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Abstract This article presents an extension of the
Fractal component model targeted at programming ap-
plications to be run on computing grids: the grid com-
ponent model (GCM). First, to address the problem
of deployment of components on the grid, deployment
strategies have been defined. Then, as grid applications
often result from the composition of a lot of parallel
(sometimes identical) components, composition mech-
anisms to support collective communications on a set
of components are introduced. Finally, because of the
constantly evolving environment and requirements for
grid applications, the GCM defines a set of features
intended to support component autonomicity. All these
aspects are developed in this paper with the challenging
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objective to ease the programming of grid applications,
while allowing GCM components to also be the unit of
deployment and management.
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1 Introduction

Grid computing raises a lot of challenges for program-
ming models because it consists in programming and
running applications running over large-scale hetero-
geneous resources that evolve dynamically. The grid
component model (GCM) addresses the characteristic
challenges in terms of programmability, interoperabil-
ity, code reuse, and efficiency. Programming large-scale
distributed systems as grids can be considered as a
matter of distributed services deployment and further
integration. In this paper, we advocate the idea that a
hierarchical and distributed software component-based
approach is an effective solution to this.

1.1 Objectives

The research challenges dealt with by the GCM are,
thus, the support at the application level for heterogene-
ity, large-scale distribution, and dynamic management
and adaptivity by means of a component model to
provide a high programmability of grid applications.

Programmability deals with the expressive power
of the language mechanisms that are offered to the
programmers and what is the burden for them to
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effectively use those mechanisms. A short overview of
current proposed grid frameworks makes us believe
that it is in the programmability dimension that re-
sides the greatest divergence between those solutions.
Schematically, these solutions range

– From low-level message-passing [for example, mes-
sage passing interface (MPI)] remote procedure
call (RPC)- or remote method invocation (RMI)-
based traditional parallel and distributed prog-
ramming models—simply ported to tackle grid
issues—by which the program itself dictates and
orchestrates the parallelism and distribution of
computing and communicating entities [24]

– To solutions in which the orchestration or choreog-
raphy of the set of parallel and distributed entities is
guided from the extern of these entities, not neces-
sarily in a centralised manner by using for example
workflow languages and programming [23]

We think that these two categories are not exclusive
because the spectrum of applications that could benefit
from running on grids is not closed. The purpose of
the GCM is to reconcile those two extreme points of
view: a component approach allows both explicit com-
munications between distributed entities like in MPI
and high-level management of the distribution of those
entities and their interactions, like in workflows. GCM
mainly focuses on the programmability of end-user grid
applications, but is also suited to program tools and
middleware in the computing grid context: those can
be designed and implemented as GCM components
featuring specific services.

So, we aim at proposing a solid and adequate par-
allel and distributed programming model laying the
foundation for building any form of grid application.
Its qualities must be those of expressiveness, extensi-
bility, solid theoretical foundation and suitability for
optimisation and competitive implementations. In light
of this, we selected the Fractal component model as the
starting point for offering a versatile yet structured and
tractable grid programming model.

1.2 Approach and contribution

A general issue when designing a component model is
the advised granularity of the components: “what is the
size of a component?” This issue is often overridden in
the presentation of a component model, but is crucial
to understand the decisions taken in such a design. In
the case of a hierarchical component model like Fractal,
this question becomes “what is the size of a primitive
component?”, or “what is the unit of composition?”
Fractal does not impose any granularity for the compo-

nents, but the concept of binding component [10] and
some of the features of the model suggest a fine-grained
implementation: a primitive component is assimilated
to one or a few objects.

The granularity of the component model is, to our
mind, a crucial aspect because it influences the ex-
pressive power and the overhead of the component
architecture: a fine-grain system increases the ability to
compose components but generally entails additional
cost to manage a larger number of entities and to make
them interact.

When addressing distribution aspects of a compo-
nent model, the same question arises again, but be-
comes more complex: “what is the relation between the
unit of composition (the primitive component) and the
unit of distribution?” Like Fractal, the GCM does not
enforce precisely any granularity of the components.
However, in order to allow GCM primitive components
to be also the unit of distribution for a GCM imple-
mentation, we consider that GCM component imple-
mentations would probably have a coarser granularity
than Fractal ones. This difference in the advocated
component granularity partially explains why some of
the highly used features in a grid setting as collective
communication mechanisms have been defined as first-
class citizens in the GCM. For example, multicast com-
munication could be expressed in Fractal by relying on
binding components, but such components would be
too small to be used as the unit of distribution. In brief,
in GCM, each component is subject to distribution.

Compared to other component models, the GCM
has been conceived around a component granularity
that is somehow in middle between small grain Fractal
components and very coarse grain ones, like those sug-
gested by CORBA component model (CCM) where a
component is of a size comparable to a full-fledged ap-
plication. Somehow, GCM has been conceived thinking
of components of the size of a process (i.e., one or a
few threads per primitive component), though it can be
used in a much finer or coarser grain way.

To address the challenges expressed above, the
GCM is a specification taking the following approach.
Distribution concerns are specified at the composition
level by specific entries in the Architecture Description
Language (ADL) relying either on a controlled or on
an automatic mapping between computing resources of
the infrastructure and primitive components. Many-to-
one and one-to-many communications are key mech-
anisms for optimising communications in a large-scale
environment; they are also key programming constructs
for distributing computations and synchronising their
results. This paper also studies the effective combina-
tion of one-to-many and many-to-one interfaces: the
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MxN problem. Finally, heterogeneous dynamic large
infrastructures require the adaptation of the applica-
tion and its management to be totally distributed and,
consequently, preferably autonomous. For this, GCM
extends Fractal with controllers as components, and
with the definition of interfaces for autonomicity, to
enable the autonomous control to be designed as a
component-based system.

The point of view we adopt here is close to Fractal:
we are not tied to any programming language; however,
like in Fractal, we reuse the terminology of object-
oriented programming. Components are thought of as
autonomous service entities exchanging messages or
requests according to precisely defined ports (named
interfaces in Fractal).

1.3 Foundations

The GCM has been defined by the CoreGRID
European Network of Excellence gathering researchers
in the area of grid and peer-to-peer technologies. It
relies on the following aspects inherited from existing
works:

– Fractal as the basis for the component architecture:
We summarise the characteristics we benefit from
Fractal in Section 2.1.

– Communication semantics: GCM components
should allow for any kind of communication seman-
tics (e.g., streaming, file transfer, event-based)
either synchronous or asynchronous. Of course,
for dealing with high latency, asynchronous com-
munications will probably be preferred by most
GCM frameworks.

1.4 Outline

This paper starts with an overview of existing com-
ponent models that can be used in the area of grid
computing, in Section 2. Among the central features of
the GCM, this article will focus on the most innovative
ones:

– Support for deployment: distributed components
need to be deployed over various heterogeneous
systems. The GCM defines deployment primitives
for this. Deployment aspects will be developed in
Section 3.

– Support for one-to-many, many-to-one and many-
to-many communications: often, grid applications
consist of a lot of similar components that can be
addressed as a group, and that can communicate
together in a very structured way. The GCM also
intends to provide high-level primitives for a better

design and implementation of such collective com-
munications which will be detailed in Section 4.

– Support for non-functional adaptivity and auto-
nomic computation: the grid is an highly evolving
environment, and grid applications must be able
to adapt to those changing runtime conditions. For
this reason, we propose to allow for both recon-
figuration of the component control aspects, and
autonomic computation support. Adaptivity and
autonomicity in the GCM will be presented in
Section 5.

2 Other distributed component models

This section reviews the main component models; it
first briefly presents what peculiar and interesting fea-
tures the Fractal abstract component model provides,
consequently arguing why we selected it as the basis for
the GCM. Next, we review some other software com-
ponent models that are targeted at the programming of
distributed applications, or even of middleware, taking
into account constraints raised by distribution.

2.1 Fractal

Fractal [10] is a general component model which is in-
tended to implement, deploy and manage (i.e. monitor,
control and dynamically configure) complex software
systems, including in particular operating systems and
middleware. Among Fractal’s peculiar features, below
are those that motivated us to select it as the basis for
the GCM.

– Hierarchy (composite components can contain sub-
components), to have a uniform view of applica-
tions at various levels of abstraction

– Introspection capabilities, to monitor and control
the execution of a running system

– Reconfiguration capabilities, to dynamically config-
ure a system

To allow programmers to tune the control of reflective
features of components to the requirements of their
applications, Fractal is defined as an extensible system.

Fractal comes with a formal specification. It can be
instantiated in different languages such as Java and C.
In addition, the Fractal specification is a multi-level
specification, where, depending on the level, some of
the specified features are optional. That means that
the model allows for a continuum of reflective features
or levels of control, ranging from no control (black-
boxes, standard objects) to full-fledged introspection
and intercession capabilities (including, e.g., access and
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manipulation of component contents, control over
components life-cycle and behaviour, etc.).

Fractal already has several implementations in dif-
ferent languages. The GCM is not tied to Fractal’s
reference implementation (Julia), which is not targeted
at distributed architectures. Dream is a library built us-
ing Julia Fractal components targeting distribution, but
specifically aimed at building message-oriented middle-
ware, and not grid applications or even grid middleware
as we intend to do.

To sum up, it is because of its extensible and hier-
archical nature that Fractal has been chosen as the basis
for the definition of the GCM. Fractal does not con-
strain the way(s) the GCM can be implemented, but it
provides a basis for its formal specification, allowing us
to focus only on the grid-specific features. Eventually,
platforms implementing the GCM should constitute
suitable grid programming and execution environ-
ments. ProActive offers one such implementation [5].

2.2 Distribution-aware component models

This section focuses on some of the main distributed
component models and on what is missing in these
models in order to fully support a structured approach
to grid programming, underlying the necessity for an
innovative and new component model.

Let us first focus on two commonly known models
for a component-oriented approach [38] to distributed
computing: the common component architecture (CCA)
[3, 12] and the CCM [33].

– CCA has been defined by a group of researchers
from laboratories and academic institutions com-
mitted to specifying standard component architec-
tures for high performance computing. The basic
definition in CCA states that a component “is a
software object, meant to interact with other com-
ponents, encapsulating certain functionality or a
set of functionalities. A component has a clearly
defined interface and conforms to a prescribed
behaviour common to all components within an
architecture.” Currently, the CCA forum maintains
a web-site gathering documents, projects and other
CCA-related work (www.cca-forum.org) including
the definition of a CCA-specific format of compo-
nent interfaces (Babel/SRPC Interface Description
Language) and framework implementations (Ccaf-
feine, Xcat)

– CCM is a component model defined by the
Object Management Group, an open membership
for-profit consortium that produces and maintains
computer industry specifications such as CORBA,

UML and XMI. The CCM specifications include a
Component Implementation Definition Language;
the semantics of the CCM; a Component
Implementation Framework, which defines the
programming model for constructing component
implementations, and a container programming
model. Important work has been performed to
turn the CCM in a grid component model, like
GridCCM [18].

In recent years, the US-based CCA initiative
brought together a number of efforts in component-
related research projects, with the aim of developing
an interoperable GCM and extensions for parallelism
and distribution [9]. However, the CCA model is non-
hierarchical, thereby making it difficult to handle the
distributed and possibly large set of components form-
ing a grid application [22] in a structured way. Indeed,
hierarchical organisation of a compound application
can prove very useful in getting scalable solutions for
management operations pertaining to monitoring, life-
cycle, reconfiguration, physical mapping on grid re-
sources, load-balancing, etc. Unfortunately, the CCA
model is rather poor with regards to managing compo-
nents at runtime. It means a CCA component per se
does not have to expose standard interfaces dedicated
to non-functional aspects as it is the case for Fractal,
and consequently, GCM components. This makes it
hard to realise certain features, for instance, dynamic
reconfiguration based on observed performance or fail-
ures. However, some implementations of the model,
like, e.g. XCAT, can provide some additional com-
ponents (like an application manager) dedicated to
manage the non-functional aspects of a CCA-based
application. However, this has to be considered as an
additional and optional feature, not defined by the
component model, so it prevents interoperability be-
tween CCA components running onto different plat-
forms. Consequently, we think that the GCM is a richer
programming model than CCA and allow the effective
design and management of distributed applications at a
grid scale.

CCM presents the same limitations than CCA with
the exception that CCM handles quite well the hetero-
geneity of resources. In CCM, the ADL is able to deal
with distributed resources but it is outside the scope
of the specifications to describe how such a descrip-
tion has been generated. However, this task requires
a high level of knowledge of the application structure,
as well as the resource properties. This approach is not
satisfactory for grids where resources are provided dy-
namically. Hence, while CCM has some very interest-
ing features for grids—in particular because CCM has

http://www.cca-forum.org
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been designed for distributed applications—it appears
as a model where distribution is too coupled to the
resources for grid applications.

Even if CCA and CCM components can fit into
a distributed infrastructure, they are not designed as
being distributed per se, and possibly parallel entities
to be mapped onto a set of grid resources, nor having
the capability to self-adapt to the changing context.
By contrast, the Enterprise Grid Alliance effort [40] is
an attempt to derive a common model adopting grid
technologies for enhancing the enterprise and busi-
ness applications. The model, which is aligned with
industry-strength requirements, strongly relies on com-
ponent technology along with necessary associations
with component-specific attributes, dependencies, con-
straints, service-level agreements, service-level objec-
tives and configuration information. One of the key
features that the EGA reference model suggests is the
life-cycle management of components which could be
governed by policies and other management aspects.
The level of this specification, however, is very coarse-
grain, focusing on system integration support rather
than providing an abstract model and specification for
grid programming, which is the main goal of GCM.

Most of grid-oriented component models use com-
ponents to wrap complete, possibly parallel, applica-
tions. This is sufficient to build new grid-wide HPC
applications, e.g. multi-disciplinary ones, by composi-
tion of a few separate software modules. This also
means that a such components must not be considered
as the unit of distribution, but as a coarse-grain unit
wrapping a full-fledged software exposed as a grid ser-
vice, to be composed with a few others. On the con-
trary, a GCM primitive component is a well delimited
unit of distribution and management at the scale of the
grid, and a GCM composite component is a suitable
abstraction to hierarchically handle at once any sort
of distributed and parallel composition, including ones
that may be formed of a very large set of software
units spread all over the grid and running in parallel.
Of course, this does not prevent a primitive GCM
component to itself wrap a legacy, e.g. MPI, parallel
application, but in this case, it is clear that the resulting
set of parallel processes, probably co-located on the
same cluster of machines, is under the management
responsibility of the primitive component itself.

In terms of grid middleware, there have been a
few platforms such as ICENI [21] that enable users
to build grid applications out of software components.
On several platforms, applications running on the grid
are interconnected by some kind of collective bind-
ing mechanisms, notably in Xcat and ICENI. How-
ever, most of the component-oriented platforms that

we are aware of support components at application
level only without any componentisation at the runtime
environment level. Instead, the design of ICENI fol-
lows the classical service-oriented architecture (SOA)
approach [20]. Obviously, a side-effect of such SOA-
based approaches is the strong importance given to in-
teroperability through, for example, the WSDL-based
exportation of the component interfaces. Interoperabil-
ity is also recognised as a key aspect of the GCM,
in order to be capable of loosely connecting external
applications based upon any kind of technology to a
GCM-based one [19].

One of the exceptions among the existing
component-oriented platforms is the GRIDKIT proj-
ect [15]. In GRIDKIT, the middleware itself is designed
as components, derived from OpenCOM. In addition,
the GRIDKIT team identified the need for support
of multiple complex communication paradigms, non-
functional (horizontal) services, autonomicity and re-
configuration. The GCM addresses these concerns but
at a different level by providing corresponding support
as an integral part of the component model itself so
that GCM-based grid middleware and applications
can benefit from those features. Thus, an interesting
perspective could be to adopt the GCM in future
versions of the GRIDKIT middleware in order to
benefit from these advanced features both at the com-
ponent model level and at the middleware one. GCM
has already proved to be efficient for conceiving a grid
runtime support inside the CoreGRID project [13].

Compared to related works, GCM originality lies in
its adopted model, at the level of components them-
selves, for deployment, collective communications,
adaptivity and autonomicity.

3 Deploying components

GCM applications are primarily designed to be run on
grids, that is to say on a complex and dynamic distrib-
uted system. Hence, a major question is how to express
the mapping of the components on the resources. Grid
environments usually provide job schedulers whose
task is to compute when and where to launch an
application. However, job schedulers are system-level
entities: as such, they are only able to deal with simple
jobs such as sequential jobs and MPI-like jobs for the
most advanced. It is far behind the current state of
the art of the schedulers to deal with complex struc-
tures such as a hierarchy of distributed components.
Hopefully, grid environments also provide information
services. Hence, it is possible to imagine a dedicated
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deployment service that can take care of selecting ad-
equate resources for an application.

Component models usually enable the description of
the initial structure of an application thanks to some
ADL. However, for distributed platforms, ADL files
include the name of the resources. It is well suited for
a particular deployment of an application on a known
set of resources. However, it is inappropriate to have to
change these files each time the application is deployed
on a different platform, whereas the application archi-
tecture and implementation did not change. Therefore,
the explicit mentioning of the name of resources inside
an ADL is not well suited to describe a grid application.

The GCM provides two strategies, a simple and a
more advanced one, to deal with this issue. The first
strategy is based on the virtual node concept. It aims
at enabling a logical grouping of the components on a
virtual infrastructure. The second strategy aims at not
presenting any infrastructure concept to the applica-
tion. The remainder of this section presents them.

3.1 Controlled mapping through virtual nodes

A first strategy for supporting deployment is to rely
on virtual nodes. Virtual nodes are abstractions allow-
ing a clear separation between design infrastructure
and physical infrastructure. This concept already exists
both in the standard Fractal ADL and the ProActive
middleware. Virtual nodes can be used in the ADL
and they can abstract away names, but also creation
and connection protocols. Consequently, applications
remain independent from connection protocols and
physical infrastructure. A virtual node contains one
or more nodes. A node represents a location where a
component can be created and executed. This can be
a single physical machine (a host), or, in the case of a
multi-processor/multi-core machine, a single processor
or a single core within a machine.

The virtual-node element, in ADL files, offers dis-
tributed deployment information. To better specify the
deployment constraints on a component, the standard
Fractal ADL has been extended. The cardinality at-
tribute has been added to the virtual-node element. In
addition to this element, the GCM adds the possibility
to export and compose virtual nodes in the export-
edVirtualNodes element. We will describe how these
elements can be used to control the component/virtual-
node mapping in ADL files.

The syntax is similar to the Fractal ADL, features
specific to the GCM are:

• Virtual nodes have a cardinality: either single or
multiple. Single means the virtual node in the de-

ployment descriptor should contain one node; mul-
tiple means the virtual node in the deployment
descriptor should contain more than one node. For
example, the following element in a component de-
finition indicates that we want to create the compo-
nent in the virtual node client-node which contains
one node.

<virtual-node name="client-node"

cardinality="single"/>

• Virtual nodes can be exported and composed. Ex-
port and compose allow, respectively, to rename
and merge virtual nodes. This extends re-usability
of existing components. When exported, a virtual
node can take part in the composition of other
exported virtual nodes. The following composition
code creates a new virtual node named client-
node, composed from two virtual nodes, client1 and
client2, defined in components c1 and c2.

<exportedVirtualNodes>
<exportedVirtualNode
name="client-node">

<composedFrom>
<composingVirtualNode component="c1"
name="client1"/>

<composingVirtualNode component="c2"
name="client2"/>

</composedFrom>
</exportedVirtualNode>
</exportedVirtualNodes>

Then, mapping from virtual nodes to the infrastruc-
ture is defined in separate files, called deployment de-
scriptors. Those files describe the real infrastructure
and the way to acquire resources; we do not detail
the format of deployment descriptors here, see [5].
Components are deployed on a node included in the
virtual node that is specified in their definition; it has to
appear in the deployment descriptor unless this virtual
node is exported.

A component will be instantiated on the node asso-
ciated to the virtual node given in its ADL (modulo
the renaming entailed by exportation). In case several
components use the same virtual node with a multiple
cardinality, we do not specify on which node we create
each component.

3.2 Automatic mapping to the infrastructure

Deployment descriptors provide a mean for expert
programmers/deployers to control how a particular ap-
plication is deployed on a set of resources. Another
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abstraction step is needed to further decouple an appli-
cation from the resources. The underlying idea is to let
a programmer specify its component assembly within
a model without any resource concept, i.e. without
any knowledge on the physical architecture. Then, an
automatic deployment process is needed to derive a
mapping of the components to the available resources.
This section reviews the needed steps to achieve such
an automatic mapping. It shows that most steps are
already provided by current grid environments and
details what is still needed.

Overview. Starting from a description of an appli-
cation and a user objective function, the deployment
process is responsible for automatically performing all
the steps needed to start the execution of the appli-
cation on a set of selected resources. These steps are
illustrated in Fig. 1. The logical order of the activities is
fixed (submission, discovery, planning, enactment, ex-
ecution). Some steps have to be re-executed when the
application configuration is changed at run-time. More-
over, the steps in the gray box, that interact closely, can
be iterated until a suitable set of resources is found.

The following describes the activities involved in
the deployment of an application. This process only
takes as input a file describing the components of the
application, their interactions, and the characteristics of
the required resource.

Application description. The application may be de-
scribed in a variant of Fractal ADL, which contains
several kinds of data: the description of the component
types and their implementations, as well as information
to guide the mapping of the application onto resources.
It may consist of the resource constraints, characteris-
tics that resources (computational, storage, network)
must possess to execute the application; the execution

platform constraints, software (libraries, middleware
systems) that must be installed to satisfy application de-
pendencies; the placement policies, restrictions or hints
for the placement of subsets of application processes
(e.g. co-location, location within a specific network
domain, or network performance requirements), and
the resource ranking, an objective function provided by
the user, stating the optimisation goal of application
mapping. Resource ranking is exploited to select the
best resource, or set of them, among those satisfying
the given requirements for a single application process.
Resource constraints can be expressed as unitary re-
quirements, that must be respected by a single module
or resource (e.g. CPU rata), and as aggregate require-
ments, that a set of resources or a module group must
respect at the same time (e.g. all the resources on the
same LAN, access to a shared file system); some place-
ment policies are implicitly aggregate requirements. As
of today, there is no standard format for describing
the constraints, the placement policies, or the resource
ranking.

Resource discovery. This activity finds the resources
compatible with the execution of the application. Re-
sources satisfying unitary requirements can be discov-
ered, interacting with grid information services [16].
Then, the information needed to perform resource
selection (that considers also aggregate requirements)
must be collected for each suitable resource found.
Existing grid technologies are quite satisfactory with
respect to this point, but co-allocation support in grid
scheduler is still quite uncommon.

Deployment planning. When information about avail-
able resources is collected, the proper resources that
will host the execution of the application must be
selected, and the different parts of each component

Fig. 1 Deployment process for automatic mapping
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have to be mapped on some of the selected resources.
This activity also implies satisfying all the aggregate
requirements within the application. Thus, repeated
interaction with the resource discovery mechanisms
may be needed to find the best set of resources, also
exploiting dynamic information.

At this point, the user objective function must
be evaluated against the characteristics and available
services of the resources (expressed in the resource
description schema). When appropriate, a resource
ranking is established to find a suitable solution.

An abstract deployment plan is computed by gath-
ering the deployment schema of all application com-
ponents. The abstract plan is then mapped onto the
resources, and turned into a concrete plan, identifying
all the services and protocols that will be exploited in
the next phase on each resource, in order to set up and
start the runtime environment of the application. This
step is probably the most challenging one as it requires
advanced algorithms (heuristics) to compute a plan, as
the problem is generally NP-hard.

Deployment enactment. The concrete deployment
plan developed in the previous phase is submitted to
the execution framework, which is in charge of the
execution of the tasks needed to deploy the applica-
tion. This service must ensure a correct execution of
the deployment tasks while respecting the precedences
described in the deployment plan. At the end of this
phase, the execution environment of the application is
ready to start its actual execution. This step is nowadays
quite well mastered.

Application execution. The deployment process for
adaptive grid applications does not finish when the
application is started. Several activities have to be
performed while the application is active. The whole
application life-cycle must be managed, in order to
support new resource requests for application adap-
tation, to schedule a restart if a failure is detected,
and to release resources when the normal termination
is reached. These monitoring and controlling activities
are mediated by the autonomic part of the components,
which performs some dynamic deployment action.

3.3 Discussion

This section has presented two deployment strategies
for a grid application: one strongly driven by the user
and a much more automatic one. The first deployment
strategy provides a mechanism to capture some topo-
logical constraints of the mapping of the component
hierarchy to the resources. The application can map its
elements to the virtual nodes independently of the real

resource names: the application is portable. Moreover,
the mapping of the virtual nodes to the physical nodes
appears at the level of current grid schedulers.

The second deployment strategy aims at providing
an automatic mapping of the application on the re-
sources. It requires to extend ADL with constraints
and placement policies, as well as some more advanced
schedulers. This strategy should lead to a real auto-
nomicity of components. It seems a prerequisite for
adaptivity and autonomicity as discussed in Section 5.

Both strategies have been validated through pro-
totypes, the first in ProActive/GCM, the second in
ADAGE [28] and GEA [17]. They run on top of vari-
ous environments, from cluster-like environments (ssh,
batch, etc) to grid environments such as Globus.

4 Supporting M to N communications

To meet the specific requirements and conditions of
grid computing for multiway communications, multicast
and gathercast interfaces give the possibility to manage
a group of interfaces as a single entity, and expose
the collective nature of a given interface. Multicast
interfaces allow to distribute method invocation and
their parameters to a group of destinations, whereas,
symmetrically, gathercast allow to synchronise a set
of method invocations toward the same destination.
Solutions to the problem of data distribution have
been proposed within PaCO++/GridCCM [18]; these
solutions can be seen as complementary to the basic
distribution policy specified in this section.

4.1 Collective interfaces

In pure Fractal, collective bindings could be performed
using composite bindings,1 which would accept one
input and a collection of output, or a collection of
inputs and one output. Collective interfaces allow GCM
components to perform operations collectively on a
set of components without relying on intermediate
components. The objective is to simplify the design of
component-based applications and ensure type com-
patibility in a direct manner. Of course, the model still
allows for the use of explicit binding components, in
case of specific requirements for inter-component com-
munications, for instance when binding interfaces of
incompatible types. Though the alternative relying on
composite binding could have a similar behaviour to the

1In Fractal, a composite binding is a communication path com-
posed of a set of primitive bindings and binding components.
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collective interfaces, we consider collective interfaces
better adapted to the GCM as explained below.

First, we think that, for design purposes, the collec-
tive nature of the connection should be attached to the
definition of the component, not to its binding. This also
allows control of the collective behaviour at the level
of the component containing the interface, not in an
external component.

Second, suppose collective interfaces would be
implemented by additional components, possibly be-
longing to composite bindings. As in GCM, the com-
ponent is the unit of distribution, the question of the
localisation of the additional components implement-
ing the collective behaviour arises. The best choice
would probably be to allocate the binding at the same
place as one of the functional components they bind,
depending on the nature of the interface; in the GCM,
this choice is made clear by the design of the collec-
tive interfaces. Moreover, if such binding components
would be distributed, they would need to be instru-
mented with remote communication capabilities which
would make them bigger and less efficient than collec-
tive interfaces.

Here again, the granularity of the envisioned compo-
nent model plays a crucial role: making the component
the unit of distribution and mobility requires primitive
components to encapsulate code for managing those
aspects. This makes such components inadequate for
encoding basic features like collective interfaces. In-
deed, it would be inefficient to attach to interfaces, or to
composite binding implementing collective communi-
cation, the code necessary to manage local threads and
mobility, for example.

Preliminary remark. In the sequel, we use the term list
to mean ordered set of elements of the same type (mod-
ulo sub-typing). This notion is not necessarily linked to
the type List in the chosen implementation language; it
can be implemented via lists, collections, arrays, typed
groups, etc. To be more precise, we use List<A> to
mean list of elements of type A.

The notion of collective interface is not linked
to any communication semantics: communication be-
tween components can be implemented for example by
message passing, remote procedure calls, or streaming.
However, we present the particular case of remote
method invocations in the remaining of this section
because of its richer implications on typing of inter-
faces and on the component composition. Experiments
on the implementation of collective communications
for components interacting by asynchronous remote
method invocations have been conducted over the
ProActive middleware, and proved to be quite efficient

and convenient to program distributed applications [7].
However, the notions of multicast and gathercast in-
terfaces are clearly also adapted to other communica-
tion semantics, the consequence on type compatibility
between interfaces can be inferred from the case pre-
sented in this section.

4.2 Multicast interfaces: 1 to N communications

Multicast interfaces provide abstractions for one-to-
many communication. First, we will define this kind
of interface, next we will detail the needed update for
interface signature and at the end of this section we will
address the distribution of parameters and invocations.

Multicast interfaces can either be used internally to
a component to dispatch an invocation received by the
components to several of its sub-entities or externally
to dispatch invocations emitted by the component to
several clients.

4.2.1 Definitions

A multicast interface transforms a single invoca-
tion into a list of invocations.

A single invocation on a multicast interface is trans-
formed into a set of invocations. These invocations
are forwarded to a set of connected server interfaces
(Fig. 2). The semantics concerning the propagation of
the invocation and the distribution of parameters are
customisable. The result of an invocation on a multicast
interface—if there is a result—is a list of results. Invo-
cations on the connected server interfaces may occur in
parallel, which is one of the main reasons for defining
this kind of interface: it enables parallel invocations.

For example, in a composite component, a multicast
internal client interface transforms each single invoca-
tion into a set of invocations that are forwarded to
bound server interfaces of inner components.

Fig. 2 Multicast interfaces
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To support multicast interfaces, we need to
extend the type system of Fractal by adding the
String getFcItfCardinality () method to
the InterfaceType interface. The interface type is
extended for dealing with new cardinalities: the
getFcItfCardinality() method returns a string
element, which is convenient when dealing with more
than two kinds of cardinalities. The type factory
method createFcItfType is extended with the
String cardinality parameter.

The BindingController also needs an extension
to support only removing of some bound inter-
face: void unbindFcMulticast(String name,
Object itf). This specification does not make any
assumption about the communication paradigm used to
implement the multicast invocations [31, 35].

4.2.2 Automatic data distribution

The signature of multicast interface can be different
from the single interfaces it is bound to. We detail
this typing issue and its relation with data distribution
in this section and the following. This section focuses
on a simple view where the parameters that are to be
distributed are lists, and thus, the distribution can be
performed automatically: lists are distributed element-
wise, and other elements are kept as non-splittable.
Consequently, we provide in this section two basic dis-
tribution policies for parameters: broadcast consists in
sending the same parameters to each of the connected
server interfaces and scatter is only available for lists; it
strips the parameter so that the bound components will
work on different data.

Returned result. For each method invoked and return-
ing a result of type T, a multicast invocation returns an
aggregation of the results: a list<T>.

For instance, consider the signature of a server
interface:

public interface I {
public void foo();
public A bar();

}

A multicast interface may be connected to the server
interface with the above signature only if its signature
is the following (recall that List<A> can be any type
storing a collection of elements of type A):

public interface J {
public void foo();
public List<A> bar();

}

In that case, we say that I is the type of the multicast
interface on the server side, i.e. the type of the server
interfaces the multicast can be bound to, and J is the
type on the client side, i.e. the type of the mutlicast
interface itself.

Where to define multicast interfaces? Collective inter-
faces are defined in the ADL; two new cardinalities—
multicast and gathercast—has been added to Fractal
specification. The cardinality of an interface can be
single, collection, multicast, or gathercast.

Where to specify parameters distribution? The ADL
files are not the right place to specify the parameter
distribution because distribution is too dependent on
the implementation. Thus, the best place to specify
distribution policy is inside the interface definition,
e.g. using annotations in the case of Java. In addition,
we propose to specify and modify the distribution
policy in a dedicated controller, named CollectiveIn-
terfacesController. The policy for managing the
interface is specified as a construction parameter
of the CollectiveInterfacesController. This policy is
implementation-specific, and a different policy may be
specified for each collective interface of the component.

How to specify the distribution of parameters into a set
of invocations? Remember we focus on two possible
data distribution basic policies: broadcast and scatter.
In the broadcast mode, all parameters are sent without
transformation to each receiver. In the scatter mode,
however, many configurations are possible, depending
upon the number of parameters that are lists and the
number of members of these lists. In the automatic
distribution policies, parameters to be scattered are of
type list<T> on the client side, and of type T on the
server side. Parameters to be broadcasted must be of
the same type on the client and on the server side. A
general solution in the case of a single parameter to be
distributed is to perform as many invocations as there
are elements in the list.

When several parameters are to be distributed, there
is not a single general solution. We propose to define,
as part of the distribution policy, the multiset2 F of the
combination of parameters, where each element f j ∈ F
is such that, f j ∈ [1..k1] × [1..k2] × .. × [1..kn], where
n is the number of formal parameters of the invoked
method which are to be scattered, and ki, 1 ≤ i ≤ n the
number of values for each scattered actual parame-
ter. This multiset allows the expression of all the pos-

2A multiset is a set where the number of occurrences of each
element matters.
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sible distributions of scattered parameters, including
Cartesian product and one-to-one association. The car-
dinal of F also gives the number of invocations which
are generated, and which depends on the configuration
of the distribution of the parameters.

As an illustrative example, the Cartesian product of
n parameters is expressed as follows:

{(i1, . . . , in)|∀l ∈ [1..n], il ∈ [1..kl]}
One-to-one association is expressed as follows when
k1 = k2 = . . . kn:

{(i, . . . , i)|i ∈ [1..k]}
The number of occurrences in the multiset is useful
when several identical calls have to be produced, e.g.
to duplicate the computation in order to tolerate the
failure of some of the clients.

To summarise, for automatic data distribution in
multicast interfaces:

• If the return type of the function is T on the server
side, it must be list<T> on the client side.

• For each parameter, if the type of the parameter is
list<T> on the client side and T on the server side,
then this parameter is scattered, the combination
of scatter modes is defined by an external function;
else, if the type of the parameter is T on both client
and server side, the parameter is broadcasted.

4.2.3 Defining complex distribution policies

This section releases the strict constraints on typing
for multicast interfaces given in the preceding section
by relying on user-defined distribution or aggregation
functions and involving constraints on the resulting
typing of multicast interfaces. In the general case, dis-
tribution policies may depend on the number of bound
components, but for simplicity, we will not explicitly use
this parameter in this section. The constraints specified
in this section should be used when type checking the
bindings between components involved in the multicast
interface.

Aggregating results. The constraint of having lists as
results for multicast invocations may be relaxed by pro-
viding an aggregation mechanism that performs a re-
duction. Until now, we have defined a basic aggregation
function, which is concatenation, but any function can
be used for aggregating results, leading to the following
typing constraint (relate to Fig. 3 for name convention):

If the returned type of the multicast interface is
of type S, on the left side (i.e. if S is the type of

Fig. 3 General case of type conversion through a multicast
interface

the client interface), and of type T, on the right
side (i.e. if T is the type of the server interfaces
the multicast is connected to), then the multi-
cast interface should be attached an aggregation
function of type:

List<T> → S

Section 4.2.2 discussed the simplest case where S =
List<T> and the aggregation function is the identity.

Depending on the operations performed by this
last function, it might be necessary to synchronise the
achievement of the different calls dispatched by the
multicast operation. For example, it is impossible to
return the maximum of all results before waiting for all
of them to be arrived at the multicast interface.

Here are a few examples illustrating different possi-
ble aggregations of results for a multicast interface:

• The result is the sum of the results computed for
each of the n calls distributed to the destination
components:

n integers are summed into one integer;
the signature of the aggregation function is:
List<int> → int. The multicast interface
has the return type: int.

• The multicast interface returns the result given by
the majority of calls.

n results are reduced to a single one plus
an occurrence count. The signature of the
aggregation function becomes: List<T> →
(T,int). The multicast interface returns a
(T,int).

• n pieces of an array are gathered into one single
array to be returned.

The signature of the aggregation function
is: List<Array<A>> → Array<A>. The
multicast interface has the return type:
Array<A>.
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Distributing parameters. This generalisation could
also be applied to the distribution of invocation para-
meters. In Section 4.2.2, if an argument of a call toward
a multicast interface is of type S, then the type of the
argument received on one of the bound interfaces is
either S (argument broadcasted as it is) or T if S is of
the form List<T>. More generally, we can have any
transformation of argument type through the multicast
interface:

If the arguments of the multicast interface (i.e. the
parameters of the call) are of type Si, 1 ≤ i ≤ n on
the client side (left part of Fig. 3), and of type Ti,
1 ≤ i ≤ n on the server side (right part of Fig. 3),
then the multicast interface should be attached a
distribution function returning a list of parameter
sets to be sent, its type should be:

S1..Sn → List <(T1, ..,Tn)>

We provide a few examples illustrating different
possible type conversions for arguments of a multicast
interface (the last two being the ones already presented
in Section 4.2.2):

• Blocks of an array to be dispatched differently de-
pending on the number of destination components
in parallel (N):

One call with parameter of type Array<A>
becomes N calls with parameter of type
Array<A> containing pieces of the origi-
nal array. Distribution function is of type:
Array<A> → List<Array<A>>.

• Scatter:

One call with parameter of type List<A>
becomes length(List < A >) calls with para-
meter of type A. Distribution function is of
type: List<A> → List<A>.

• Broadcast: same invocation replicated to N compo-
nents in parallel:

One call with parameter of type A becomes
N calls with parameter of type A. Distribution
function is of type: A → List<A>.

4.2.4 Distribution of invocations

Once the distribution of the parameters is determined,
the invocations that will be forwarded are known. A
new question arises: how are these invocations dis-
patched to the connected server interfaces? This is

determined by a function, which, knowing the number
of server interfaces bound to the multicast interface and
the list of invocations to be performed, describes the
dispatch of the invocations to those interfaces.

Consider the common case where the invocations
can be distributed regardless of which component will
process the invocation. Then, a given component can
receive several invocations; it is also possible to select
only some of the bound components to participate in
the multicast. In addition, this framework allows us to
express naturally the case where each of the connected
interfaces has to receive exactly one invocation in a
deterministic way.

4.3 Gathercast interfaces: M to 1 communications

Gathercast interfaces provide abstractions for many-
to-one communications. Gathercast and multicast in-
terface definitions and behaviours are symmetrical [4].
Gathercast interfaces can either be used internally to
a component to gather the results of several compu-
tations performed by several sub-entities of the com-
ponent or externally to gather and synchronise several
invocations made toward the component.

4.3.1 Definition

A gathercast interface transforms a set of invoca-
tions into a single invocation.

Gathercast interfaces gather invocations from multi-
ple source components (Fig. 4). A gathercast interface
coordinates incoming invocations before continuing the
invocation flow: it may define synchronisation barriers
and may gather incoming data. Return values are redis-
tributed to the invoking components.

For example, in a composite component, a gathercast
internal server interface transforms a set of invocations
coming from client interfaces of inner components into

Fig. 4 Gathercast interface
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a single invocation from the component to the external
world.

For synchronisation purposes, gathering operations
require knowledge of the participants (i.e. the clients of
the gathercast interface) in the collective communica-
tion. As a consequence, bindings to gathercast interfaces
are bidirectional links; in other words: a gathercast
interface is aware of which interfaces are bound to it;
this should be realised by the binding mechanism.

4.3.2 Synchronisation operations

Gathercast interfaces provide one type of synchronisa-
tion operation, namely message-based synchronisation
capabilities: the message flow can be blocked upon
user-defined message-based conditions. Synchronisa-
tion barriers can be set on specified invocations, for
instance, the gathercast interface may wait—with a
possible timeout—for all its clients to perform a given
invocation on it before forwarding the invocations. It
is also possible to define more complex or specific
message-based synchronisations, based on the content
and number of the messages, or based on temporal
conditions, and it is possible to combine these different
kinds of synchronisations.

4.3.3 Automatic data aggregation and redistribution

This section details the parameter gathering and result
redistribution that can be performed automatically by a
gathercast interface.

Gathering parameters. The gathercast interface aggre-
gates parameters from method invocations. Thus, the
parameters of an invocation coming from a gather-
cast interface are actually lists of parameters. If, on
the client side, invocations are on the form void
foo(T), then the generated invocations necessarily
have the type void foo(list<T>) on the server
side. In other words, if the client interfaces connected
to the gathercast are of type void foo(T), then
the gathercast (server) interface itself is of type void
foo(list<T>).

Redistributing results. The distribution of results for
gathercast interfaces is symmetrical with the distribu-
tion of parameters for multicast interfaces, and it raises
the question: where and how to specify the redistribu-
tion?

The place where the redistribution of results is spec-
ified is similar to the case of multicast interfaces: the
redistribution is configured through metadata informa-
tion for the gathercast interface. This could, for ex-

ample, be specified through annotations or be inferred
from the type of interface.

The way redistribution is performed is also similar to
multicast interfaces. It also necessitates a comparison
between the client interface type and the gathered
interface type. If the return type of the invoked method
in the client interfaces is of type T and the return type
of the bound server interface is List<T>, then results
can be scattered: each component participating in the
gather operation receives a single result (provided the
result is a list of the same length as the number of par-
ticipants). Otherwise, results should be broadcasted to
all the invokers and the return type must be identical on
the client and the server side. A redistribution function
can also be defined as part of the distribution policy of
the gathercast interface, it is configurable through its
collective interface controller.

4.3.4 Defining complex distribution policies

The symmetric of multicast interfaces general specifi-
cation can be defined for redistribution of results for
gathercast interfaces and aggregation of parameters of
calls toward a gathercast interface. For example, the
constraint of having lists as parameters for gathercast
invocations may be relaxed by providing a reduction
function and verifying at connection type the type
compatibility between the reduction function and the
bound interfaces.

4.4 The MxN problem

The support of parallel components raises the concern
of efficient communications between them. This section
focuses on the MxN problem, i.e., efficient commu-
nication and exchange of data between two parallel
programs, consisting, respectively, of M and N enti-
ties. In the GCM, such a pattern can be straightfor-
wardly realised by binding a parallel component with
a gathercast internal server interface to a component
with a multicast internal client interface. However, ef-
ficient communications between two parallel compo-
nents requires direct binding so as to support direct
communications between the involved inner compo-
nents on both sides; this mechanism is called MxN
communications. End users expect to have MxN com-
munications to provide performance scalability with the
parallelism degree. Whereas Sections 4.4.1 to 4.4.3 fo-
cus on data distribution and establishment of bindings,
Section 4.4.4 discusses synchronisation of such parallel
components.
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4.4.1 Principles

A naive and not optimised solution for MxN coupling
is shown in Fig. 5. The respective output of the M inner
components is gathered by the gathercast interface;
then, this result is sent as it is to the multicast interface;
finally, the message is scattered to the N inner compo-
nents connected to the multicast interface, so data are
redistributed by the multicast interface.

Obviously, this naive solution creates a bottleneck
both in the gathercast and in the multicast interfaces.
Efficient communications require some forms of direct
bindings between the inner components according to
the redistribution pattern, like that shown by the arrow
of Fig. 5 drawn between an arbitrarily chosen pair
of inner components from both sides. In the general
case, implementing such direct bindings requires to re-
place the couple gathercast + multicast interfaces by M
multicast interfaces plus N gathercast interfaces. Each
inner component on the left-hand side is responsible
for sending its own data to all the concerned compo-
nents; on the right-hand side, each inner component
is responsible for gathering the messages it receives
and performing its piece of the global synchronisation.
This creation of additional collective interfaces avoids
the bottleneck occurring in the single gathercast or
multicast interface. We show below how such an op-
timisation can be implemented in the case of a specific
but classic scenario.

4.4.2 Example of a direct binding

This section illustrates a way to ensure the M-by-N op-
timisation in a particular case that is relatively frequent.
It both illustrates the possibility for multicast and gath-
ercast interfaces to enable optimised communications
and it shows the necessity for highly parameterisable

Fig. 5 Gathercast to multicast

collective interface. Indeed, optimised communication
patterns are simply performed by connecting additional
gathercast and multicast interfaces, parameterised de-
pending on the data distribution and the topology.

Suppose two composites CM and CN, composed
of M and N components, respectively, must exchange
data by blocks, as shown in Fig. 6. For the sake of
simplicity, we suppose that each of the M inner compo-
nents send data of size d and each of the N components
must receive data of size d′ (M × d = N × d′).

We denote Mi, 0 ≤ i < M the inner components of
CM, and symmetrically, N j, 0 ≤ j < N the inner com-
ponents of CN. Consequently, considering the data to
be exchanged as an interval of size d × M = d′ × N,
each component exchanges the data in the following
range:

Mi produces [d × i, d × (i + 1)[
N j consumes [d′ × j, d′ × ( j + 1)[
Bindings. Each of the Mi components will have its
client interface turned into a multicast client inter-
face with the same signature (called IMi). Symmetri-
cally, each of the N j components will have its server
interface turned into a gathercast server interface
(called IN j). The direct bindings that must occur
should ensure the direct communication between com-
ponents having to transmit data. Components are con-
nected if there is an intersection between the range
of data sent by one and the range that must be re-
ceived by the other. Bindings are formally defined
as follows: IMi is to be bound to IN j iff ∃l ∈ [d × i, d ×
(i + 1)[ s.t. l ∈ [d′ × j, d′ × ( j + 1)[. In a more construc-
tive manner, one can specify the indices of the client
components:

IMi must be bound to all the IN j

s.t.
((

d/d′) × i
) − 1 < j <

(
d/d′) × (i + 1)

Fig. 6 Communications resulting from an MxN direct binding
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Communications. We define now what elements are
directly sent from one inner component of CM to the
inner components of CN. Each Mi has to send to N j

the elements in the global range:

[d × i, d × (i + 1)[ ∩ [d′ × j, d′ × ( j + 1)[
which is necessarily non-empty if Mi is connected to N j.
This set logically represents the intersection between
the produced data and the consumed one.

4.4.3 Using controllers to set up MxN bindings

This section defines a possible configuration phase for
coupling two parallel components, in a MxN manner
in a very general setting. It relies on the existence of
controllers (called coupling controllers, that could be
associated to collective controllers) both at the level
of parallel components (Fig. 6) and at the level of the
inner ones.

When binding two parallel components, both
coupling controllers exchange information about their
respective collective interfaces (cardinality, data dis-
tribution pattern, size and type of data. . . ) and the
reference of internal components attached to this col-
lective port. Relevant information is then passed to
the coupling controllers of the inner components so
as to configure them correctly. Once configured, the
direct communication (data redistribution and synchro-
nisation) is straightforward: every inner component is
aware of the components it communicates with, as well
as data distribution information.

This controller-based approach is suitable to imple-
ment the redistribution described in the example above
(Section 4.4.2). In this case, controllers just have to
exchange the cardinality of their respective interfaces
(M and N), and the references to the inner compo-
nents. Controllers create and configure interfaces in
the inner components accordingly to the formulas of
Section 4.4.2.

4.4.4 Synchronisation issues

Additionally to the data redistribution, the gathercast–
multicast composition plays a synchronisation role. In-
deed, in Fig. 5, thanks to the gathercast interface, the
computation can only start on the right-hand side when
all the inner components on the left-hand side have
sent their output. The introduction of the gathercast
interfaces on the right-hand side (Fig. 6) moves this
synchronisation behaviour to the N inner components.
If the MxN direct communication pattern is such that
each of the N processes receives data from all the M

processes, then the behaviour of the system with direct
bindings is equivalent to the original one. Else per-
forming the same synchronisation as the not optimised
version requires all the clients to send a message to all
the gathercast interfaces, some of them being only syn-
chronisation signals. However, global synchronisation
is not required by all the applications, and in this case,
more optimisation is possible: if only data redistribution
is important, then only bindings for transmitting data
must be carried out.

4.5 Collective interfaces and hierarchy

Let us conclude this section by a study on the influence
of hierarchy on the notion of collective interfaces. Ba-
sically, the existence of composite components entails
the existence of internal interfaces, allowing collective
interfaces to act internally to a component and collec-
tively on the content of a composite component.

Except for this, the existence of collective interfaces
is not related to hierarchy at the level of the compo-
nent model. However, at the applicative level, com-
position of hierarchy and collective operation allows
the programmer to easily design complex component
systems, like hierarchical master–slave for example. To
summarise, the impact of collective interfaces associ-
ated with hierarchy is that any component of a system
can be considered as, and transformed into, a parallel
component in a very natural manner.

5 Adaptivity and autonomicity

To provide dynamic behaviour of the component con-
trol, we propose to make it possible to consider a con-
troller as a sub-component, which can then be plugged
or unplugged dynamically. As in [37], we promote the
idea to adopt a component-oriented approach to ex-
press the control part of a component. On the con-
trary, in the Julia Fractal implementation, for instance,
control part is expressed in an object-oriented fash-
ion. Adaptivity of a component in an open and large-
scale system as a computing grid can be a complex
task to orchestrate and implement. So, relying on a
component-oriented approach for the control part can
ease its design and implementation, thus increasing the
component adaptation ability.

Additionally, autonomicity is the ability for a com-
ponent to adapt to situations, without relying on the
outside. Several levels of autonomicity can be imple-
mented by an autonomic system of components. The
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GCM defines four autonomic aspects, and it gives a
precise interface for each of these four aspects. These
interfaces are non-functional and exposed by each
component.

5.1 A refinement of Fractal for non-functional
adaptivity

In component models as Fractal, or Accord [29], for
example, adaptation mechanisms are triggered by the
control, also named non-functional (NF), part of the
components. This NF part, called the membrane in
Fractal and GCM, is composed of controllers that im-
plement NF concerns. Interactions with execution en-
vironments may require complex relationships between
controllers. Examples of use-cases include changing
communication protocols, updating security policies,
or taking into account new runtime environments in
case of (mobile) components running on mobile devices
interconnected to the core computing grid.

In this section, we focus on the adaptability of the
membrane. Adaptability means that evolutions of the
execution environment have to be detected and acted
upon; this process may imply interactions with the en-
vironment and with other components. Our purpose in
the GCM definition with respect to adaptivity is not to
provide adaptive algorithms but to offer the support
for implementing them as part of the control part of
the components, and even more, the possibility to plug
dynamically different control strategies, i.e. to adapt the
control part itself to the changing context.

In the GCM, we want to provide tools for adapting
controllers. This means that these tools have to manage
(re)configuration of controllers inside the membrane
and the interactions of the membrane with membranes
of other components. For this, we provide a model and
an implementation, applying a component-oriented ap-
proach for both the application (functional) and the
control (NF) levels. Applying a component-oriented
approach to the non-functional aspects allows them
to feature structure, hierarchy and encapsulation. The
same method has been followed or advocated in [26,
32, 36, 37].

The solution adopted in the GCM is to allow, like
[32, 37], the design of the membrane as a set of com-
ponents that can be reconfigured [14]. Baude et al. [8]
goes more into details and describes a structure for the
composition of the membrane, its relationships with the
content of the component and an API for manipulating
it. Note that it does not seem reasonable to implement,
like in AOKell, the membrane as a composite GCM
component: due to the distributed nature of GCM
(implying that a GCM component would, in general,

involve a much higher overhead than a Fractal one),
having to cross an additional composite component
boundary to switch into or from the control part of a
GCM component would involve a sensible overhead.
So, we came to the idea of having the component-based
system defining the non-functional features be totally
diluted in the membrane of the component containing
the functional code (called the host component in this
case).

In order to be able to compose non-functional as-
pects, the GCM requires the NF interfaces to share the
same specification as the functional ones: role, cardi-
nality and contingency. For example, in comparison to
Fractal, the GCM adds client non-functional interfaces
to allow for the composition of non-functional aspects,
reconfigurations and component re-assembling at the
non-functional level. To summarise, the GCM is pro-
vided with the possibility to implement as components
(part of) the membrane and, thus, benefit from strong
component structure and reconfiguration capabilities.

A small example. Figure 7 illustrates the structure of
the membrane using components. In the figure, two
non-functional components are assembled in the com-
ponent’s membrane, but more importantly, the mem-
brane can rely on client non-functional interfaces, both
internal to allow connection to inner components, and
external to allow connections with other components,
dedicated to the management and monitoring of the ap-
plication, for example. This both gives a structure to the
non-functional concerns of the component Comp and
allows the reconfiguration at the non-functional level,
in order to adapt it to the changes in the environment.

Life-cycle issue. This new structure for controllers
raises the following question: “What is the life-cycle of
a component used inside the membrane?” In Fractal,
invocation on controller interfaces must be enabled

Fig. 7 A composite with pluggable controllers
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when a component is (functionally) stopped, and ob-
viously, for changing the bindings of a component,
this component must be stopped. In other words, a
controller of a Fractal component is an entity that does
not follow the classical life-cycle of a component, in
particular, it can never enter a stop state. Consequently,
GCM components cannot adhere to this specification;
otherwise, their membrane could not be reconfigured.

The solution we propose consists in a more com-
plex life-cycle for component controllers, allowing to
separate partially the life-cycle states of the membrane
and of the content. When a component is functionally
stopped (which corresponds to the stopped state of the
Fractal specification), invocation on controller inter-
faces are enabled and the content of the component
can be reconfigured, whereas, when a component is
stopped, only the controllers necessary for configura-
tion are still active (mainly binding, content, and life-
cycle controllers), and the other components in the
membrane can be reconfigured. Thanks to the new
component architecture defined, two kinds of reconfig-
uration are possible: reconfiguration of the functional
inner component system, following the idea of hierar-
chical autonomic decision paths [1], and reconfigura-
tion of the membrane itself when the adaptation is done
along the NF properties of the host component.

5.2 Autonomic components

GCM supports all the mechanisms needed to imple-
ment autonomic components, as stated in the previous
sections. In particular, the availability of membrane
components, as well as the possibility to hierarchically
compose new components from simpler, existing ones,
can both be exploited to support different autonomic
management features. More in detail, two distinct kinds
of autonomic management are considered as first-class
citizens in GCM:

– The one taking care of simply adapting the single
component to the changing conditions of the com-
ponent“external” environment; a notable example
could be the one wrapping component interaction
mechanisms in such a way that the interactions can
be performed using secure communication mecha-
nisms rather than insecure ones. This is the kind of
self-configuring, adaptation autonomic behaviour
expected from components aware of the fact they
can live in secure or insecure frameworks.

– The one taking care of adapting the component in-
ternal behaviour to match external, non-functional
requirements; a notable example could be the

one adjusting the parallelism degree of a parallel
composite component in such a way that a non-
functional performance contract is kept satisfied
during the execution of the composite component
activities. This is again a kind of self-configuring
and self-healing autonomic behaviour [27].

In order to provide autonomic component manage-
ment, GCM programming model supplies two different
facilities to the GCM user/programmer. On the one
hand, GCM provides all those mechanisms needed
to implement the autonomic managers. These mecha-
nisms include the ability to implement membrane as
components discussed in the previous section. How-
ever, they also include some lower-level mechanisms
that can be used to “sense” both the component exe-
cution environment and some component internal fea-
tures of interest for the autonomic management. As
an example, mechanisms are provided to “introspect”
features of the component related to its implemen-
tation. An autonomic manager supposed to control
component performance must be enabled to test com-
ponent response/service time, for instance. Therefore,
some mechanisms are supplied within GCM that allow
to probe such values. The set of mechanisms of this
type provided to the autonomic manager programmers
define, de facto, the kind of managers implementable in
the GCM framework.

On the other hand, a methodology aimed at support-
ing autonomic component managers is provided, such
that programmers of the manager components do not
have to rewrite from scratch each one of the managers
included in the components. Such a methodology can
be basically stated as a set of guidelines and rules to be
adopted when programming the autonomic component
managers, of course. In order to be more effective,
GCM also provides the autonomic manager program-
mers with a set of autonomic manager skeletons/design
patterns that can be easily customised properly sup-
plying the skeleton/design pattern parameters. These
manager patterns capitalise on the experiences coming
from the software engineering autonomic management
research track, as well as all the experience acquired in
the algorithmic skeletons and design pattern areas.

Following this approach, the GCM autonomic man-
ager programmer can pick up one of two ways:

– He/she can customise a (composition of) auto-
nomic manager skeleton(s) by providing proper
parameters, and therefore, he can get very rapidly
a complete manager whose behaviour (modulo the
provided parameters) has already been tested, de-
bugged and proven correct.
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– In case the provided manager skeletons do not
fit user requirements, he/she can go through the
complete (re-)writing of a new autonomic manager,
exploiting the provided API to access component
internal features, as well as component environ-
ment features, and implementing his own auto-
nomic policies.

In [2], it has already been outlined how autonomic
manager skeletons (called “behavioural skeletons” to
distinguish them from the classical “algorithmical skele-
tons” that are only related to the functional compu-
tation features) can be designed in GCM that can
autonomically take care of the performance issues of
notable parallel component compositions. Behavioural
skeletons abstract common autonomic manager fea-
tures, leaving the autonomic manager programmer the
possibility to specialise the skeleton to implement the
particular autonomic manager he has in mind. More in
detail, behavioural skeletons aim to describe recurring
patterns of component assemblies that can be (either
statically or dynamically) equipped with correct and
effective management strategies with respect to a given
management goal. Behavioural skeletons help the ap-
plication designer to (1) design component assemblies
that can be effectively reused and (2) cope with man-
agement complexity by providing a component with an
explicit context with respect to top-down design (i.e.
component nesting).

Parallelism management can be designed and pa-
rameterised in the same way as classical, functional
algorithmical skeletons abstract common features of
parallelism exploitation patterns, leaving the program-
mers the possibility to model their own parallel com-
putations by providing suitable skeleton parameters,
including, in the general case, sequential code parame-
ters completely specifying the actual computation to be
performed.

Technically, because the membrane components are
still under development, the behavioural skeletons dis-
cussed in [2] have been currently implemented as inner
components of composite components. An implemen-
tation of behavioural skeletons based on membrane
components can now be considered; it will exploit sev-
eral useful membrane component features, such as the
ability to implement client interfaces.

6 Summary and conclusion

In this paper, we presented the key features of a
grid-oriented component model: the GCM. Relying on
Fractal as the basic component structure, the GCM

defines a set of features which are necessary to turn
the Fractal model into a grid compliant one. GCM is
more than a small extension of Fractal: it provides a
new set of component composition paradigm through
multicast and gathercast, addresses the issue of distrib-
uted component deployment and provides support for
autonomous components. Overall, the GCM can be
considered as a component model on its own. Confor-
mance to the GCM can be summarised as follow:

– Support for deployment of components, either re-
lying on deployment descriptors, or featuring an
automatic mapping to the infrastructure

– Possibility to collectively compose and target sets of
components: existence of multicast and gathercast
interfaces

– Support for autonomic components: possibility
to design membranes as component systems, to
compose (i.e. bind together) non-functional fea-
tures possibly distributed over several components
and support for self-adaptation of the compo-
nents to both evolving environments and evolving
requirements

GCM has been used in different settings showing
the effectiveness of this approach. First, a prototype of
the ProActive implementation of the GCM has already
been used to build and deploy over a grid a numeri-
cal computation application for electromagnetism [34].
Moreover, in the context of the common component
modeling example (CoCoME), GCM components have
been modeled and specified, and a prototype imple-
mentation has been realised [11]. The CoCoME con-
sists of a point-of-sale example featuring distribution,
asynchronism and collective communications.

Interoperability between GCM and other standards
or component models has been demonstrated, first
through effective interactions between CCA and GCM
components [30], and second by the possibility to ex-
pose component interfaces as web services [19].

The CoreGRID Institute on Grid Systems, Tools,
and Environments has been working on a methodol-
ogy for the design and implementation of a generic
component-based grid platform [13] collating the in-
novative efforts of a number of partners from several
European countries. The research activities and results
show that the GCM can be used to implement a grid
runtime environment. GCM has been proved to be ad-
equate to implement development, deployment, moni-
toring and steering tools. As a result, the grid integrated
development environment and the component-based
integrated toolkit, based on the GCM, provide a frame-
work that enables rapid development of grid applica-
tions and the transparent use of available resources at
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runtime. These achievement show the adequacy of the
GCM for developing not only grid applications but also
a grid runtime and environment.

The experiences mentioned above allow us to evalu-
ate the GCM relatively to the objectives given in the
introduction. First, the hierarchical aspect is really a
key feature to better address scalability in practice.
Second, expressiveness of the collective interfaces is
generally adequate as showed by the programming of
SPMD-like interactions, but the specification of distri-
bution policies is still to be improved. Indeed, allowing
the GCM implementation to reach the expressiveness
of the distribution policies described in Sections 4.2.3
and 4.3.4, and thus allowing real program to express
simply complex distributions, is still a real challenge.
Finally, we also showed the adequacy of the GCM to
express autonomic adaptations [2, 6]. Thus, we estimate
that the GCM greatly improves expressiveness, scala-
bility and adaptivity of grid applications, even if the
model and its implementation are still to be improved.
One difficulty that has been encountered several times
is the management of distributed asynchronous com-
ponents and, in particular, the problem of stopping
such components; however, some solutions have been
recently suggested for this problem [25, 39].
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