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ABSTRACT-The energy management strategy (EMS) can efficiently split the power among different sources for a fuel cell
electric vehicle (FCEV). This paper puts forward how to cooperate with a proton exchange membrane fuel cell as the primary
energy source, and a ultracapacitor as the auxiliary energy storage. Firstly, the test bench of fuel cell is built and the
characteristic of fuel cell is tested. A model of vehicle is built in AMESim software based on the real parameters of vehicle
especially the characteristic of fuel cell. Secondly, the traditional power following strategy is introduced and an optimal
energy management strategy is proposed. The demand power is decomposed by quadratic utility function (QUF) and
Karush-Kuhn-Tucker (KKT) condition. In order to balance the vehicle economy and durability of fuel cell, the
multi-objective artificial bee colony algorithm (MOABC) and pareto solution set are used to solve the optimal balance
coefficient in the algorithm. The simulation results show that compared with the traditional strategy under one WLTP driving
cycle, the novel strategy can reduce the fuel cell degradation by 25.08 %, and the equivalent hydrogen consumption can be

also reduced.
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1. INTRODUCTION

In order to reduce the emissions of vehicles, the electric
vehicles (EVs) are proposed. However, limited driving
range and slow charging problems cannot be fundamentally
solved so far (Yu and Ahn, 2019; Hu ef al., 2021; Gharibeh
et al., 2020). The plug-in hybrid electric vehicles (PHEVs)
which are powered by internal combustion engines (ICE)
can effectively solve the problems. However, ICE still have
a considerable amount of pollutant emissions (Mebarki et
al.,2015; Bin et al., 2020). Fuel cell electric vehicle (FCEV)
is developed as an effective solution (Zhou et al., 2020;
Hwang et al., 2015; Karaoglan et al., 2019). A good
durability can be ensured for the FCEV when slow load
dynamics are applied in practice (Erdinc and Uzunoglu,
2010). An energetic buffer such as battery and ultracapacitor
should be used with the proton exchange membrane fuel
cell (PEMFC) to satisfy the fast dynamic load (Rajabzadeh
et al., 2016). Therefore, the energy management strategy of
multi power sources has become the core problem affecting
the economy and durability of the vehicle. Compared with
batteries, ultracapacitors have lower mass, lower cost,
longer life and faster output dynamic response, which is
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considered to be the best combination with fuel cells.
Previous studies have shown that energy management
strategies (EMSs) are mainly divided into three classes:
rule-based strategies, optimization-based strategies and
intelligent-based strategies (Sulaiman ef al., 2018). The
rule-based (RB) strategy includes deterministic rules and
fuzzy rules. Wang et al. (2019) proposed a rule-based
strategy, in which the case conditions of different operation
modes were discussed. The hydrogen consumptions of
10 %, 30 %, and 50 % SOC thresholds were 1.15 kg, 1.27
kg and 1.38 kg. Regarding fuzzy rules, Li et al. (2020) used
fuzzy control method to optimize the output power of the
fuel cell. The rules are made in advance to control the
output power of each power sources. The algorithm is
simple and easy to be applied, but the rule formulation is
mostly based on the experience of experts, so it is
impossible to achieve optimal goal and cannot meet the
needs of changeable road conditions and dynamic changes.
The optimization-based methods are mainly divided into
global optimization and real-time optimization. Dynamic
programming (DP), linear programming (LP), particle
swarm optimization (PSO), genetic algorithm (GA),
extremum seeking (ES), and so on are usually used for
global optimization. Pontryagin’s minimum principle
(PMP), equivalent consumption minimization strategy
(ECMS), model predictive control (MPC), convex
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programming (CP) and so on are usually used for real-time
optimization (Sorlei ef al., 2021). Dynamic programming is
a typical example of global optimization. Zhou et al. (2018)
proposed a unified dynamic programming model, which
improved the calculation accuracy and efficiency of FCEV.
MPC transforms the optimal fuel economic performance
control of the whole road section into the local fuel
economic performance optimal control in the predicted area,
and it has the advantages of convenient modeling, high
robustness and good dynamic control performance (Chen et
al., 2013).

In recent years, artificial intelligence has developed
rapidly (Xie et al., 2020; Mbuwir et al., 2021). Lian et al.
(2020) investigated a rule-interposing deep reinforcement
learning (RIDRL) based energy management strategy
(EMS) of hybrid electric vehicle (HEV). By allocating
weights between the fuel consumption and the battery
charge sustaining properly, fuel consumption was sig-
nificantly reduced by up to 4 %. The simplified action
space improves the convergence efficiency by 70.6 %. Qi et
al. (2019) designed a deep reinforcement learning based
real-time energy management system. The proposed model
combined a Q-learning and a deep neural network to form a
deep Q-network structure which was capable of learning
and providing the optimal control decisions in continuous
environment and actions states.

Fuel economy is an important optimization goal of EMS.
Based on the Charge-Depleting/Charge-Sustaining (CDCS)
strategy, Chen et al. (2015) used the particle swarm
optimization (PSO) to optimize the output power of
extender. The lowest energy consumption was realized in
the Charge Sustaining (CS) mode. Fernandez et al. (2018)
used GA to optimize the output current and turn-on time of
fuel cell. The hydrogen consumption was minimized and
the SOC of battery was maintained at a low level. Based on
PMP, Ouddah et al. (2018) combined the system’s S
function with the formula of the control objective, the
optimal value of the control variable was determined at
each time. So as to minimize the power consumption of the
hybrid electric bus, Zheng et al. (2012) found the fuel-
saving potential of ECMS was around 4 % relative to RB,
but it may lead to frequent fluctuations in fuel cell output
power, which accelerated the degradation of fuel cell.
Based on the maximum power point tracking algorithm,
Bizon and Thounthong (2018) took the fuel economy as the
optimization goal, the results showed that the global
optimization has great advantages in improving the
economy.

Fuel cells have a short lifespan, and the degradation of
fuel cell is affected by many factors, such as load changing
cycles, start-stop cycles, idling and high-power load
conditions, etc. These factors will reduce the cycle life of
fuel cell (Borup ef al., 2020). Start-stop cycles are the main
factor affecting the degradation of fuel cell. Zhang et al.
(2018) pointed out that start-stop cycles account for about

Yan Sun et al.

33 % of the whole degradation of fuel cell. Zhang et al.
(2019) proposed a strategy based on three fuel cell stack
systems to reduce the start-stop cycling of fuel cells. The
results showed that this method could decrease the
start-stop cycles of fuel cell under various combined cycle
conditions, and the average start-stop cycling is 15.2 times
per hour, which is considered acceptable. Sun et al. (2020)
decreased degradation losses of fuel cell based on min-max
game theory, in which the start-stop cycling is about 4.2
times per hour. It can be seen that, the lower the start-stop
frequency is, the better the durability is. But too much
consideration of durability will lead to the decrease of
economy (Liu et al., 2020).

Although the current EMS can reduce energy consump-
tion, extend the driving range, and increase the lifespan of
power sources, the input and output characteristics of power
sources are seldom considered. When the demand current
rises suddenly, the response of the fuel cell is slow. If the
established EMS is followed, it will cause a large deviation
between the demand power and the actual power, which
will affect the vehicle’s power performance and economy.

In this paper, a novel adaptive EMS for FCEV is proposed
and it considers the hydrogen consumption, lifespan of fuel
cell. The information of the current and history states of the
vehicle is also considered in the strategy. The proposed
strategy is an optimal online strategy with the idea of
offline optimization. The change rate of the fuel cell current
is taken into consideration as a key constraint, which is
ignored by others. The rest of this paper is arranged as
follows: in Section 2, the model of the FCHV is presented,
the fuel cell and ultracapacitor simulation models are built.
The fuel cell test bench is also designed to make the test
conditions consistent with the driving conditions. Section 3
describes the traditional power following strategy. Section 4
describes the novel EMS, the required power is decomposed
into the target power of fuel cell and ultracapacitor by
partial differentiation of quadratic utility function and
combined with Karush-Kuhn-Tucker condition. In section 5,
the multi-objective artificial bee colony algorithm and
pareto solution set are used to solve the optimal balance
coefficient in the algorithm. In Section 6, the case study is
described and the results obtained by simulations are shown.
Finally, the conclusions and a prospective are drawn in
section 7.

2. SYSTEM MODEL

2.1. System Description

In this paper, a representative powertrain structure with a
fuel cell/ultracapacitor hybrid system is used to discuss the
EMS of a FCEV. Figure 1 presents the system structure,
the system structure includes a fuel cell stack, DC/DC,
ultracapacitor, E-machine, air compressor, intercooler,
humidifier, water pump, hydrogen circulating pump,
hydrogen container and so on. The DC/DC includes a
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Figure 1. System structure.

unidirectional boost converter and a bidirectional
buck/boost converter. The unidirectional boost converter
connects PEMFC to DC-bus. The bidirectional buck/boost
converter connects ultracapacitor to DC-bus. The
e-machine provides power to the vehicle and converts the
braking energy into electrical energy.

2.2. Ultracapacitor Model

The use of ultracapacitors in the hybrid electric vehicle is
very important. Due to the irreversible energy conversion of
fuel cell, the braking energy of vehicle is mainly recovered
by ultracapacitor. The ultracapacitor model consists of
capacitor C, equivalent series resistance R, and leakage
resistance R;. The ultracapacitor model is derived as
follows:

tem uc L

=- 1
dt C M
1,=U,, /R,

fem

I
VvV, = {Vco L: % ¢!(C R )dt:| e (CR)

tem

where Vi is the terminal voltage of ultracapacitor, V. is
the output voltage, P, is output power, /. is the output
current, /; is the leakage current, Vy is the initial voltage,
and SOC is the state charge of ultracapacitor.

2.3. PEMFC System

This paper establishes a static model of a PEMFC system,
the ambient temperature, humidity, and gas pressure of fuel
cell system are all in steady state. The relationship between
output power and efficiency of fuel cell system is showed in
Figure 2. Fuel cell is less efficient when operating in low
power mode, because the fuel cell stack assist system
consumes most of the power. Whereas the efficiency is also
reduced in high load power mode due to physical
restrictions of the fuel cell stack. To include a parasitic load
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Figure 2. Fuel cell system efficiency and hydrogen
consumption rate.

for cooling and air supply, a static power consumption is
considered. The hydrogen consumption can be calculated
by Equation (2). The working efficiency of fuel cell system
7% can be expressed in terms of fuel cell’s net output power
Py.

Pfc (t):Nfc 'Pfc—stack (t) - PBOP (t)
P.(t
_ Lo (1) "
Jlow Onfc(t)
’7fc=¢(Pfc)

(@)

H2

where Pr(?) is the net output power of fuel cell system,
Ppop(f) is the power consumed by all BOP (Balance of
Plant), N is the number of the active fuel cell stacks at a
certain instant time, Pp-qqck 1S the output power of each fuel
cell stack, Mip is the hydrogen consumption of fuel cell
system, Ji, i the low heating value of hydrogen, and 7.(7)
is the working efficiency of fuel cell system.

Figure 3. Fuel cell system test bench.
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The required data of fuel cell model in this paper comes
from the real bench test. The test bench includes analogue
load, fuel cell stack, BOP and so on. The BOP includes
cooling system, air filter, air compressor and so on. The test
bench is shown in Figure 3.

2.4. Lifespan Model

The performance degradation of fuel cell is the key factor to
be considered. In this section, a lifespan model of fuel cell
is established, which mainly includes four parts: load
changing cycles, start-stop cycles, idling and high-power
load conditions, as shown in Equation (3):

D, =D

fc change

+ Do TDjar TD gy, (3)

where Dy."is the total performance degradation of fuel cell.
Deanges Donogy Diat, Diign are performance degradation
caused by load changing cycles, start-stop cycles,
idling/low power conditions, and high-power load
conditions.

In order to improve the efficiency of the fuel cell system,
the output power of fuel cell system is limited within its
high efficiency region. Therefore, the performance
degradation caused by idling and high-power load
conditions can be ignored in the total degradation of fuel
cell mentioned above. The actual fuel cell degradation
model is as follows (Song et al., 2018):

D e = Dchange + Don-oﬁf 4)
Dy =5.93x107x Y | Fe(m) =P (=D
Phigh — B
D(m_w =1.96x10° x Z d(m_w (n) (5)
A,y (M) =1, signal ,(n—1) # signal ;. (n)
d,, (1) =0, signal . (n—1) = signal , (n)

where Dy.is the actual equivalent performance degradation
of fuel cell in this paper, Py, is the low-power threshold of
the fuel cell under idling conditions, Prig is the high-power
threshold. signalw(n), and signal(n-1) are fuel cell system
start signal of the » step and n-1 step (‘0 indicates
shutdown, ‘1’indicates normal operation).

2.5. Powertrain Model
The required power P is calculated as a function of
driving force and speed, as shown in Equation (6).

Yan Sun et al.

szm =

v & V(1) {C, cos(0) + sin(@)} +

6
~?~V(t)+0.5€d~A-p~V3(t) (©)

equ

where M, is the total mass of vehicle, V(7) is the speed of
vehicle, C, is the coefficient of rolling resistance, 0 is the
slope angle of the ramp, M.y equals 1.2:M,, to suitably
account for rotational inertia, C; is the coefficient of air
resistance, A is the windward area, and p is the air density.

3. TRADITIONAL POWER FOLLOWING
STRATEGY

The traditional power following strategy is a typical control
strategy, which has been widely studied. The traditional
power following strategy is simple and practical, and which
is widely used in practical FCEVs. In the traditional power
following control strategy, the control method for the output
power of the fuel cell is based on the power required of the
vehicle and adjusted by the equilibrium power obtained by
taking SOC value as the independent variable. The
minimum limit of SOC is set to SOC,, = 10, if the
ultracapacitor SOC is less than 10 %, the fuel cells provide
the maximum power. The maximum limit of SOC is set to
SOCax = 90, if the SOC of the ultracapacitor is higher than
90 % and the demand power is not very large, the fuel cell
does not start to work. When SOC,,;, < SOC < SOCax,
the control objective is based on satisfying dynamic
performance, the ultracapacitor provides output power to
reduce outpower of fuel cell and increase the driving
mileage. The required power algorithm for the FCEV can
be expressed as follows (Geng et al., 2019):

Pfc = Pfcmax ’ Pdem > Pmot_max
soc, .—SOC
Pfc _ }/( max R
- soc, _-socC,
Pdem (7)
- ° Pfcmax > Pdem < Pmotfmwr
mot_max
th = Pdem - Pfc

where  Ppor mee 15 the maximum motor power in the
maximum efficiency range of the motor, and y is the
adjustment coefficient.

The traditional power following strategy only considers
problem of the SOC maintenance of ultracapacitors and
energy distribution, but ignores the fuel cell life protection
and vehicle economy.
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4. NOVEL EMS DESIGN

4.1. Strategy Analysis
The EMS is developed to increase the fuel cell lifespan,

maintain the ultracapacitor SOC, and increase driving range.

The ultracapacitor has a high power density and it can be
used to absorb and release large current quickly, thus the
fluctuation of fuel cell output power can be reduced.

In this section, a quadratic utility function is used to
quantify the benefits of fuel cells and ultracapacitors in
energy distribution. Quadratic utility function forms are as
follows (Ma et al., 2016):

U=1-1, x-1, x* ®)

where U is the utility function, xis the variable, and 41, 4
are the coefficients.

4.2. Utility Function of Fuel Cell

For the fuel cell, durability and economy are the main
consideration, i.e. reducing the load changing cycles,
start-stop cycles of the fuel cell and maintaining the fuel
cell efficiency at the top efficiency point. The utility
function of the fuel cell is equivalent to the utility of the
fuel cell's lifespan and efficiency in this paper, which
contains two parts, Uz auq and Uk eco. The aim of Uy gua 1S
to minimize the minimize the power variation (dPr/df) of
the fuel cell while the aim of Ug e is to maximize the
efficiency of fuel cell, as shown in Equation (9).

Up =k

dua

U‘ fc_dua +k eco U fc_eco

2
Ut dua =170 (Pr-Pp;) 9)

— 2
Ufcieca 71_a2(Pfc _Pfc,top)

where kaq, and ke, are the weight coefficients, Py, is the
output power of the fuel cell at last one second, which is
used to obtain dPy/dt, and Pg.pis the output power of fuel
cell at the top efficiency point.

The coefficient a; is used to normalize the value of Uz, dua
to be zero when dPy/df comes to its maximum threshold, as
shown in Equation (10). Since the maximum value of
dPr/dt determines the maximum power variation that the
system could take, bench test results show that the
maximum change of fuel cell power is 5 kW/s. The
coefficient a, can be calculated using Equation (11), which
is designed to normalize the value of Uy «c, to be zero when
Py comes to its maximum value Ppax.

1

A7 [max(P, - PP (10)
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_ 1
N 2
(Pfcmax - Pfc,lop)

a,

(1)

4.3. Utility Function of Ultracapacitor

For ultracapacitor, the effect of frequent charging and
discharging on its lifespan is not needed to be considered,
because the lifespan of ultracapacitor is more than 5 years.
Only the maintenance of ultracapacitor SOC is needed to be
considered. The utility function of ultracapacitor is shown
as follows:

ch =k sus Usus
Usus = 1_a3 (Puc _Puc,ﬁt )2 (12)
p socC, -SOC

ey - Qe T2 p
- soc,,. -SOC,,,

ucmax

1
(Pucmax - Puc,ﬁt)2

a3:

(13)

where U, is the utility function of ultracapacitor, P,z and
Puemax are the optimal output power and maximum output
power of the ultracapacitor respectively, and ks is the
weight coefficient.

In addition, fuel cell and ultracapacitor need to meet the
following constraints:

kdua + keco + kxux =1

1> (kdua’keca’ksus) >0 (14)

Pf(}+B/IC :})dem

4.4. KKT Condition

Due to the simplicity of the problem in Equation (14),
Karush-Kuhn-Tucker (KKT) conditions is usually used to
solve optimization problems with equality and inequality
constraints, the optimal objective function is shown in
Equation (15). KKT condition is a necessary condition for
optimal solution of nonlinear programming. KKT condition
extends the constraint optimization problem of Lagrange
multipliers involving equality to inequality.

{maxf(Pfc) = kdua Ufbidua +keco Ufb766‘0 (15)

maxf(Puc) = ksus Usus

To transform this bi-objective optimization problem into
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a single-objective optimization problem, the weighted-sum
approach is used. The entire objective function can be
formulated as in Equation (16).

minf(Pfc’ Puc) = _kdua UfL;

dua —

keco U fe eco Ko U

Sus sus

(16)

Since the inequality constraint in Equation (14) is loose
and it can be determined that the optimal solution is not on
the boundary of the inequality constraint. The Lagrange
Multiplier is used to combine the equality constraint and the
objective function into a new function, and the final form is
shown as follows:

L(Pfupuc) = _kdua Ufc_dua - kecanc_eco -

17
ksus Usus +h (Pfc +Puc _Pdem) an

Let:

a—L:2al Kgua (Pr-Ppp +
oP, (18)
2aZ keca (Pﬁ _Pfc,top)+h =0

oL
€:2(J3 ksus(Puc_Puc,ﬁt) +th=0 (19)

oL
Cp P P =0 20
oh fe uc dem ( )

The extremum can be obtained by solving Equations (18)
~ (20) simultaneously:

. q kdua Pfc,l +a, kew Pfc,mp s ksus (Pdem 7I)uc,ﬁt)

. 21
% a kdua +a2 keco +a3 ksus ( )
Puc‘ = Pdem _Pfc (22)
The Hessian matrix of Equation (17) is:
V2L— 2(11 Waua 0 3
0 2613 Wsus ( )

Since the matrix is non-negative, it can be concluded that
Equations (21) and (22) are the optimal solution of power
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distribution.

4.5. Finite State Machine Framework

In order to ensure that the proposed EMS can be adapt to
different driving cycles and the fuel cell can work in the
high efficient region, a finite state machine framework is
built and five states are divided as follows:

State 0 : The hydrogen is exhausted (H> remain = 0) and
the ultracapacitor SOC < 10, or the vehicle stops
for long time, P,. =0, Pr. = 0.

State 1 : The hydrogen is exhausted and the ultracapacitor
SOC > 10, the ultracapacitor meet the power
requirements of the vehicle for driving and
braking, Puc = Pem, Pr. = 0.

State 2 : There is still a surplus of hydrogen (H> remain>0)
and the ultracapacitor SOC > 90, the fuel cell
turns off and the ultracapacitor work alone to
supply energy to the vehicle for driving and
braking, Puc = Piem, Pr. = 0.

State 3 : There is still a surplus of hydrogen and the
ultracapacitor 90 > SOC > 10, the fuel cell and
the ultracapacitor work together to supply
energy to the vehicle. The output power of the
fuel cell and ultracapacitor is shown in
Equations (21), (22). Note that while the vehicle
is braking, the fuel cell continues to output
energy to charge the ultracapacitor.

State 4 : There is still a surplus of hydrogen and the
ultracapacitor 10 > SOC, Part of the fuel cell
output power meets the energy demand of motor,
and the remaining part charges the ultracapacitor.
Pfc = Pfcmtm, Puc :Pdem _Pfcmax-

The transition conditions between the states take into
account the durability of the fuel cell and the SOC of
ultracapacitor, the transition conditions are shown in Figure
4.

No
H; remai=0 SOC >90
State 0 |50 <10| State 1 | goc>10 | State2 State 3
Pp=0 Pp=0 Pe=0 Pr=P
i : 60=S0C >10 K
P=0 Pu=Paen Pu=Peem » Pu=Pu
A S %
End H) remai=0 , SOC >10 % g
S) “
>
H) yemaii=0 , SOC >10 Sacd
Pie = Plemar
Pu=Peen, = Ptema
Yes
|

Figure 4. Finite state machine processes.
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5. DETERMINATION OF WEIGHT COEFFICIENT

5.1. Weight Coefficient Design

When the ultracapacitor SOC = SOCee = 90 or SOC =
SOCin =10, kys = 1. When the ultracapacitor SOC is equal
to the initial SOC;u;, kws = 0. Therefore, kqs can be
determined as:

|, _soc-soc,, y

- N OCm(Lv - SOCmin ( )
soc _+SOC, .

SOC‘I i = M (2 5 )

kana and k.., affect the durability and economy of fuel cell,
and the relationship between weight coefficient is
quantified by the allocation factor £ in Equation (26). Once
k is determined, the output power of fuel cell and
ultracapacitor at every moment can be determined
according to Equations (21) and (22). It should be noted
that this algorithm is a real-time algorithm, which can
adjust the output power of fuel cell and ultracapacitor in
real time according to the current state and historical state,
and obtain the optimal output power combination under the
current state. In practical application, the allocation factor k&
can be obtained according to the actual vehicle calibration
tests or expert experience. kg, keco satisfy the following
formula:

kdua + keco =1- ksus
kdua = (1 - ksus )k (26)
1>k>0

5.2. Optimization of Allocation Factor

In order to obtain the optimal £, an off-line simulation and
optimization method is designed. which can help the real
vehicle calibration. The methods are as follows:

1) Quantitative evaluation system: refer to Equations (4),
(5) for fuel cell durability evaluation index. The economic
evaluation index of the whole vehicle is quantified by the
longest driving distance s. The initial operating condition of
the vehicle is that the initial SOC of the ultracapacitor is
50 %, and the initial hydrogen mass is 1.2 kg. The stopping
condition of the vehicle is that the remaining hydrogen
mass is 0 kg, and the ultracapacitor SOC < 50 %.

2) Algorithm iteration: multi-objective optimization
function is constructed as shown in Equation (27). The
multi-objective artificial bee colony algorithm is applied
with pareto solution set to obtain the optimal solution k. The
specific process is shown in Table 1.

min g(k)={-s, D} 27)
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Table 1. Algorithm process.

Process of multi-objective artificial bee colony algorithm

1. Initialize algorithm parameters such as optimization
object k, number of iterations, bee population, etc.

2. Calculate the fitness values, and save historical (-s;,
bey[).

3. Update k according to the artificial bee colony
algorithm logic. Calculate the new fitness values, and
save as (-, Dr.).

4. If (-s, Dr) dominates (-s;, Dr,) according to Pareto
solution set, (-s;= -s, Dy,; = Dy) and go to step 3.
else, go to step 5.

5. If the algorithm termination condition is reached, go to
step 6.
else, return to step 3.

6. Output the optimal £ and end the optimization process.

MO-ABC. m
Pareto.m

Driving cycle

Return Dy and -s

Figure 5. optimization flow and co-simulation.

3) The model in the loop (MIL) is realized based on
SIMCENTER AMESIM(SIEMENS®) and MATLAB
/Simulink (Mathworks®). The vehicle model is built in
AMESim software and the EMS model is built in
MATLAB/Simulink. In addition, multi-objective artificial
bee colony algorithm and pareto set program are designed
in MATLAB.m. The optimization flow and co-simulation
with different software is shown in Figure 5.

6. RESULTS AND DISCUSSION

In this section, JC08, UDDS, NEDC and WLTP driving
cycle are tested in simulation. The initial operating
condition of the vehicle is that: the initial SOC of the
ultracapacitor is 50 %, and the initial hydrogen mass is 1.2
kg. The stopping condition of the wvehicle is that the
remaining hydrogen mass is 0 kg, and the ultracapacitor
SOC <50 %. After multi-objective optimization, the pareto
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surface composed of mileage and fuel cell performance Table 2. Partial optimal solution under JCO8.

degradation under different driving cycles are shown in

Figure 6. The allocation factor £ under different driving Derllng k / ><1D0fj‘ o y l;fn

cycles is sorted from small to large, as shown in Figure. 7. oyere ( 0) (km)

It can be seen from Figure. 8, the best allocation factor & is 0.02 42.64 -83.00

concentrated from 0.3 to 0.4. The partial optimal solutions 0.11 42.92 -84.05

on pareto surface and & under different driving cycles are 0.15 43.03 8458

hown in Table 2 ~ 5. ' ' '

showiin Table JCO08 0.16 43.04 -84.59

0.34 42.24 -81.50
-81 -85 e e Y
z® T 0.38 4228 -81.04
* 4] -
* o Table 3. Partial optimal solution under NEDC.
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This paper shows the simulation results under WLTP and
select k= 0.35.

Figure 9 shows the comparison of fuel cell output power
curves under one WLTP driving cycle based on traditional
power following strategy (PF) and optimal power following
strategy (OP_PF). The output power of fuel cell based on
PF strategy fluctuates greatly. Because its output power has
a certain proportional relationship with ultracapacitor SOC
and demand power. When the demand power is low, the
output power of fuel cell based on PF is low, and the fuel
cell runs under idling and high-power load conditions
frequently. When the demand power is high, the output
power of fuel cell is also high. When the demand power
changes rapidly, the output power of fuel cell also changes
synchronously and rapidly. In order to quickly recover the
ultracapacitor SOC during braking state, the fuel cell
continues to operate at the high efficiency point. When the
current output power and historical output overpower
cannot transition smoothly, the fuel cell power changes
suddenly. Frequent power changes and idle operation
accelerate the performance degradation of fuel cell. It can
be seen that PF strategy accelerates the performance
degradation of fuel cell when the load changes rapidly. The
OP_ PF strategy can ensure the stability of fuel cell output
power. When the demand power changes rapidly, the
ultracapacitor responds to the rapidly changing demand
power, and the fuel cell output power fluctuates in a small
region.

Figure 10 shows the comparison of fuel cell efficiency
curves under one WLTP driving cycle. Due to the large
output power change of fuel cell with PF strategy, the
efficiency of fuel cell with PF fluctuates greatly, and the
efficiency of fuel cells is difficult to maintain near the high
efficiency region. The output power of the fuel cell based
on OP PF strategy is stable and its fluctuation is small.
Through reasonable algorithm design, the efficiency of the
fuel cell can be maintained near the high efficiency region.

The fuel cell output power fluctuation with OP_PF
strategy is small, and the power fluctuation of ultracapacitor
is large. When the required power increases rapidly, the
ultracapacitor provides the main part of the demand power.
At this time, the SOC of the ultracapacitor changes greatly.
The fuel cell output power fluctuation under PF strategy is
large, the ultracapacitor power fluctuation is relatively small,
and the change of ultracapacitor SOC is also small, PF
strategy cannot give full play to the advantages of
ultracapacitor. This phenomenon can also be seen from
Figure 11.

In order to further compare the performance of the two
control strategies under different single driving cycle, the
two control strategies are compared from the aspects of
equivalent hydrogen consumption and fuel cell performance
degradation. The specific results are shown in Table 6. It
can be concluded that compared with PF strategy, the
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Figure 11. Comparison of the ultracapacitor output power
and SOC curves.

equivalent hydrogen consumption and fuel cell performance
degradation with OP_PF are both reduced under different
single driving cycle.
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Table 6. Comparison results of the two strategies under
one driving cycle.

Single Equivalent D,
driving Strategy hydrogen (1 Of‘ 4 %)
cycle consumption/(g) °
PF-based 176.58 38.22
JCO8
OP_PF-bsaed 172.24 19.94
PF-based 154.76 47.44
NEDC
OP_PF-bsaed 149.82 19.87
PF-based 200.53 58.08
UDDS
OP_PF-bsaed 198.80 20.07
PF-based 342.29 27.15
WLTP
OP_PF-bsaed 341.92 20.34

7. CONCLUSION

In this paper, an adaptive control strategy has been
proposed for the EMS of fuel cell and ultracapacitor-based
hybrid electric vehicles. Based on the traditional power
following strategy, an optimal power following strategy is
proposed. The proposed strategy takes into account the
vehicle economy and component durability, the dynamic
output characteristics of fuel cell are also satisfied. The
optimization of energy distribution of fuel cell and
ultracapacitor is realized. In order to balance economy and
durability, MOABC algorithm is used to optimize the
allocation factors within the strategy. The simulation results
show that compared with the traditional power following
strategy, the proposed energy management strategy can
effectively extend the driving range, reduce the performance
degradation of fuel cell. Compared with PF strategy, the
equivalent hydrogen consumption of OP_PF is reduced by

0.37 g and the fuel cell degradation is reduced by 25.08 %

under single WLTP driving cycle. The vehicle can travel

88.52 km with only 1.2 kg hydrogen consumption. The

main contributions are as follows:

(1) The proposed control strategy can effectively reduce the
power change of fuel cell, avoid the fuel cell running
under idling and high-power load conditions. Once the
fuel cell is started, it does not start and stop frequently,
the performance degradation of fuel cell can be
effectively reduced.

(2) The proposed control strategy can effectively make use
of the characteristics of high power density of
ultracapacitor, ensure the stable output power of fuel
cell, control the output power of fuel cell to be stable in
the high efficiency region, and effectively improve the
economy of FCEV.

(3) The calculation process of the proposed control strategy
is simple, the differential process only needs off-line
derivation, and there is no complex on-line identification,
learning and evolution process. It can be well applied to

Yan Sun et al.

the actual vehicle, and the parameter optimization
results can also provide a good reference value for the
vehicle calibration.
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