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Abstract The localization of mobile devices is essential
for the provisioning of location-based services, e.g., to
locate people facing an accident or to provide rele-
vant information to device users, depending on their
current whereabouts. Several localization mechanisms
have been developed using estimates of absolute dis-
tances or angles between the devices and the base sta-
tions of the networks. These mechanisms often require
expensive enhancements of the existing base stations
or mobile devices. In recent years, so-called range-free
approaches have been proposed, which limit the possi-
ble positions of a device to the coverage areas of radio
network cells, without relying on precise distances or
angles. The accuracy of the corresponding information
can be refined by computing the intersection area of
all cells that cover the current position of the device.
However, the computation of this intersection area,
e.g., by the location server of a network carrier, can
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be a complex task. To avoid unnecessary workload,
one would like to preestimate the possible reduction
of location uncertainty, i.e., the information gain that
can be achieved. The contribution of this paper is an
analytical and numerical investigation of the problem.
Several approaches are presented for the computation
of the information gain, based on stochastic geometry
and on a Monte-Carlo method. We show that simple
scaling arguments can be used to estimate the order of
magnitude of the average information gain, while more
complex approximations based on Voronoi cells lead to
relatively good results.

Keywords Range-free localization ·
Location information gain · Stochastic geometry ·
Poisson point processes · Voronoi tessellations

1 Introduction

The provisioning of location-based services [1] for users
of mobile and mostly wireless devices requires proper
knowledge about their current geographical positions.
Because most mobile devices, such as notebooks, per-
sonal digital assistants, or cellular phones, are unable to
determine their positions on their own, e.g., by means
of a global positioning system, they rely on the support
of the network for this task.

Several proposals have been made in recent years
for the determination of device positions. These can
be classified in range-based and range-free approaches
(see [2]). For the range-based mechanisms, the
distance (trilateration) or the angle (triangulation) be-
tween a mobile device and at least three of its cur-
rently available base stations is required. Based on this
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information and a precise knowledge of the positions
of the stations, the location of the mobile device can
be computed. However, determining such distances or
angles can be rather difficult, and the inaccuracy might
be quite high. Additionally, the realization of range-
based mechanisms often requires costly enhancements
of the mobile devices or base stations, like special
location measurement units [3].

As long as no additional mechanisms are being
deployed, the determination of the positions can be
achieved by so-called range-free approaches. State-
ments about a position can be obtained via information
about the base stations that can communicate with a
mobile device at its current position, without relying on
estimates of absolute distances or angles.

Range-free approaches use different algorithms and
information about the base stations to give an estimate
for the current location of a mobile device. A conve-
nient mechanism uses approximations of base station
coverage areas. These areas can be acquired by the
mobile devices and provided by respective databases
[4]. In other cases, the carriers of a wireless network
possess detailed descriptions of the deployed network
equipment being used for network planning [5], which
can also be used to obtain estimates of the coverage
areas. If a mobile device finds itself in the overlapping
coverage areas of several base stations at once, the
intersection of these areas will be geometrically com-
puted, and the possible positions of the device can be
limited to this intersection area.

Computing the intersection of base station coverage
areas can be a complex task. Thus, it is desirable to
have estimates about the potential refinement of the
location information before performing the computa-
tion. Because we are interested in the uncertainty of
location information, i.e., the entropy of the random
variable associated with the exact position of a device,
we will use the term information gain for the reduction
of this entropy. In the sequel, we focus on analytical
investigations of the information gain. Different ap-
proaches to the computation of the information gain
are investigated, based on stochastic geometry and a
Monte-Carlo method.

The rest of the paper is organized as follows: related
work is presented in the next section. In Section 3, a
model for the considered system is described. Then, in
Section 4, the notion of information gain that will be
used in the sequel is presented. In Section 5, several ap-
proaches for the determination of the information gain
are displayed. Some significant numerical results are
presented in Section 6, and the last section concludes
the paper by giving an outlook into the next steps of
our ongoing work.

2 Related work

If the information of a single station is used for range-
free localization, the accuracy depends critically on
the cell size. For certain technologies with small trans-
mission ranges, like Bluetooth, it might be sufficient.
However, other radio cells can cover large parts of a
geographical territory, and using a single base station
to localize a mobile device might lead to a very coarse
position information.

The accuracy can be significantly enhanced by using
the information from several stations. In this section,
the basics of the existing range-free approaches and the
mechanisms for the computation of the device positions
will be presented. Some of these have originally been
proposed in the context of wireless sensor or ad-hoc
networks, but the algorithms are almost independent of
the underlying technologies and can also be deployed in
other wireless networks.

Centroid computation The authors of [6] propose a
mechanism that relies on the deployment of location-
aware nodes in a wireless sensor network. If another
node wants to determine its whereabout, it will listen
to beacon signals of all the location-aware nodes that
can be received at its current position. The device is
assumed to be located at the centroid of the positions
of these nodes. However, computing such centroids
yields no information regarding the accuracy of this
positioning method. Figure 1 shows the deployment of
the mechanism in a wireless network.

Intersection area computation Using the intersection
area of different coverage areas has been proposed in
[7]. The authors present a distributed algorithm for
the localization of nodes in ad hoc networks. Some
of the nodes are assumed to be location-aware, other
nodes determine their positions by computing the in-
tersection of the coverage areas of the location-aware
nodes. For computational simplicity, the algorithm uses
a discretization of positions and rectangular coverage
areas (see Fig. 2). In [8], an analytical investigation of

Fig. 1 Using the centroids of location-aware nodes (e.g., base
stations) for localization
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Fig. 2 Simplified computation of an intersection area for
localization

the intersection protocol is presented, assuming circular
coverage areas of the nodes (Fig. 3). Additionally, the
authors present and analyze an enhancement of the
protocol that achieves the same accuracy but halves
the number of required location-aware nodes.

In [9], a cell-ID-based location-sensing method for
wireless networks is proposed, using the intersection
area of different base stations for localization. In this
paper, the positioning accuracy of the mechanism is
computed assuming the base stations are aligned in a
hexagonal or mesh structure. Additionally, the optimal
accuracy is computed when the transmission power of
the stations can be modified for localization purposes.
The authors use circular coverage areas of the base
stations for their computation. All of the presented
approaches for location determination assume circular
coverage areas of the nodes or stations being used
for the localization, without taking the interference
between their radio signals into account.

Approximate point in triangulation test The authors
of [2] present a localization algorithm that partitions
the geographical territory into triangular regions with
location-aware nodes as vertices. These nodes send
beacons with their positions to other nodes whose posi-
tions should be determined. For localization purposes,
a node uses the positions in the beacons that it can
currently receive, determines the resulting triangles,

Fig. 3 Intersection area based approach, using circular coverage
areas

Fig. 4 Using the (approximate) point in triangulation test for
localization

and checks whether its current position lies inside the
triangles. The intersection region of all triangles return-
ing a “true” result is then computed, and the node is
assumed to be located at the center of gravity of this
region (see Fig. 4). A perfect test as to whether the
current position lies within a given triangle could hardly
be realized. Thus, the protocol relies on approximations
of the test results.

From a mathematical standpoint, previous work has
been achieved most noticeably in [10]. This paper
contains, amongst other results, a first mathematical
study of intersections

(
CA ∩ CB

)
, where CA and CB

are the cells covering a fixed reference point in two
independent and stationary Poisson–Voronoi tessella-
tions. However, statements regarding the probabilistic
distribution of

(
CA ∩ CB

)
are essentially limited to a

computation of the mean value of its area.

3 System model

We consider a large geographical territory T having
an area size |T|. The territory is covered by a wireless
network. The network has a set of base stations S, and
the members of the set are denoted by s.

Coverage model To estimate the base station cover-
age areas, we use a simplified model (see [11]), which
has been widely deployed for information theoretical
analyses, e.g., in [12]. The pathloss, i.e., the weaken-
ing of the received signal power PRX between a base
station located at position Xi and a mobile device at
position U during the transmission, is computed via

PRX = PT X · K
|U − Xi|α (1)
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PT X denoting the power transmitted by the base sta-
tion. The constant K and distance power gradient α

approximate the attenuation characteristics of the con-
sidered environment (see [13]). As long as the strength
of the received signal and the ratio between the signal
and some received noise (SNR) remain above a certain
threshold, a communication with the station is possible
and the device is in its coverage area.

Assuming that the signals of the different base sta-
tions do not interfere at the receiver, the SNR can be
computed via

SNR = PRX

PN
(2)

PN denoting the equivalent power of the noise.

Network model In real scenarios, base stations can
sometimes only be installed at a limited number of
suitable locations, e.g., on certain rooftops. Such re-
strictions lead to spatial variability for the locations and
density of the base stations.

Following [14], we model the positions of the base
stations as realizations of a stationary Poisson point
process to take this spatial variability into account.
Accordingly, letting λ denote the intensity of the base
stations process (mean number of base stations per
square kilometer), the probability for the total number
of base stations |S| in the territory to be n is given by

p(n) = P[|S| = n] = e−λ|T|(λ|T|)n

n! (3)

and, conditionally to |S| = n, the n positions of the base
stations are distributed independently and uniformly
over the territory T.

The set of base stations S consists of several subsets
of stations S j ⊂ S. All stations whose radio transmis-
sions heavily interfere with each other belong to the
same subset j (e.g., cochannel interference of base
stations using the same frequency in IEEE 802.11
WLAN). For stations of different subsets, we assume
that the interference between them is negligibly small
due to respective characteristics of the filters in the
transceivers.

The subsets of the base stations are modeled accord-
ing to the entire set S. The spatial variability of the
base stations of a subset is modeled by a Poisson point
process with density λ j, where

∑
j λ j = λ.

The territory under consideration is populated by a
set of mobile devices M. If required, a certain device
m ∈ M can determine the ID of the base station in
whose coverage area it currently resides. For the inter-
fering base stations of a single subset, we assume that
only the station with best SNR can be determined.

If the parameters of all base stations are equal, the
last assumption leads to a determination of the station
of each subset being closest to the current position of
a mobile device. The partitioning of the geographical
territory by the coverage areas of the stations leads
to a Voronoi tessellation [15] of the territory with the
station positions as nuclei (see Fig. 5). Considering the
model for the placement of the stations, such partition-
ing of the territory T is also called a Poisson-Voronoi
tessellation.

4 The notion of information gain

Taking only the information of a first base station sA

into account (“The user of device m finds himself in cell
CA attached to base station sA”) allows one to consider
that the exact position of the user is a random variable
U that is uniformly distributed over the cell CA. The
entropy of such a random variable is simply given as the
logarithm of the total surface |CA| of the corresponding
cell (see [16]).

Now, when one is also taking the information of
a second base station sB into account (“The user of
device m finds himself in cell CB attached to base station
sB”), the exact position of the user becomes a random
variable that is uniformly distributed over

(
CA ∩ CB

)
.

Here again, the entropy attached to such a uniformly
distributed random variable is simply the logarithm
of the corresponding total surface, i.e. log(|CA ∩ CB|).
This means that the information gain G obtained by
taking both informations into account simultaneously
(instead of just the first one) may be quantified as

G = log(|CA|) − log(|CA ∩ CB|) (4)

Hence, CA and CB denoting the cells covering a given
reference point in each network, one is particularly
interested in the distribution of the random variable
log

(
|CA|

|CA∩CB|
)

.

5 Computing the information gain

In this section, we present several approaches to the
computation of the information gain, discussing first the
use of random tessellations and then the implementa-
tion of Monte-Carlo methods.

In the sequel, we will be assuming that the networks
under consideration are spatially stationary and that
user localizations are being performed a large number
of times (N times), so that if the user of device mk be
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reported to find himself in cell CA
mk

, as well as in cell
CB

mk
, then

1

N

N∑

k=1

log

( |CA
mk

|
|CA

mk
∩ CB

mk
|

)

≈ E

[
log

( |CA(O)|
|CA(O) ∩ CB(O)|

)]
,

where CA(O) stands for the cell in the first network that
happens to cover an arbitrary fixed point, taken to be
the origin O of the plane, and CB(O) stands for the
corresponding cell in the second network. The above
approximation uses the law of large numbers (the user
locations are assumed to be independent and uniformly
distributed over the territory) together with Wiener’s
ergodic theorem, which holds true for any stationary
random tessellation of the plane satisfying a mixing
condition (see the Appendix for more precise state-
ments and further references). In any of the cellular
network models we shall be considering, be it the model
described in Section 3 or a simplified Poisson–Voronoi
tessellation model, or even some simpler model of
the network at hand, we are thus using the fact that
the cellular network may be viewed as a realization
of a stationary random tessellation satisfying a mixing
property, as well as the fact that the true locations
of the successive users are mutually independent and
uniformly distributed over the territory.

At any rate, this leaves us with the basic task of
computing mean values such as E

[
log(|CA(O)|)] or

E
[
log(|CA(O) ∩ CB(O)|)]. As we shall see, there are

several approaches to these computations. The choice
of a relevant approach depends in an essential way on
the model chosen for the cellular network.

5.1 Using a Poisson–Voronoi tessellation

Assume both cellular networks are being modelled as
Poisson–Voronoi tessellations of the plane: the base
stations of the first (resp. second) network are thus
spread upon the territory according to a Poisson point
process

{
X A

i

}
of intensity λA

(
resp.

{
X B

j

}
of intensity

λB
)
, and a device m located at the position U belongs

to the cell CA
i attached to the ith base station in the

first network whenever its distance to X A
i is smaller

than its distance to any other base station in the first
network (see Fig. 5). The cell CB

j attached to the jth
base station in the second network is defined similarly.
For a typical realization of the Poisson random clouds{

X A
i

}
and

{
X B

j

}
, there is precisely one cell CA(O) in

the first network covering the origin O in the plane, as
well as one cell CB(O) covering the origin in the second
network. Having in mind a computation of the sto-
chastic mean values mentioned above, one would like

Base Stations:

,

,

Cell Borders:

Fig. 5 Coverage areas of two different base station subsets using
a Poisson–Voronoi model

to get a hold of the distribution functions attached to
the random variables |CA(O)| and |CA(O) ∩ CB(O)|.
Interestingly, some recent works [17] have shown that
an explicit computation of the distribution function
attached to the area |CA(O)| is possible. To give a brief
description of this distribution function, let us present
another kind of random cell commonly considered in
such a context: the Palm cell CA, constructed from a
typical realization of the Poisson cloud

{
X A

i

}
, may be

defined to be the set of all points lying closer to O
than to any other point in the cloud (so it is simply the
new cell obtained by adding the point O to the original
cloud). The construction shows that CA is smaller than
the cell CA(O) considered precedingly. However, as a
consequence of Campbell’s formula (see [18]), each of
the main geometric characteristics of the random cells
CA(O) and CA (area, perimeter, number of sides) has
a distribution that may be seen to be closely related
to each other via an “area bias.” For example, the
first moment of the area |CA(O)| may be obtained by
multiplying the second moment of |CA| through the
intensity λA:

E
[|CA(O)|] = λA

E
[|CA|2] = E

[|CA|2]

E
[|CA|] .

More generally, for moments of higher order, one has

E
[|CA(O)|k] = λA

E
[|CA|k+1

]
,

and for the logarithms of the areas:

E
[
log |CA(O)|] = λA

E
[|CA| · log |CA|] . (5)

On the other hand, [17] provides us with an explicit
expression for the density function of the random vari-
able |CA|. This in turn enables the computation of
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probabilities such as P
{|CA| ≥ x

}
or P

{|CA| ≤ x
}
, and

one then has:

E
[|CA| · log |CA|]

= E

[∫ |CA|

1
(1 + log x)dx

]

=
∫ +∞

1
(1 + log x)P

{|CA| ≥ x
}

dx

−
∫ 1

0
(1 + log x)P

{|CA| ≤ x
}

dx. (6)

So, in the context of Poisson–Voronoi tessellations, the
first half of our task, namely, computing the stochastic
mean value of log |CA(O)|, may be achieved analyti-
cally. However, it turns out that the explicit expression
of the density function attached to |CA| is not particu-
larly easy to handle, its integration necessitating the use
of numerical methods (see the Appendix).

More importantly, it seems that an explicit computa-
tion of the distribution associated with the random vari-
able |CA(O) ∩ CB(O)| remains completely out of reach
(reference [10] only has an explicit expression for the
mean value of |CA(O) ∩ CB(O)|). A central difficulty
here is that the compound tessellation, obtained by
superimposing the cells of the second network to those
of the first one, is of a truly new kind: some of the new
cells thus obtained contain no base station at all, some
other cells have just one base station (of the first or of
the second network), some other cells contain two base
stations (one of each network), and there is no obvious
way in which one could come back to the earlier setting
(e.g., by trying to attach one “virtual station” to each
of the new cells). Having faced this essential difficulty,
one may turn to a further simplification of the cellular
network modelling, which allows for an explicit compu-
tation of the information gain via scaling arguments, or
else opt for a numerical evaluation of the information
gain, in which case some other network models may
be implemented (see [12]). These two complementary
approaches are presented in the following paragraphs.

5.2 Scaling arguments

One way of circumventing the difficulties alluded to
above would be to change the notion of cell used in
the modelling of the network, e.g. by replacing the
Poisson–Voronoi tessellations through Poisson line tes-
sellations: for a given realization

{
Y A

i

}
of a Poisson

random cloud, the corresponding line tessellation is
defined by drawing a straight line �A

i through each
point Y A

i , in such a way that the segment joining the
origin O to Y A

i be orthogonal to �A
i (see Fig. 6).

X

●

●

●
●

●

●

●

●

●

●

●

O

Fig. 6 A Poisson line tessellation of the territory

This procedure yields a (very rough) model for the
cells of the first network, and the cells in the second
network could be modelled similarly, using a second
random cloud

{
Y B

j

}
independent of the first one. Note,

however, that these two clouds should be given inten-
sity measures proportional to dρdθ = dxdy√

x2+y2
to ensure

that the resulting tessellations are stationary (see the
Appendix for more details). Letting, thus, λAdρdθ be
the intensity measure of the first cloud and λBdρdθ be
the intensity measure of the second one, we are then
in the advantageous situation where the tessellation
obtained through a superposition of the first line tes-
sellation and of the second one is of the same nature: it
is precisely the line tessellation associated with the cu-
mulated cloud

({
Y A

i

} ∪ {
Y B

j

})
. This last cloud is, again,

a Poisson random cloud, of intensity measure λCdρdθ ,
where λC = λA + λB. Hence, each of the three Pois-
son random clouds

{
Y A

i

}
,
{
Y B

j

}
,
({

Y A
i

} ∪ {
Y B

j

})
may

be obtained as a dilation about the origin of an auxiliary
Poisson cloud

{
Zi
}

having the intensity measure dρdθ ,
the dilation factors being 1/

√
λA, 1/

√
λB and 1/

√
λC =

1/
√

λA + λB, respectively. Letting CO({Zi}) denote the
cell covering the origin in the Poisson line tessellation
associated with {Zi}, and using dilations about the ori-
gin to represent

{
Y A

i

}
, as well as

({
Y A

i

} ∪ {
Y B

j

})
, one

then finds out that the corresponding information gain
may be simply quantified as

log

(
1

λA

)
− log

(
1

λA + λB

)
= log

(
1 + λB

λA

)
(7)

Note that such concise expression of the information
gain could also be obtained in the context of Poisson–
Voronoi tessellations, again via scaling arguments: one
would simply need to replace the true compound
Poisson–Voronoi tessellation T Comp by the Poisson–
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Voronoi tessellation T
({

X A
i

}∪{X B
j

})
associated with

the cumulated cloud
({

X A
i

} ∪ {
X B

j

})
. Actually, this

kind of scaling argument may be significantly improved
by taking into account the fact that the cells in the
compound tessellation T Comp tend to be smaller than
those of T

({
X A

i

} ∪ {
X B

j

})
. More precisely, by attach-

ing its center of gravity Gk to each cell Ck in the
compound tessellation, one obtains a new point process
{Gk}, which is again stationary and has the intensity

�Comp(λA, λB) = λA + λB + 8

π

√
λAλB (8)

(see [10] for a proof, upon which we expand in the
Appendix). This new point process is non-Poissonian;
however, the area of the cell about the origin in T Comp

should be close to the area of the corresponding cell
in a Poisson–Voronoi tessellation when the intensity
of the underlying Poisson process is given the value
�Comp(λA, λB). This approximation and a scaling argu-
ment lead to the following expression:

log
(
�Comp(λA, λB)

)−log λA = log

(

1+ λB

λA
+ 8

π

√
λB

λA

)

(9)

for the information gain.
Similarly, considering three independent, homoge-

neous Poisson clouds of respective intensities λA, λB,

λC, and superimposing the cells associated with their
Voronoi tessellations, one obtains a new compound
tessellation where cells come up with the intensity

�Comp(λA, λB, λC)=λA+λB+λC

+ 8

π

(√
λAλB+

√
λAλC+

√
λBλC

)

(10)

Accordingly, approximating this new compound tessel-
lation through a Poisson–Voronoi tessellation of inten-
sity �Comp(λA, λB, λC) and using a scaling argument
enables one to quantify the corresponding information
gain as

log
(
�Comp(λA, λB, λC)

)− log λA

= log

(
1 + λB

λA
+ λC

λA

+ 8

π

(√
λB

λA
+
√

λC

λA
+

√
λBλC

λA

))

(11)

However, such expressions for the information gain
were obtained by approximating compound tessella-
tions through Poisson–Voronoi tessellations of equal

cell intensity, and the corresponding values of the in-
formation gain should be carefully compared with those
obtained through Monte-Carlo simulations.

5.3 Using a Monte-Carlo method

Using a Monte-Carlo method for the computation
of the information gain provides the best accuracy
because the model of the network can be directly
used for the computation without requiring further
simplifications.

According to the system model presented in
Section 3, we are assuming that the base stations of
each network are spread out on the territory as several
Poisson clouds, e.g.,

{
X A

i

}
,
{

X B
j

}
having the intensities

λA, λB. Each base station X A
i in the first network has a

random variable PA
TX,i standing for transmission power,

as well as technology and environment specific values
K, PN and α.

A given mobile device located at U is said to lie in
the cell attached to base station X A

i0 in the first network

whenever the product
PA

TX,i0
PN

· K
|U−X A

i0
|α is greater than any

of the analogous quantities
PA

TX,i

PN
· K

|U−X A
i |α for i �= i0. We

denote by ĈA
i this new notion of a cell attached to the

base station located at X A
i , and by ĈB

j the cell attached
to X B

j in a similar way in the second network, using
some further family

{
PB

TX, j

}
of random variables.

These families of random variables are naturally
assumed to be independent of each other.

{
PA

i

}(
resp.{

PB
j

})
may be modeled, e.g., as an i.i.d. sequence of

uniform or Beta distributed random variables.
Using again the spatial ergodicity underlying the

network model at hand, one may define the long-term
information gain as the difference of stochastic mean
values

E

[
log(|ĈA(O)|)

]
− E

[
log(|ĈA(O) ∩ ĈB(O)|)

]
, (12)

where ĈA(O) (resp. ĈB(O)) is defined as the unique
cell covering the origin O in the first network (resp.
the second network). Recalling that the above mean
values may be simply expressed as integrals featuring
the distribution functions of the relevant areas, so that,
e.g.,

E

[
log(|ĈA(O)|)

]
=
∫ +∞

1

1

x
P

{
|ĈA(O)| ≥ x

}
dx

−
∫ 1

0

1

x
P

{
|ĈA(O)| ≤ x

}
dx, (13)
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one is left with the task of finding a satisfactory way of
approximating probabilities such as

p(x) = P

{
|ĈA(O)| ≥ x

}
. (14)

A Monte-Carlo simulation can be performed along
the following steps:

1. Draw a random natural number n according to the
Poisson distribution having parameter

(
λA · |T|)

and then n i.i.d. points X1, X2, . . . , Xn distributed
uniformly in the territory T (simulation of the base
station locations in the first network).

2. For i = 1, . . . , n, generate the i.i.d. r.v. PTX,i.
Choose PN and K according to the investigated
technology.

3. For i = 1, . . . , n, evaluate the quantity PTX,i

PN
· K

|Xi|α ,
and denote by i0 the index for which this quantity is
maximal (so that the origin lies in the cell attached
to the tower located at Xi0 ).

4. Simulate a (large) number U1, U2, . . . , UN of i.i.d.
points (mobile device positions) distributed uni-
formly in the territory T.

5. For i = 1, . . . , n and j = 1, . . . , N, evaluate the
quantities PTX,i

PN
· K

|Uj−Xi|α and attach a variable ξ j to
the point Uj in such a way that

ξ j =
{

1 if PTX,i

PN
· K

|Uj−Xi|α is maximal for i = i0,

0 otherwise.

6. Evaluate the proportion κ = 1
N

∑N
j=1 ξ j, and define

ϒ ∈ R by

ϒ = log(κ · |T|) = log(|T|) − log

(
N

∑N
j=1 ξ j

)

Store ϒ and go back to step 1, unless this step has
been repeated sufficiently many times (M times).

7. Once steps 1–6 have been repeated sufficiently
many times, yielding the successive outputs
ϒ1, ϒ2, . . . , ϒM, take the approximation

E

[
log(|ĈO(�)|)

]
≈ 1

M

M∑

k=1

ϒk

The stochastic mean value of log(|ĈA(O) ∩ ĈB(O)|)
may be computed similarly. In parallel to the first base
station set, steps 1 to 3 are performed for the second
set using the corresponding parameters, i.e., we draw
nB using λB, select the transmission powers, and finally
determine the index iB

0 of the base station from the
second set which covers the origin. Step 4 remains
unchanged. In step 5, ξ j takes up the value “1” only
if the quantities for both sets are maximal; otherwise,

Fig. 7 Average information gain obtained by the Monte-Carlo
method for fixed base station densities λA

value “0” is taken. Step 6 is performed based on this ξ j.
In step 7, the desired stochastic mean value is obtained.

6 Numerical results

In this section, we present some numerical results that
have been obtained by the different mechanisms for
the computation of the information gain. First, we will
investigate the gain that can be achieved by a com-
putation of the intersection areas of the base stations.
Secondly, the results for the approximation of the in-
formation gain via Voronoi cells and scaling arguments
will be presented and the deviations between the differ-
ent approaches will be shown. Afterwards, the distrib-
ution of the different cell sizes and their intersection
areas will be presented for some distinct scenarios.

6.1 Average information gain

Its very definition shows that the information gain de-
pends on the number of base station sets being used, as
well as on the sizes of the cells in each set.

Fig. 8 Average information gain if two base station sets with
different densities exist
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Fig. 9 Average information gain if a third base station set with
λC = 100 is added

First, we consider a territory with a size of 1 × 1 km,
covered by two different base station sets. The expected
station number of each set varies between 10 and
200, reflecting different scenarios like indoor, urban,
and rural. The transmission power of the stations is
uniformly distributed between [0.25 PTX,Max; PTX,Max]
with PTX,Max = 100mW, i.e., we have chosen values
being typical for IEEE 802.11 WLANs.

In Fig. 7, the average information gain is presented
for different base station densities λB when λA is fixed.
The results have been obtained by the Monte-Carlo
method. For each point in the plots, the mean value has
been computed based on 250 random base station con-
stellations. The intervals being displayed in the graph
denote 95% confidence intervals.

The resulting information gain when both base sta-
tion densities vary is displayed in Fig. 8. Twenty dif-
ferent base station intensities have been investigated
for each set. Again, a mean value has been computed
based on 250 random base station constellations for
each point on the surface in the figure. As expected,
the information gain increases as the number of base
stations in the second set increases, and the largest gain

Fig. 10 Average information gain obtained by the approxima-
tion via Voronoi cells

Fig. 11 Relative deviation between the original information gain
and the approximation via Voronoi cells

is achieved when the number of base stations in the first
set is relatively small.

For Fig. 9, we considered the case where location
information is obtained via three different base station
sets. In addition to the previous scenario, a third set
with fixed λC = 100 is used for the positioning, leading
to an overall increase of the information.

6.2 Approximations and resulting deviations

Let us now consider the average information gain being
obtained if the coverage areas of the base stations are
approximated by Voronoi cells and a scaling argument
is used.

Figure 10 shows the average information gain be-
ing computed based on the Voronoi cell assumption.
When a large number of base stations is considered, the
computed information gain is very close to that of
the Monte-Carlo approach. On the other hand, when
the first set of base stations is small, this deviation
becomes rather large. The relative deviation of the
information gain using the Monte-Carlo and Voronoi
approaches is presented in Fig. 11. The average devia-
tion results is 10.1% in the considered parameter range.

lambda A
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0
50 100 150 200         0

        50
       100

       150
       200

Fig. 12 Relative deviation between the original information gain
and the approximation via Voronoi cells for three base station
sets
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Fig. 13 Relative deviation between the original information gain
and the one being computed via a scaling argument

In Fig. 12, the resulting deviation of the information
gain for three base station sets is displayed. Like in
Fig. 9, the density λC = 100 has been chosen for the
third set. One can clearly see that the deviation is quite
small in comparison to the results for two base station
sets.

The relative deviation of the Monte-Carlo numerical
results respective to the values obtained via Eq. 9 are
displayed in Fig. 13. These two sets of results are closer
to each other when λA is kept small, but on the whole,
the average deviation is higher (31.2%) compared with
the Voronoi-based approximation.

6.3 Distributions of the cell sizes

Next, we were interested in the distributions of the cell
sizes and the intersection areas. In Fig. 14, the distribu-
tion of the original cell sizes and the intersection areas
is presented. We started with one base station set with
λA = 30. Afterwards, a second set with λB = 100 was
added. The corresponding histogram for the two sets
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Fig. 14 Original cell sizes and intersection areas. The first his-
togram shows the distribution of the cell sizes from one set
(λA = 30). The second histogram shows the distribution of the
intersection areas of this set with a second set (λB = 100). The
last one presents the distribution of the intersection areas of these
two sets with a third set (λC = 100)
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Fig. 15 Voronoi cell sizes and intersection areas. The figure
shows the distributions of the cell sizes and intersection areas of
the Voronoi cells, using the same parameters as in Fig. 14

shows the size of the intersection areas. Roughly 65%
of the intersection areas are smaller than 10 000 m2. If
an additional third set with λC = 100 is used for the
location determination, the possible whereabouts of a
mobile device can be theoretically limited to an area of
5 000 m2 and below in 75% of the cases.

In Fig. 15, the distributions of the cell sizes and the
intersection areas for the Voronoi-based approxima-
tions are shown, using the same intensities as before.
All histograms are generated based on 250 samples of
the cell sizes and intersection areas.

7 Conclusion

In this paper, we presented novel approaches to the
computation of the information gain that can be
achieved by intersection-based range-free localization.
We applied methods from Stochastic Geometry to ob-
tain approximations of the information gain that can
be achieved for different base station densities. In con-
trast to previous work, we modeled the interference of
different stations because the assumption of noninter-
fering stations may hardly be valid for the investigated
networks. Additionally, we assumed spatial variabil-
ity of the station placements, which had rarely been
investigated up to now.

The displayed numerical results show that the quality
of the approximation increases with the complexity
of the techniques involved. Scaling arguments may be
used to estimate the order of magnitude of the gain,
while approximations based on Voronoi cells lead to
more precise results.

Generally speaking, the possible whereabouts of a
mobile device can be significantly reduced by using the
information from different base stations. For instance,
in an indoor scenario with a person in distress, the



Ann. Telecommun. (2008) 63:307–320 317

number of rooms that need to be scanned by a rescue
team can be extremely reduced.

An application area of the presented approach has
been presented in [19]. Location information of mo-
bile devices is normally provided by so-called location
servers in a carrier access network. If the position
of a device is to be provided, the servers trigger the
respective location determination processes. However,
the location determination in a network can be quite
costly and the outcome might not meet the expecta-
tions of the requester, especially if a request should be
used to refine existing location information. To avoid
unnecessary workload, the present approach offers re-
questers the possibility to add the desired accuracy or
information gain before they send their queries to the
location servers. By using the approaches that have
been presented in this paper and information about
the deployed base stations, the servers can estimate
the accuracy or the gain that can be achieved. Based
on these estimates, a server can determine in advance
whether the procedure should be started. Regarding
the next steps of our ongoing work, we will investigate
the effect of different coverage models, suited math-
ematical approximations, and the correctness of the
resulting information gain.

Appendix

Let us now give some brief explanations, as well as a
few references concerning translation invariance and
ergodicity for random tessellations of the plane. Recall
that a Poisson–Voronoi tessellation of the plane may be
defined by considering a planar Poisson point process
{Xi} and attaching a convex polygonal cell Ci to each of
the random points Xi in a very simple fashion: Ci con-
sists of all points Y in the plane lying closer to Xi than
to any of the other points X j in the Poisson cloud (see
Fig. 5). Such a construction may certainly be carried out
for any Poisson point process in the plane; however,
the resulting tessellation will be translation-invariant
only if the underlying Poisson random cloud has con-
stant intensity λ. The translation-invariance property
we have in mind is the following: denoting by TV : Y �→
Y + V the translation along an arbitrarily fixed planar
vector V, one asks for the statistical properties of the
random tessellation {Ci} to be left unchanged when
applying TV to each of the cells, i.e., changing {Ci} into
{TV (Ci)}. A more precise statement of this property
requires considering an arbitrary bounded measurable
functional  of the random tessellation {Ci}, as well as
an arbitrary planar translation TV , and requiring that

the mean value of 
[{Ci}

]
be left unchanged when

composing  with TV :

E
(

[{TV (Ci)}

]) = E
(

[{Ci}

])

(one may think of  as a geometric characteristic
of the polygonal cell covering the origin O in the
plane, e.g., number of vertices, perimeter, or area, even
though such reasonable functionals are not bounded).
A Poisson–Voronoi tessellation of the plane satisfy-
ing such translation-invariance property is said to be
stationary.

Of course, one might be interested in the station-
arity of some other kind of random tessellation, for
example, the Poisson line tessellations mentioned in
Section 5.2, where a straight line �i is drawn through
each point Xi of the random cloud, orthogonally to the
segment joining O and Xi (see Fig. 6). In the latter
case, however, the intensity of the underlying Poisson
random cloud should be taken proportional to dρdθ =

dxdy√
x2+y2

in order for the resulting line tessellation to

be stationary. Indeed, assuming that the lines in such
random tessellation are being translated along some
fixed vector V = (V1; V2), consider a particular line �

and its translate �′, as well as the point X on � lying
closest to the origin O and the point X ′ on �′ lying
closest to O. Denoting by (ρ; θ) the polar coordinates
of X and by (ρ ′; θ ′) those of X ′, one obviously has
θ ′ = θ or θ ′ = θ ± π (�′ is parallel to �), whereas

ρ ′ = ρ + (V1 cos θ + V2 sin θ) = ρ + 〈V; Uθ 〉 .

(see Fig. 16). Thus, for an arbitrary bounded measur-
able function (ρ; θ) �→ F(ρ; θ), one certainly has
∫ ∫

F(ρ ′; θ ′)dρ ′dθ ′ =
∫ ∫

F(ρ; θ)dρdθ,

because the corresponding Jacobian is unitary, but this
identity breaks down when replacing the differential
dρdθ , e.g., by ρdρdθ = dxdy.

Δ'

XO

X
X'

V

Δ

Fig. 16 The effect of a translation on a Poisson line tessellation
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One of the main consequences of such translation-
invariance property lies in the validity of Wiener’s
ergodic theorem: assuming that {Ci} is a stationary ran-
dom tessellation of the plane and that  is a square
integrable measurable functional of {Ci} (i.e., such that

E

(∣
∣

[{Ci}
]∣∣2
)

be finite), one may assert the almost

sure existence of the limit1

lim
R→+∞

1

|BR|
∫ ∫

BR


[{TV (Ci)}

]
dV = L(),

where BR stands for the Euclidian ball of radius R
centered at the origin, and |BR| for the corresponding
area (see [20] for a series of precise statements of such
theorems and their proofs). At this stage, some further
condition on the random tessellation {Ci} is needed to
make sure that the limit L() coincides (almost surely)
with the stochastic mean value E

(

[{Ci}

])
. A very

natural sufficient condition of this kind is the following:
the stationary random tessellation {Ci} is said to satisfy
a mixing condition whenever

lim
R→+∞

E
(
�
[{Ci}

] ·  [{TR.V (Ci)}
])

= E
(
�
[{Ci}

]) · E
(

[{Ci}

])
,

holds true for any unit vector V and bounded measur-
able functionals �, . Roughly speaking, this means
that the geometric characteristics of two parts of the
random tessellation located far from each other are
nearly uncorrelated. Such property holds true for any
of the stationary random tessellations {Ci} we have
been considering so far, and as a consequence, one may
assert the validity of the identity

L()= lim
R→+∞

1

|BR|
∫ ∫

BR


[{TV (Ci)}

]
dV =E

(

[{Ci}

])
,

almost surely in the realizations of {Ci}. Readers
interested in rigorous applications of Wiener’s or
Birkhoff’s ergodic theorems to stochastic geometry
should certainly consult [21] or [22]. Some of the main
applications of this kind go under the name of “mean-
value relationships” for stationary random tessella-
tions. Here is an important example of such mean value
relationships (many more may be found in Section 10.3
of [23]): denoting by λ0 (resp. λ2) the mean number of
vertices (resp. cells) of the tessellation {Ci} to be found
per unit area, and by n0,2 the mean number of cells
touching a vertex in this tessellation, one has

n0,2 = 2 + 2λ2

λ0
.

1Note that, a priori, L() is a random variable.

In the simple situation where
{
CA

i

}
is the Poisson–

Voronoi tessellation attached to a Poisson random
cloud of constant intensity λ, one has λ0 = 2λ and λ2 =
λ, so that n0,2 = 3. In fact, in such a simple situation,
there are exactly three polygons meeting at each of
the vertices, almost surely in the realizations of

{
CA

i

}
.

Let us consider a further Poisson–Voronoi tessellation{
CB

j

}
attached to a second Poisson random cloud of

constant intensity μ, independent of the first one. In
the compound tessellation

{
CComp

k

}
obtained by super-

imposing the cells in
{
CB

j

}
to those of

{
CA

i

}
, there are

three kinds of vertices:

• Vertices already present in the tessellation
{
CA

i

}
:

these come up with intensity 2λ and are adjacent to
three polygons in the compound tessellation.

• Vertices already present in the tessellation
{
CB

j

}
:

these come up with intensity 2μ and are adjacent to
three polygons in the compound tessellation.

• Vertices appearing at the intersection of an edge in
{
CA

i

}
with an edge in

{
CB

j

}
: these come up with

intensity 8
π

√
λμ and are adjacent to four polygons

in the compound tessellation. (The original paper
[24] should be consulted for more details on this
third intensity).

As a result of the preceding considerations, one may
state that the mean number of polygons adjacent to a
vertex in the compound tessellation is given by

nComp
0,2 = 6(λ + μ)

2λ + 2μ + 8
π

√
λμ

+
32
π

√
λμ

2λ + 2μ + 8
π

√
λμ

.

Using the above stated mean-value relationship then
leads to the following value �Comp for the cell intensity
in the compound tessellation:

�Comp(λ, μ) =
(

2λ + 2μ + 8

π

√
λμ

)
·
(

nComp
0,2

2
− 1

)

= λ + μ + 8

π

√
λμ.

The very same method may be used to determine the
cell intensity of a compound tessellation where a third
Poisson–Voronoi tessellation built upon a new Poisson
cloud of intensity ν is superimposed to the preceding
compound tessellation: the resulting cell intensity is
then

�Comp(λ, μ, ν)=λ+μ+ν+ 8

π

(√
λμ+√

λν+√
μν
)

.

More generally, superimposing J Voronoi tessellations
built upon independent homogeneous Poisson clouds
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having the intensities λ1, λ2, . . . , λJ yields a stationary
random tessellation whose cell intensity is given by

�Comp(λ1, λ2, . . . , λJ) =
J∑

j=1

λ j + 8

π

∑

1≤ j<k≤J

√
λ jλk.

Let us finally give a brief description of some of
the main results contained in [17]. {Xi} denoting a
homogeneous Poisson cloud of unit intensity λ = 1 on
the plane, recall that the Palm cell C = C ({Xi}) attached
to {Xi} may be defined as the convex polygon consisting
of all points X lying closer to the origin O than to any
point Xi in the cloud (see Fig. 17). In other words, C is
the Voronoi cell about O appearing when adding this
point to the cloud. Letting N0(C) denote the number of
vertices (or, equivalently, the number of sides) appear-
ing in the random convex polygon C, it turns out that a
proper use of Slyvniak’s formula (Proposition 4.1.1 in
[18]) enables one to compute P {N0(C) = k} explicitly
for arbitrary k ≥ 3, and one has:

P {N0(C) = k}

= (2π)k

k!
∫

�k

dσk(δ1, . . . , δk)

∫

R
k+
dp1 . . . dpk

k∏

i=1

pie−H(δi,pi,pi+1) · 1B(pi−1, pi, pi+1, δi−1, δi),

(15)

where dσk(δ1, . . . , δk) stands for the uniform probability
measure on the (k − 1)-dimensional simplex

�k =
{

(δ1, . . . , δk) ∈ [0; 2π ]k :
k∑

i=1

δi = 2π

}

,

x

x
x

x

x
x

x

x

x

x

O

Fig. 17 Palm cell about the origin for a given cloud.

whereas H is the function given by

H(δ, p, q)= 1

2 sin(δ)2

{
δ

2
(p2+q2−2pq cos δ)

+ pq sin δ− p2

4
sin 2δ− q2

4
sin 2δ

}

and 1B stands for the indicator function of

B =
{
(p, q, r, α, β) ∈ (R+)3 × (0; π)2 : p sin β

+r sin α ≥ q sin(α + β)
}
.

In the multiple integral appearing in Eq. 15, δ1, . . . ,

δk are angular variables, whereas p1, . . . , pk stand for
distances to the origin, and these variables are labelled
cyclically, so that p0 = pk, pk+1 = p1 and δ0 = δk.

Following [17], we further denote by (Pi, �i) the
polar coordinates of the vertices of the random cell C,
for i = 1, 2, . . . , N0(C). Fixing again a natural number
k ≥ 3, it turns out that, conditionally to {N0(C) = k},
the joint distribution of the vector (P1, . . . , Pk, �2 −
�1, . . . , �k − �k−1, 2π + �1 − �k) may be explicitly
described as the measure νk on R

k+ × [0; 2π ]k given
through

dνk(p1, . . . , pk, δ1, . . . , δk)

= ϕk(p1, . . . , pk, δ1, . . . , δk)

· dp1 . . . dpkdσk(δ1, . . . , δk),

where dσk(δ1, . . . , δk) again stands for the uniform pro-
bability measure on the (k − 1)-dimensional simplex
�k, whereas

ϕk(p1, . . . , pk, δ1, . . . , δk)

= (2π)k

k! · P {N0(C) = k}
k∏

i=1

pie−H(δi,pi,pi+1)

· 1B(pi−1, pi, pi+1, δi−1, δi)

In other words, conditionally to the event {N0(C) = k},
the probability for (P1, . . . , Pk, �2−�1, . . . , �k−�k−1,

2π + �1 − �k) to realize any event E ⊂ R
k+ × [0; 2π ]k

is given as the quotient of the integral

∫ ∫

E

dp1 . . . dpkdσk(δ1, . . . , δk)

k∏

i=1

pie−H(δi,pi,pi+1)

· 1B(pi−1, pi, pi+1, δi−1, δi)

through a similar integral computed over the whole of
R

k+ × [0; 2π ]k.
This provides us with an explicit description of the

behavior of the random cell C. From there on, mean
values such as E [|C|] or E

[|C| · log |C|] may readily be
computed.
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