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Abstract
Aiming at the sensitivity problems of uncertain factors such as parameter variation, external disturbance and friction for the 
permanent magnet synchronous motor control system of electric vehicle, a fractional order complementary non-singular terminal 
sliding mode control method based on neural network is proposed. The mathematical model of permanent magnet synchronous 
motor with uncertain factors was established. The sliding mode controller was designed by combining the generalized sliding 
mode surface and the complementary sliding mode surface, which shortened the arrival time from the state trajectory to sliding 
mode surface. The fractional calculus operator with filtering characteristics was used to improve the position tracking accuracy 
and reduce the chattering. As for the variety of uncertain disturbances, the neural network was used to estimate the system total 
uncertainty and compensate online to further improve the dynamic response ability and anti-interference ability. Finally, the 
simulation results verify the effectiveness and feasibility of the proposed method, which can provide theoretical and technical 
support for improving the control accuracy of permanent magnet synchronous motor and the development of electric vehicles.

Keywords Permanent magnet synchronous motor · Fractional order complementary · Neural network · Electric vehicle 
drive system · Non-singular terminal sliding mode

1 Introduction

Permanent magnet synchronous motor (PMSM) is widely 
used in the field of electric vehicle drive system because of 
its simple structure, high power density, high reliability and 
small space occupation. However, PMSM is a nonlinear, 
multivariable and strongly coupled system, which makes 
it difficult to improve its dynamic and static performance 
due to the external disturbances, parameter disturbances 
and other effects (Cai et al., 2017). In recent years, some 
relevant scholars have proposed a variety of control strate-
gies to suppress the uncertain interference of the system and 
improve the related performance of the control system; such 
as sliding mode control (Li et al., 2023), active disturbance 

rejection control (Cao et al., 2023; Xu et al., 2023; Xu et al., 
2023), neural network control (Li et al., 2022; Lu et al., 
2015; Yu et al., 2015), model predictive (Bai et al., 2022; 
Zhang et al., 2021), etc.

Sliding mode control (SMC) is widely used because of 
its strong robustness and insensitivity to external reactions 
(Wang, 2020). However, there are problems of control dis-
continuity and chattering, so in most cases, other control 
methods need to be combined to achieve better control effect. 
In Li et al., (2021), a back-stepping non-singular terminal 
sliding mode control method with finite time disturbance 
observer is proposed, where the load torque disturbance is 
assumed to change slowly and the load is bounded. In Du 
et al., (2022), the super-twisting sliding mode algorithm is 
introduced into the active disturbance rejection control by 
combining active disturbance rejection control and sliding 
mode control, and the nonlinear state error feedback control 
rate and tracking differentiator are optimized to improve the 
fast performance of the system. Li et al., (2021) designed a 
fractional order sliding mode surface for permanent magnet 
synchronous motor speed control system, through the frac-
tional order calculus operator unique memory characteristics 
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and genetic characteristics to suppress the chattering prob-
lem, but the dynamic response ability of the system is 
poor. Jin, (2021) introduced fuzzy control on the basis of 
fractional sliding mode, and used fuzzy algorithm to real-
ize online adaptive adjustment of sliding mode switching 
term and fractional order, but the article did not consider 
the suppression and compensation of external disturbances. 
Jin and Zhao, (2019) added a complementary sliding mode 
surface based on the generalized sliding mode surface, and 
introduced Elman neural network to estimate the uncertainty 
interference, which can improve the position tracking accu-
racy of the system. In Jin and Zhao, (2020), the complemen-
tary sliding mode control and iterative learning in intelligent 
control are combined. This method can effectively suppress 
the influence of uncertainty on the system, thus accelerating 
the convergence speed of the controller and improving the 
convergence accuracy.

To further improve the anti-interference ability of the 
system, a control method combining neural network and 
fractional order complementary non-singular terminal slid-
ing mode controller is designed in this paper. First, a non-
singular terminal sliding mode is introduced to design the 
controller by combining the generalized sliding mode surface 
and complementary sliding mode surface, which can con-
verge in finite time to solve the system singularity problem. 
It can shorten the time for the state trajectory to reach the 
sliding mode surface and also reduce the system chattering. 
On this basis, the fractional order calculus operator with fil-
tering characteristics was adopted to improve the position 
tracking accuracy and reduce the steady-state error. Besides, 
the neural network is used to approximate the disturbance 
and un-modeled parts of the system to further improve the 
dynamic response ability and anti-interference ability of the 
system. The experimental results show that the proposed 
control method has the advantages of fast response speed, 
high tracking accuracy and small steady-state error, and it 
can effectively suppresses external uncertain interference.

This paper is organized as follows. The mathematical 
model of PMSM is reviewed in Sect. 2. The whole system 
control strategies are presented in Sect. 3, and fractional 
order complementary sliding mode and RBF neural network 
are designed in detail in this section. The simulation experi-
ments are carried out and the results are analyzed with the 
conditions of speed step, load step and parameter change in 
Sect. 4. Finally, some conclusions are given in Sect. 5

2  Mathematical Model of PMSM

According to the principle of field oriented control, 
the dynamic model of PMSM in synchronous rotating 
coordinate system is established as follows:

where ud and uq are stator voltages; id and iq are stator 
current; Ld and Lq are stator inductance; R is stator 
resistance; � is mechanical angular velocity; and �f  is 
permanent magnet flux linkage.

As for surface-mounted PMSM, Ld = Lq. Therefore, 
the electromagnetic torque in the synchronous rotating 
coordinate system is

where Pn is the number of pole-pairs.
The motor motion equation can be described as

where TL is load torque; Te is electromagnetic torque; B is the 
damping coefficient and J is the moment of inertia.

Substitute (2) into (3), it can be obtained as:

Considering the variation of motor parameters and 
un-modeled uncertainty in the different working condition 
and external environment, Eq. (4) can be expressed as

where Δa,Δb,Δc are uncertain disturbances of motor 
parameters.

The speed tracking error is defined as e = �∗ − � , �∗ 
as the reference speed. Its derivation can be obtained by

where F is the total uncertainty disturbances.

3  Design of Fractional Order 
Complementary Sliding Mode Controller

3.1  Fractional Calculus Theory

Fractional calculus is a generalized on the basis of integer 
order calculus. It can describe the dynamic characteristics 
of motor model more accurately. Fractional calculus 
operator is usually expressed by hD�

t
 , which is defined as

(1)

{
ud = Rid − �Lqiq + Ld

d

dt
id
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dt
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(5)�̇� = (a + Δa)𝜔 + (b + Δb)iq + (c + Δc),

(6)
{

ė = ae − biq − a𝜔∗ − F

F = Δa𝜔 + Δbiq + Δc + c
,
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where t and h are the upper and lower bounds of the integral 
operator; � is the order of the differential operator; R(�) 
is the real part of � , and the upper and lower bounds are 
not considered in the following, so the fractional order is 
represented by D�.

There are many definitions of fractional calculus, such as 
Grunwald–Letnikov, Riemann–Liouville, and Caputo. The 
third one (Caputo) is adopted in this paper (Podlubny, 1999)

where Γ(x) is the gamma function. 0 ≤ m − 1 < 𝛼 < m.
Lemma 1: Let x(t) ∈ Rn be a vector of a differentiable 

function. When t ≥ t0 , the following relation is established 
(Duarte-Mermoud et al., 2015):

Since the value of fractional calculus cannot obtain an 
accurate numerical solution, an improved Oustaloup filter is 
used to approximate. And the filter formula with the filtering 
frequency band of (�b,�h) is

The zero pole and gain of filter are

where l and d are weight parameters.
Through the filter, it can output more accurate approxima-

tion of fractional calculus.

3.2  Design of Fractional Order Complementary 
Sliding Mode Controller

Complementary sliding mode control (CSMC) adds a 
complementary sliding mode surface to the traditional SMC. 
The added complementary sliding mode surface can make the 
system have higher tracking accuracy and response speed, and 
also improve the system robustness. Fractional order sliding 

(7)hD
𝛼
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⎧
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,

mode control (FOSMC) introduces fractional order calculus 
on the basis of SMC. Fractional order differential operator has 
the advantages of slow energy transfer, memory and heredity, 
and it can describe the dynamic characteristics of motor model 
more accurately. Fractional order complementary sliding mode 
control (FOCSMC) combines CSMC and FOSMC to decrease 
the chattering and increase the degree of operation freedom; it 
further improves the speed tracking ability of PMSM control 
system.

The sliding mode surface is composed of generalized 
sliding mode surface Sg and complementary sliding mode 
surface Sc , and the sliding mode control law is composed of 
equivalent control law ieq and switching control law iv.

The generalized non-singular terminal sliding surface is 
designed as

The complementary non-singular terminal sliding surface 
is designed as

where � is a positive number. 0 < 𝛼 < 1 , 0 < 𝛽 < 1 , c1 > 0.
Derivation of Eqs. (12) and (13) is driven as

Combining the formulas (12) and (13), the sum of the 
sliding surfaces is obtained

And there are the following relationships:

Let the Lyapunov function as V1 = (S2
g
+ S2

c
)∕2 , combining 

lemma 1, the �th derivative of V1 is obtained (Liu, 2021)
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The fractional order complementary sliding mode control 
law is composed of equivalent control law and switching 
control law. It can be expressed as i∗

q
= ieq + iv.

To ensure stability, the equivalent control law can be 
designed as

The switching control law is selected as

where sat(⋅) is the saturation function, 𝜃 > 0 is the boundary 
layer thickness, and 𝜌 > 0 is the control gain

Substituting the above equation into Eq. (17)

It can be seen from formula (21) that the controller 
satisfies the Lyapunov stability theorem. Therefore, the 
control law is designed as

3.3  Design of Fractional Order Complementary 
Sliding Mode Controller Based on RBF Neural 
Network

There are uncertain factors such as parameter changes and 
external disturbances during the system operation, which 
have adverse effects on the control performance. As for the 
uncertain disturbances in Eq. (22), RBF neural network is 
used to approximate the disturbance and un-modeled parts 
online and compensate them to further improve the system 
control performance (Liu, 2014a, 2014b). The structure of 
RBF neural network is shown in Fig. 1.
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(22)
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Sc
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The speed error and speed error change rate are used as 
the input of RBF neural network. Based on the above 
structure, x =

[
x1 x2

]T
=
[
e

⋅

e

]T
.The hidden layer function 

of RBF neural network is selected as

where cj is the center vector of the jth node function; bj is the 
base width parameter of the jth hidden layer node function.

The output of RBF neural network is the sum of the 
weighted product of each hidden layer neuron output value 
and corresponding connection weight, which is represented 
as

The formula above is rewritten in vector form as

where W=[�1 ⋅ ⋅ ⋅ �j]
T is the RBF neural network connection 

weight vector; �=[h1 ⋅ ⋅ ⋅ hj]
T is the RBF neural network hid-

den layer output vector.
RBF neural network can approximate any nonlinear 

function. Selecting appropriate cj,bj and �j can improve 
the accuracy of approximation. The selection of cj is deter-
mined according to the input value range of the network. The 
parameter bj determines the mapping ability of the network 
input, which is generally designed as a moderate value. And 
the parameter �j is designed by Lyapunov stability analysis.

Define w̃ = w − ŵ as the error between the ideal optimal 
value and the estimated value of the weight, and select the 
Lyapunov function

(23)hj(x) = exp
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���
2

2b2
j

⎞⎟⎟⎟⎠
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2
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S2
g
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)
+

1

2
𝛾D2𝛼−1W̃TW̃,

Fig. 1  Neural network structure model
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where � is the adaptive coefficient of neural network weight.
By taking the �th derivative of Eq. (26) and combining 

with Lemma 1, Eq. (16), Eq. (22) and Eq. (25), it can be 
obtained

The weight adaptive law of RBF neural network is 
designed as

Combining Eq. (27) and Eq. (28), it can be obtained

Equation (29) satisfies the Lyapunov stability theory, 
which indicates the closed-loop system is asymptotically 
stable. Starting from any initial state, the system can reach 
the boundary layer in a finite time, and slide along the 
intersection of two sliding surfaces to the field of zero.

The PMSM fractional order complementary non-singu-
lar terminal sliding mode control block diagram based on 
RBF neural network is shown in Fig. 2.
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4  Simulation Experiment and Analysis

The control system is built in MATLAB/Simulink to verify 
the effectiveness of the control strategy. Four different 
control methods are simulated and compared in MATLAB/
Simulink environment. Scheme 1 is based on fractional 
order complementary sliding mode control (FOCSMC); 
scheme 2 is based on neural network fractional order sliding 
mode control (RBF-FOSMC); scheme 3 is based on neural 
network complementary sliding mode control (RBF-CSMC); 
the fourth scheme is fractional order complementary sliding 
mode control based on neural network (RBF-FOCSMC). To 
ensure the fairness, the Kp and Ki parameters of the current 
loop are the same during experiment. The motor parameters 
are shown in Table 1.

4.1  System Analysis of the Speed Change Response

To study the influence of the motor speed step response, the 
simulation time is set to 1s and the initial speed step of the 
motor is set from 0 to 1000 r/min, and then, it is suddenly 
increased to 1500 r/min at 0.4s, and reduced to 1000 r/min at 
0.8s. The speed comparison curves under the four schemes 
are shown in Figs. 3 and 4.

To explain the dynamic response performance of the sys-
tem more precisely, the system state time and overshoot of 
the four schemes are listed in Tables 2, 3, and 4, respectively. 
As for the system steady-state performance, selecting parts 
of steady-state speed error curves to zoom in, it is shown 
in Fig. 5.

From Fig. 4 and Table 2, it can be seen that at the time 
of the motor start-up, the response time of FOCSMC, 
RBF-FOSMC, and RBF-CSMC is 0.0160 s, 0.0324 s, and 
0.0182 s, respectively, and the speed overshoot is 0.5r/
min, 50r/min, and 12r/min, respectively. The response time 
of RBF-FOCSMC at start-up is 0.0155 s, and there is no 
speed overshoot. From Fig. 4 and Table 3, it can be seen 
that when the motor speed increases suddenly from 1000r/
min to 1500r/min at 0.4 s, the setting time of FOCSMC, 
RBF-FOSMC, and RBF-CSMC is 0.0134 s, 0.0240 s, and 

Fig. 2  Block diagram of RBF-FOCSMC

Table 1  Motor related parameters

Parameter Value

Rated power 1.5 [kw]
Pole-pairs 4
Stator inductance 8.5 [mH]
Rotor flux 0.175 [wb]
Stator resistance 2.875 [ Ω]
Moment of inertia 0.003 [ kg ⋅ m2]
Friction coefficient 0.008 [N∙m]
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0.0320 s respectively, and the speed overshoot is 2r/min, 
20.1r/min, and 32.8r/min respectively, while the setting time 
of RBF-FOCSMC is 0.0119 s, and there is also no speed 
overshoot. From Fig. 4 and Table 4, it can be seen that when 
the motor speed drops suddenly at 0.8 s, the setting time 
of FOCSMC, RBF-FOSMC, and RBF-CSMC is 0.0070 s, 
0.0250 s, and 0.0130 s, respectively, and the speed overshoot 
is 3.6r/min, 107r/min, and 2r/min, respectively. The setting 
time of RBF-FOCSMC is 0.0055 s at start-up, and there is 
also no speed overshoot. By comparison, RBF-FOCSMC 
has the fastest response time when the speed increases or 
decreases, besides, it is stable without overshoot.

Figure 5 is shown that when the motor entered steady 
state, the system speed tracking error range of the FOCSMC 
method is 0.05–0.25r/min, which is about 0.02% of the given 
speed, and the error range of the RBF-FOCSMC method is 
0.08–0.57r/min, which is about 0.065% of the given speed. 
The system speed tracking error range of RBF-CSMC 
method is 0.05–0.3r/min, which is about 0.035% of the 
given speed. The error range of RBF-FOCSMC method is 
0.02r/min ~ 0.21r/min, which is about 0.019% of the given 
speed, it is significantly reduced compared with the former 
three methods. By comparing the speed tracking error curve, 
it can be seen that the RBF-FOCSMC method has smaller 
speed tracking error and smoother control effect.

4.2  System Analysis of the Load Change Response

To further verify the anti-load disturbance ability of the pro-
posed method, experiments are carried out for three speed 
situation: 500r/min, 1000r/min, and 1500r/min. The whole 
simulation time is 1 s, and the load with 5 N ⋅ m and 10 
N ⋅ m is suddenly added at 0.5s for above three situation. The 

Fig. 3  Speed comparison curves of four schemes. a Speed step local 
amplification at start-up time. b Speed step local amplification at 
0.4 s. c Speed sudden reduction local amplification at 0.8 s

Fig. 4  Speed mutation local amplification curves of four schemes

Table 2  Performance analysis of four schemes when speed mutation 
occurs (0–1000r/min)

Scheme category Setting time [s] Overshoot [r/min]

FOCSMC 0.0160 0.5
RBF-FOSMC 0.0324 50
RBF-CSMC 0.0182 12
RBF-FOCSMC 0.0155 0
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speed response curves under different conditions are shown 
in Figs. 6 and 7 (Tables 5, 6, 7, 8).

Taking the speed of 1000r/min with 10 N ⋅ m load torque 
disturbance at 0.5 s as an example, from Fig. 7b and Table 9, 
it can be seen that when the motor is suddenly added load 
disturbance, the speed of FOCSMC, RBF-FOSMC, and 
RBF-CSMC decreases by 13.9r/min, 7.8r/min, and 7.2r/min, 
respectively, and the time to restore stability are 0.0075s, 
0.009s, and 0.011s, respectively. The proposed RBF-FOC-
SMC speed decreases by 3.8r/min, and the time to restore 
stability after loading is 0.0045s. The detailed experimen-
tal results at other speed and load conditions are shown in 
Tables 5, 6, 7, 8, 9, 10. According to the comparison, in 
terms of anti-load disturbance ability, the FOCSMC cannot 

Table 3  Performance analysis of four schemes when speed mutation 
occurs (1000–1500r/min)

Scheme category Setting time [s] Overshoot [r/min]

FOCSMC 0.0134 2
RBF-FOSMC 0.0240 20.1
RBF-CSMC 0.0320 32.8
RBF-FOCSMC 0.0119 0

Table 4  Performance analysis of four schemes when speed mutation 
occurs (1500–1000r/min)

Scheme category Setting time [s] Overshoot [r/min]

FOCSMC 0.0070 3.6
RBF-FOSMC 0.0250 107
RBF-CSMC 0.0130 2
RBF-FOCSMC 0.0055 0

Fig. 5  Steady-state speed error curves of four schemes

Fig. 6  Comparison curves of four control methods under load torque 
disturbance of 5 N ⋅ m at 0.5 s. a The speed is 500r/min. b The speed 
is 1000r/min. c The speed is 1500r/min
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Fig. 7  Comparison curves of four control methods under load torque 
disturbance of 10 N ⋅ m at 0.5  s. a The speed is 500r/min. b The 
speed is 1000r/min. c The speed is 1500r/min

Table 5  Analysis of four control methods 5 N ⋅ m load torque distur-
bance at 0.5 s (500r/min)

Scheme category Speed change [r/min] Setting time[s]

FOCSMC −2.5 0.004
RBF-FOSMC −2.8 0.010
RBF-CSMC −1.9 0.012
RBF-FOCSMC −1.2 0.003

Table 6  Analysis of four control methods under 5 N ⋅ m load torque 
disturbance at 0.5 s (1000r/min)

Scheme category Speed change [r/min] Setting time [s]

FOCSMC −3.9 0.005
RBF-FOSMC −3.8 0.007
RBF-CSMC −2.8 0.030
RBF-FOCSMC −1.4 0.004

Table 7  Analysis of four control methods under 5 N ⋅ m load torque 
disturbance at 0.5 s (1500r/min)

Scheme category Speed change [r/min] Setting time [s]

FOCSMC −5.1 0.008
RBF-FOSMC −4.8 0.015
RBF-CSMC −4.5 0.013
RBF-FOCSMC −2 0.004

Table 8  Analysis of four control methods under 10 N ⋅ m load torque 
disturbance at 0.5 s (500r/min)

Scheme category Speed change [r/min] Setting time [s]

FOCSMC −10 0.007
RBF-FOSMC −5.2 0.008
RBF-CSMC −5.8 0.010
RBF-FOCSMC −2.8 0.0038

Table 9  Analysis of four control methods under 10 N ⋅ m load torque 
disturbance at 0.5 s (1000r/min)

Scheme category Speed change [r/min] Setting time [s]

FOCSMC −13.9 0.0075
RBF-FOSMC −7.8 0.0090
RBF-CSMC −7.2 0.011
RBF-FOCSMC −3.8 0.0045



221Fractional Order Complementary Non‑singular Terminal Sliding Mode Control of PMSM Based on…

effectively attenuate mismatch disturbance. While the RBF-
FOCSMC realizes strong anti-disturbance ability by com-
pensation, it proves that the proposed composite control 
method has smaller speed fluctuation and faster response.

To verify the tracking performance, the motor is started 
with a load of 3 N ⋅ m , and the load is suddenly increased 
to 10 N ⋅ m at 0.5s and then reduced to 6 N ⋅ m at 0.8s. The 
motor torque response curve is shown in Fig. 8. It can be 
seen that when the system is affected by the external dis-
turbance, the proposed RBF neural network method can 
quickly and stably track the system load, and the disturbance 
estimator is fed back to the speed controller to enhance the 
anti-interference ability. The three-phase current curves are 
shown in Fig. 9, which is consistent and proportional to the 
motor torque.

4.3  System Analysis of the Parameter Change 
Response

To verify the robustness of proposed method with parameter 
changes, the values of rotor flux and inductance are changed 
in the experiment, and then, the performances are compared 
and analyzed. Specifically, the inductance and flux are 
increased or decreased by 30%, respectively, and the speed 
is setting to + 1000r/min for experiment comparison. The 

Table 10  Analysis of four control methods under 10 N ⋅ m load 
torque disturbance at 0.5 s (1500r/min)

Scheme category Speed change [r/min] Setting time [s]

FOCSMC −19.7 0.008
RBF-FOSMC −9.2 0.014
RBF-CSMC −8.9 0.015
RBF-FOCSMC −4.7 0.0050

Fig. 8  Motor torque curve

Fig. 9  Three-phase current curve of motor

Fig. 10  Comparative curves of FOCSMC method when the param-
eters are changed by 30%: a 30% inductance change and b 30% flux 
change
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results under the four schemes are shown in Figs. 10, 11, 12, 
13, and the data analysis are shown in Tables 11, 12, 13, 14.

From Fig. 10 and Table 11, it can be seen that when the 
motor is rotating with inductance increases or decreases, the 
speed of FOCSMC method changes by 0.7r/min and 1.1r/
min compared with the normal condition, and the response 
time changes by 0.0005s; when the flux linkage increases 
and decreases, the speed changes by 0.9r/min and 0.6r/min 
compared with the normal conditions, and the response time 
changes by 0.0007s and 0.011s.

From Fig. 11 and Table 12, it can be seen that when the 
motor is rotating with inductance increases or decreases, the 
speed of the RBF-FOCSMC method changes by 15r/min 
and 15.5r/min compared with the normal condition, and the 
response time changes by 0.0026s and 0.0074s, respectively. 
When the flux linkage increases and decreases, the speed 

changes by 18.5r/min and 15r/min compared with normal 
condition, and the response time changes by 0.0056s and 
0.0064s.

From Fig. 12 and Table 13, it can be seen that when the 
motor is rotating with inductance increases or decreases, 
the speed of the RBF-CSMC method changes by 0.4r/min 
and 0.8r/min compared with the normal condition, and the 
response time changes by 0.0018s and 0.0028s, respectively. 
When the flux linkage increases and decreases, the speed 
changes by 18.1r/min and 7.1r/min compared with the 
normal conditions, and the response time changes by 
0.0042s and 0.0043s.

From Fig. 13 and Table 14, it can be seen that when the 
motor is rotating with inductance increases or decreases, the 
speed of the RBF-FOCSMC method changes by 0.1r/min 

Fig. 11  Comparative curves of RBF-FOSMC method when the 
parameters are changed by 30%: a 30% inductance change and b 30% 
flux change

Fig. 12  Comparative curves of RBF-CSMC method when the param-
eters are changed by 30%: a 30% inductance change and c 30% flux 
change
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and 0.2r/min compared with the normal condition, and the 
response time changes by 0.0006s and 0.0003s, respectively. 
When the flux linkage increases and decreases, the speed 
changes by 0.1r/min and 0.1r/min compared with the normal 

conditions, and the response time changes by 0.0003s and 
0.0001s.

From the results of four comparative experiments, it can be 
seen that RBF-FOCSMC has little impact on speed tracking 
and response time compared with normal condition. There-
fore, the designed RBF-FOCSMC has good anti-parameter 
disturbance ability.

5  Conclusion

In this paper, a control strategy combining RBF neural 
network and complementary fractional non-singular 
terminal sliding mode control is designed. The fractional 
order complementary non-singular terminal sliding 
mode is used to improve the static and dynamic tracking 
performance of the motor. While improving the tracking 
accuracy, the steady-state error is reduced, and finally, 
the effect of suppressing chattering is achieved. The RBF 
neural network is used to approximate the disturbance and 

Fig. 13  Comparative curves of RBF-FOCSMC method when the 
parameters are changed by 30%: a 30% inductance change and b 30% 
flux change

Table 11  Performance analysis of FOCSMC control method under 
parameter change

Parameter change Speed change [r/
min]

Recovery time [s]

Inductance increase −0.2 0.0005
Inductance decrease −0.6 0.0005
Flux induction −0.4 0.0007
Flux decrease −0.1 0.011

Table 12  Performance analysis of RBF-FOSMC control method 
under parameter change

Parameter change Speed change [r/
min]

Recovery time [s]

Inductance increase  + 65 0.0026
Inductance decrease  + 34.5 0.0074
Flux induction  + 68.5 0.0056
Flux decrease  + 35 0.0064

Table 13  Performance analysis of RBF-CSMC control method under 
parameter change

Parameter change Speed change [r/
min]

Recovery time [s]

Inductance increase  + 12.4 0.0018
Inductance decrease  + 12.8 0.0028
Flux induction  + 30.1 0.0042
Flux decrease  + 4.9 0.0043

Table 14  Performance analysis of RBF-FOCSMC control method 
under parameter change

Parameter change Speed change [r/
min]

Recovery time [s]

Inductance increase −0.1 0.0006
Inductance decrease −0.2 0.0003
Flux induction −0.1 0.0003
Flux decrease −0.1 0.0001
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un-modeled parts of the system, which perform feedback 
compensation to further improve the dynamic response 
ability and anti-interference ability of the system. The 
experimental results prove the feasibility of the proposed 
algorithm, which shows obvious control effect; it has 
higher tracking accuracy and faster response than the 
ordinary sliding mode control method. Therefore, the 
proposed method can provide an ideal method for motor 
control system, and also give a theoretical support 
for improving the PMSM control accuracy of electric 
vehicles. While due to the limitations of the current 
experimental conditions and environment, only the 
simulation experiment is verified in this paper, the physical 
experiment will be studied and focused on the future work.
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