairly reversible distor-
tions, and quality of the reconstruction is acceptable
from the user point of view. In order to compensate a
contrast distortion, histograms of the reference and the
reconstructed images are normalised (stretched to the
maximum range).

2.2.2 Blur compensation

This type of distortion is irreversible; hence, the recon-
structed image cannot be corrected without knowing
the exact distortion model. The only possible solution
is to apply the same level of blur for the original image.
In order to assess parameters of distortion that should
be applied on the original image, the numeric method
of the minimal differences level between the original
and the reconstructed image is used (see Fig. 9). A
computation of differences is based on the blur eval-
uation methods. The whole process consists of eight
steps, each step narrowing the range of the possible
distortion parameters and giving better results. If we
assume distortions ranging from 0 to 1, eight steps of
this method allow us to assess distortion parameters
with an error equal to 2%, in the worst case.
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Fig. 9 Numeric method of blur compensation

2.2.3 Geometry distortion filtering

Once the geometric distortions are quantitatively as-
sessed, they are filtered out in the proposed solution—
thus, no areas affected are further processed and as-
sessed. The filtering is based on results of assessment
of geometrical distortions. Matching blocks from the
original and the reconstructed images are passed for
further assessments.

The criterion for qualifying a particular pair of
blocks (b and b̂) for further processing (sets BF and
̂BF) is based directly on |V| (the length of its motion
vector related to them). Only pairs of blocks having
|V| = 0 are qualified (Fig. 10).

BF =
{

b ∈ B : |V| (b , b̂
) = 0

}

(16)

̂BF =
{

b̂ ∈ ̂B : |V| (b , b̂
) = 0

}

(17)

Two new images are created as a composition of
original and reconstructed blocks that passed the filter.
The blocks are aligned in single rows in each of the
images, with horizontal bars having a height equal to
the height of a single block and a width equal to a width
of all qualified blocks. The new images are passed as a
basis for further processing.

2.2.4 Noise compensation

For various distortion metrics, noise compensation pro-
cedures had to be applied. In most cases, the peak noise
elimination filter was deployed [7]. Considering that

Fig. 10 Geometry distortions filtering

each image noise compensation introduces changes in
de-noised images as well, the compensation is applied
to both the original and the reconstructed image (see
Fig. 11).

Fig. 11 Noise compensation



12 Ann. Telecommun. (2010) 65:3–17

The primary function of the noise eliminating filter
is to smooth image objects without losing information
about edges and without creating unnecessary image
structures. The key assumption is to replace every pixel
tagged as a noise pixel with the neighbouring pixels’
values. A pixel is qualified as noise only if it has the
maximal or the minimal values within a pixel window—
w ( j, k).

w ( j, k) =
⎡

⎢

⎣

F ( j − r, k − r) . . . F ( j + r, k − r)
...

F ( j − r, k + r) . . . F ( j + r, k + r)

⎤

⎥

⎦ (18)

It is possible to specify a neighbouring pixels’ prox-
imity radius, thus the width of the neighbourhood (r).
In most of the cases, r = 2 gave the best results. The
noise filtering is done by applying a digital filter to the
noisy reconstructed image. The digital filter is based
on computing weighted averages of target pixel colour
components.

3 Subjective quality evaluation

The main motivation of subjective trials was to collect
opinion scores (OSs) regarding quality of reconstructed
images in order to determine a mapping function be-
tween quantitative quality (output of the algorithms for
quantitative quality assessment) and quality perceived
by a typical user. Subjective OSs allow for constructing
models, eliminating the necessity of involvement of
human testers in further tests.

3.1 Methodology

General provision for the subjective assessment of the
quality is presented in [8]. According to the recommen-
dation, subjective tests of image quality should be con-
ducted on the diverse and numerous groups of subjects
(testers). For all the reconstructed images, a number of
subjective scores (OS) should be collected. In order to
assess how strongly few distorted parameters influence
the perceived quality, each test session should include
evaluation of both mono- and multi-modally distorted
images.

The test required the double stimulus method with
five-level impairment grading and the absolute im-
age quality assessed. Hence, DSIS [8] was used as a
basic methodology for subjective tests, with one mi-
nor change. Assessment of the image quality did not

refer to the distortion level, but to the absolute image
quality (just as described in the double stimulus con-
tinuous quality scale methodology [8]). Therefore, the
presented methodology is a combination of both ap-
proaches based on the double stimulus, and it is
similar to the ACR methodology [13]. The applied
modifications eliminate error being a result of transi-
tion between distortion level and image quality, which
is required as the final result of the image distortions’
assessment process.

3.2 Test-set

Subjective tests were performed upon a test material
(test-set) prepared using a software distortion tool de-
signed in the scope of the research. The distortion tool
allowed application of all types of considered distortion
aspects (seven isolated quality aspects).

One image from the standardised digitised image set
[12] was chosen as a base to create the whole test-set
(see Fig. 12). The image presents variegated content
and seems to be representative for colour images. The

Fig. 12 Base test image
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test-set included several images generated with a distor-
tion tool: 94 distorted mono-modally and 330 distorted
multi-modally.

3.3 Subjective tests

Subjective tests included approximately 250 trials
(testers that where mostly students, i.e. their ages were
between 19 and 25) overall. Each evaluation trial con-
sisted of 60 random images (generated separately for
each trial) chosen from the whole test-set (424 images),
which eliminated error being a result of the order of
fixed images. Within these 60 images, in each test,
12 were mono-modally distorted and 48 were multi-
modally distorted. The number of images in one trial
was limited by the human capability to give reliable an-
swers in a continuous period of time (about 15 min). As
a result of subjective tests, about 2,400 OSs for mono-
and 9,600 OSs for multi-modally distorted images have
been collected.

4 User-response mapping

The next research goal was to find a function mapping
the quantitative image distortion levels to the qualita-
tive user responses. In Section 2.1, different distortion
assessment algorithms have been described. Neverthe-
less, the value obtained for each algorithm does not pre-
dict the qualitative user response. Therefore, a function
mapping the assessment values to the qualitative user
responses had to be found.

At first look, the quantitative result of an assess-
ment and a mean qualitative user response could be
mapped using a regression algorithm. Nevertheless, the
basic assumption of the regression algorithm is that
the response distribution can be approximated by a
normal distribution. As the users could choose only one
of the five answers, the obtained answer distribution
cannot be approximated by the normal distribution.
The reason is a symmetry of the normal distribution
(around the mean value) that cannot be guaranteed,
as distribution of testers’ responses reveals a skewness.
Moreover, the verbal description used in the DSIS is
easy to understand for people, but it has no clear math-
ematical meaning. Therefore, in [9], mapping the verbal
answers to numbers is proposed. As a consequence,
the numbers are only a convention and the analysed
variable (response) is of the ordinal type [1].

The ordinal variables are variables for which an
ordering relation can be defined but a distance mea-
sure cannot be defined. The OSs have an order rela-

tion because “Poor”2 is better than “Bad”, but worse
than “Fair”. Nevertheless, a distance between answers
“Excellent” and “Fair” or “Good” and “Poor” cannot
be found. Everyone has their own measure of these
differences. Therefore, modeling the ordinal answers in
the same way as strictly numerical data is a common
mistake [1].

In order to model the ordinal answers properly, more
general models than simple regression models have to
be used [1]. The generalisation of the regression model
is the generalised linear model (GLZ). The recom-
mended approach is the GLZ which, in the presented
study, is supported by an ordinal multinomial distribu-
tion and the logit link function.3

Note that there are five possible answer; therefore,
the user response distribution is a discrete distribution.
As a consequence, the GLZ model is the probability
of each possible answer from “Excellent” to “Bad”
computed as a function of the distortion assessment
algorithm value.

The main advantages of the GLZ model in compari-
son to the linear regression are as follows:

– The user response distribution is found (for linear
regression, only a mean value is known)

– It is not necessary to assume that the OSs are
normally distributed (for linear regression, the OSs
have to be approximately normally distributed).

As a result of using the GLZ model, the user re-
sponse distribution is estimated as a function of the
assessment values, i.e. we estimate

P(Y ≤ i) = exp
(

αi + β1x + · · · + βkxk
)

1 + exp
(

αi + β1x + · · · + βkxk
) , (19)

where Y is an OS, αi is a coefficient different for each
OS value and β j is an assessment polynomial coefficient
the same for each assessment. Different polynomial
orders can be considered. Moreover, more complicated
functions of more than one assessment value can be
used, too.

The distribution could be used to compute the MOS
for each distortion. Nevertheless, during the research,
it has been found that some distortions have the an-
swer distribution where the mean value is around 3
and the most probable answer is 4 or 2 but never 3.

2The testers chose an answer described by words “Excellent”,
“Good”, “Fair”, “Poor” or “Bad”. Moreover, the meaning of
each single word was more precisely described according to
recommendation [9].
3The GLZ can model different distributions and different nonlin-
ear transformations of the distributions. The nonlinear transfor-
mations are called link functions.
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For example, the distribution was 10% “Excellent” (5),
35% “Good” (4), 20% “Fair” (3), 25% “Poor” (2) and
10% “Bad” (1). In such a case, the MOS can give a
corrupt feeling that the greatest number of users see
the image as “Fair”. Therefore, we decided to introduce
and to use the most probable opinion score (MPOS) as
a measure of users’ responses.

Performing the research project for a commercial
company, we were focused on a practical implemen-
tation of the obtained results. Therefore, we focused
on finding out how the largest group of users behaves.
Such functionality is another reason to use the MPOS
measure instead of the MOS measure.

The detailed algorithm of the analysis of the user’s
answers was as follows:4

1. Obtained data have been cleaned, i.e. if a tester has
given a far better answer (i.e. at least two levels)
for a worse image than for a better one, all tester’s
answers have been removed. Such cleaning has to
be done since some testers scored the pictures only
in order to finish the test. They did not think about
real picture quality.

2. The cleaned data obtained for a single distortion
have been split up in order to obtain a training set
and a test-set. The reason for dividing the data set
into two sets is as follows. We were looking for a
general function mapping a distortion assessment
algorithm value on a distribution of the OSs. The
mapping function is general if it predicts not only
the distribution of the OSs that were used to esti-
mate the mapping function parameters. Therefore,
instead of repeating tests after finding the mapping
function, the collected data set was divided into a
training set and a test-set. The test-set was used to
test if the mapping function correctly estimates the
data that were not used to estimate the mapping
function. In case of single distortion, a mapping
function was a polynomial of distortion metric.
Therefore, different mapping functions are differ-
ent polynomials of assessment value (see Eq. 19).

3. The results obtained for a single distortion have
been used to find a mapping function for a particu-
lar distortion, and the procedure has been repeated
for all distortions.

4. Since it is possible to propose numerous different
mapping functions (based on the GLZ modeling)
the best one has to be chosen. The Schwartz infor-

4Since, the paper size is limited, it is not possible to explain all de-
tails. Nevertheless, we believe that presented steps are sufficient
to implement the same methodology in another research.

mation criterion (SIC) [3] was used as a criterion of
comparing different mapping functions. Note that
the mapping function is a GLZ model. Since the
GLZ model is a statistical model, it is possible to
compute a measure of the fitting goodness using R2.
Therefore, the SIC is one possible alternative fitting
goodness measure.

5. The obtained GLZ model distribution and a test-
set distribution have been compared on the basis
of the Pearson χ2 test [2]. If the obtained distrib-
utions were different from the test-set distribution
(according to the Pearson χ2 test), another model
was analysed.

The final mapping function describes an OS
probability as a function of a particular distortion as-
sessment algorithm value. Note that, for the same dis-
tortion assessment algorithm value, the OS probability
is different for each answer (1, 2, 3, 4 or 5). Therefore,
five different probability functions of the distortion
assessment algorithm value represent the final result
obtained for a single distortion. Note that a distortion
assessment unit does not influence the obtained results
since we estimate β j coefficients (see Eq. 19). Each
such coefficient has unit revers to the assessment unit;
therefore, the whole polynomial is unit-less.

We cannot describe the exact form of the obtained
results (i.e. the estimated coefficients) since the re-
search was done for TPsa and, as such, is their property.
Some more details about the estimation methodology
can be found in [14].

The obtained probabilities are computed with con-
fidence intervals. The model answer is the MPOS;
therefore, the highest drop probability has to be found.
Since the confidence intervals of two probabilities can
overlap, we could consider a crossing value. The cross-
ing value could be marking the obtained MPOS or
adding a noninteger value. Nevertheless, such a value
would make the system more complicated to inter-
pret. Therefore, we did not specify the intervals where
probabilities’ confidence intervals overlap.

The final user response mapping is represented by
seven different functions. The functions map the dis-
tortion assessment algorithm value on the five-level OS
scale. Note that each function maps single distortion.
Separately, a function mapping all seven distortion as-
sessment algorithm values on the five-level OS scale
has been found. Therefore, the final result of GLZ
modeling was a set comprising eight functions. The
first seven describe the distribution of the user OS
for a single distortion. The last function describes the
OS distribution for an image affected by multi-modal
distortion.
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5 Results validation

The goal of this research was to find a correlation
between the automatically obtained qualitative scores
and the user OSs about the images. In Section 4, map-
ping the assessment values on the OS distribution were
proposed. Moreover, in Section 4, the reason for using
MPOS instead of MOS is presented.

The function mapping the qualitative assessment
values on the MPOS value is called the MPOS met-
ric. Since eight different mapping functions have been
estimated, eight different MPOS metrics are found.
Note that seven of them map the MPOS for one of
the seven mono-modal distortions. The eighth MPOS
metric maps the MPOS for the multi-modally distorted
image. This special MPOS metric has been called the
complex MPOS metric. Moreover, we proposed the
worst, i.e. the minimum, of all seven single distortion
MPOS metrics to use as an alternative multi-modal
distortion metric. This metric has been called the min-
imum MPOS metric. The analysis scheme and the ob-
tained results are shown in Fig. 13

The accuracy of the obtained metrics is computed as
an answers difference, i.e. the difference between the
sample mode (the most frequent value) and a metric
answer. Note that the negative values indicate that a
metric overestimates the image quality and the posi-
tive answers indicate that a metric underestimates the
image quality. For example, if the difference is −3, it
means that the metric answer was 5 or 4 for the image
for which the sample mode answer (the most frequent

answer) was 2 or 1, respectively. This notation is used
in Fig. 14.

In Fig. 14, frequencies of a difference between the
answer that has been chosen by most testers and
the metric answer have been presented. Figure 14a–g
presents the accuracy of the single distortion metrics,
i.e. the metrics considering only a mono-modal dis-
tortion. The accuracy of the metrics for mono-modal
distortion metrics has been compared with the images
distorted by the same distortion.

Figure 14h and i present the accuracy of the complex
MPOS metric and minimum MPOS metric, respec-
tively. The comparison for the metrics for multi-modal
distortions has been performed for all images, including
those multi-modally distorted.

From Fig. 14a–g, it can be seen that some distor-
tions are very well predicted, such as contrast distor-
tion (Fig. 14a). The others, for example, granularity
(Fig. 14c), reveal a much higher variance. Figure 15
shows the metric and the user answers (the most prob-
able answers) of the granularity on a single plot.

An interesting observation is that the high variability
of the answers’ difference is not necessarily a result of
the metric inaccuracy. Note that the metric response
has to be monotonic since, for a more distorted picture,
its quality cannot be better. Nevertheless, the users’
responses vary for the increasing distortion level (the
solid line in Fig. 15). The user answers can vary for
numerous different reasons. Note that different images
can be scored by different persons and their feelings can
be different.

Fig. 13 Overview of the
metrics analysis scheme
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Fig. 14 The frequency of the
answers difference for
different metrics. a Contrast.
b Sharpness. c Granularity. d
Gray scale. e Geometry. f
Noise. g Color. h Complex
MPOS. i Minimum MPOS

An error not higher than −1 is obtained for 95%
for both metrics for multi-modally distorted images.
Moreover, both complex MPOS metric (Fig. 14h) and
MIN MPOS metric (Fig. 14i) are accurate for almost
75% of the answers. The complex MPOS metric takes
into consideration influences of different quality assess-
ment values. Nevertheless, the complex MPOS metric
is not much better than a simple minimum of the seven
single distortion metrics. It shows that probably the
most important from a tester point of view is the worst
distortion level. Since the accuracy of the minimum

Fig. 15 Comparison between metric and the user answers ob-
tained for the granularity distortion

MPOS metric is similar to the more complicated model,
we implemented this solution as simpler and, therefore,
more predictable.

6 Summary

The paper presented a solution to the problem of an au-
tomated evaluation of a subjective image quality. The
authors designed a software tool for an evaluation of
image quality implemented in the form of a Perl-based
software package. The two-step procedure allows a user
to compare a pair of images and receive information
regarding the qualitative scores of a distorted image.

In the first step, seven types of distortion, covering
possible image artefacts well, are being determined
numerically. For numerical evaluation of some of the
distortions, the basic functions of the ImageMagick
software were found to be useful. For other cases,
the algorithms were implemented by the authors from
scratch. The problem of a mutual cross-distortion influ-
ence was identified as well and dealt with by compensa-
tion algorithms successfully.

During the second step, a mapping function is em-
ployed that transforms numerical distortion measures
into scores equal or satisfactorily close to ones given
by humans assessing the quality of the same image.
The shape of the mapping function, together with its
statistical credibility, was investigated and tuned with
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the sophisticated GLZ techniques based on results of
extensive subjective tests for a reference image.
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