
International Journal of Automotive Technology, Vol. 19, No. 1, pp. 107−119 (2018)

DOI 10.1007/s12239−018−0011−6

Copyright © 2018 KSAE/ 100−11

pISSN 1229−9138/ eISSN 1976−3832

107

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR

AUTOMOTIVE EMBEDDED SOFTWARE TESTING

Ki-Wook Shin and Dong-Jin Lim
*

Department of Electronic Systems Engineering, Hanyang University, Gyeonggi 15588, Korea

(Received 4 October 2016; Revised 10 April 2017; Accepted 23 June 2017)

ABSTRACT−We propose a method to automatically generate software and hardware test cases from a UML model

developed through a model-based development process. Where languages such as source-code languages are used within the

model, input and expected values for each test case are generated using a custom parser. As a next step, unit test cases are

combined to generate integration test cases using a bottom-up approach. Then these cases are converted into hardware test

cases for approval testing of embedded systems, using XQuery and hardware mapping tables. We demonstrate this process by

applying it to the power window switch module of a Hyundai Santa Fe vehicle. Our approach provides an automatic testing

procedure for embedded systems developed by model-based methods, and generates test cases efficiently using a

recombination of signals. In conclusion, our proposed method could help reduce the resources needed for test case generation

from software to hardware.

KEY WORDS : Software testing, Test case generation, Model-based development, Unified Modeling Language (UML),

Integration testing, Power window switch module, Approval testing, Hardware testing

1. INTRODUCTION

In general, a model-based approach to the development of

products can lead to greater productivity and more

stringent quality assurance through the early detection of

design errors in the overall system design process. This

applies, in particular, to fields requiring high levels of

reliability, such as the automotive industry, where any

defects in a product could lead to injury or death. This

makes modeling very important to the process of fabrication.

However, much more critical than general software

testing in such cases is embedded software testing, due to

the complexity of the products being developed and the

fact that any system failure could be catastrophic. The

process of embedded testing includes planning the test,

generating test cases, building a test environment, executing

tests, evaluating results, reporting the results, and tracking

defects (Bertolino, 2001). This process accounts for

roughly 40 % of the overall development cost of a product

(Zelkowitz, 1978). To reduce these costs, automation of

this process is vital.

Because test case generation is the most important step

in the overall testing process, a great deal of research has

been conducted on this topic. Ideally, software should be

tested for all possible combinations of input values;

however, this is difficult to do because of limited time and

resources and because the cost of software testing and the

time and effort required to manage such tests continue to

increase (Tung and Aldiwan, 2000). Furthermore, as

software increases in complexity, it is almost impossible to

perform tests for all possible conditions. Therefore,

efficient, automated test case generation could be key to

addressing these problems.

In most studies on automatic test case generation, test

cases are generated from sources such as requirement

specifications, software models, or source codes. Depending

on the sources from which test cases are generated, an

abstract test case or actual test case can be generated. There

exist many test case generation tools such as AGEDIS and

GOTCHA which generate abstract test cases based on

models. Abstract test cases cannot be used as they are;

instead, they have to be converted to runnable test cases

using tools such as TCBeans (Shafique and Labiche, 2010).

This approach is well-suited to a model-based testing

environment, however, it is hard to select the best test tool

for a given development environment, because a specific

test tool for interpreting abstract test cases has to be used.

In this study, a new method is proposed to generate test

cases through parsing of a combined model, which

contains not only a platform independent model but also a

platform dependent model for an executable model

implemented using a commercial UML tool. Also,

generated actual test cases are utilized for functional testing

using a commercial dynamic testing tool.

Typically, static and dynamic testing play very important

roles in the overall testing of software. They help to ensure*Corresponding author. e-mail: limdj@hanyang.ac.kr

108 Ki-Wook Shin and Dong-Jin Lim

the quality of the software by identifying bugs and defects

that might otherwise be missed (Beizer, 2003). Moreover,

embedded software has to be tested on real hardware to

verify its performance and operation. Therefore, hardware-

in-the-loop (HIL) testing is needed to ensure that the

program is operating correctly.

Hardware test cases require as much effort to generate as

software test cases. For example, it requires real-time

testing equipment, and various parameters (such as the

duration of input delays using real-time test equipment)

have to be considered. Yet many recent studies on the

automatic generation of test cases have focused mainly on

software testing rather than hardware testing, with many of

the studies manually generating test cases for approval

testing. The work necessary to generate hardware test cases

can be reduced to a great extent by using the proposed

method, which enables automatic hardware test case

generation.

Typically, program source code or models can be used to

automatically generate test cases. Since model-based test

case generation can be used at early stages of development,

it is often more effective than source code-based generation

(Samuel et al., 2008). Prior studies have used UML,

Simulink, etc., for model-based test case generation (Offutt

and Abdurazik, 1999; Zhan and Clark, 2005), which can be

represented using various modeling notations such as

scenario-based, state-based, and process-based notation

(Anand et al., 2013). Specifically, this paper is focused on a

state-based UML model.

Model-based testing is one of the most important testing

methods in modern software development. A model can be

used for simulation during early stages of development,

and the developer can refine the software design after

finding errors (Bringmann and Kramer, 2008). Additionally,

these models contain information that can be utilized to

generate test cases for software verification.

In the present paper, we propose a method to

automatically generate unit test cases from a Unified

Modeling Language (UML) model using custom parser.

Based on the generation of custom parsers, integration test

cases and hardware test cases can be derived from each of

previous test case generation step.

The remainder of this paper is organized as follows. In

Section 2, we provide a review of the pertinent literature.

Section 3 proposes the new method, and Section 4 applies

it to the power window switch module of a Hyundai Santa

Fe vehicle. Section 5 summarizes the results and

conclusions.

2. Related Work

There has been a great deal of research into the automatic

generation of test cases using UML-based models. Samuel

et al. (2007, 2008) proposed a method for generating test

cases from UML state diagrams and communication

diagrams. Gulia and Chillar also generated test cases from

a UML state diagram using a genetic algorithm (Gulia and

Chillar, 2012). Hartmann et al. (2000) devised a conversion

from several state diagrams into normalized state diagrams

and then created integration test cases from the normalized

charts. Florin Pinte and Norbert (2008) researched the

optimization of integration test cases using genetic

algorithms. Ogata and Matsuura (2010) proposed the

creation of integration test cases that included input and

could predict results from activity, class, and object

diagrams. From a higher-level perspective, Heumann

(2001) investigated automatic requirement-based test case

generation using use case diagrams; however, it was

difficult to create the concrete test cases needed for high-

level design.

In these studies, test cases were generated from UML

models, but platform-independent models (PIM), or

requirement-based models, may be insufficient to generate

actual test cases. In adopting model-driven engineering

technology, abstract test cases are generated from these

requirements or PIM, and executed by interpreting

infrastructures. However, a selection of specific test tools

for interpreting abstract test case could be a constraint on

effective test environment development. For example, in

automotive industry, software test tools have to contain a

tool qualification report required by ISO26262. Due to this

problem, commercial tools are used generally, but they do

not fully support an interpretation of abstract test cases.

Therefore, further studies are required to create actual test

cases through conversion of abstract test case or generation

from models.

In order to generate actual test cases, recent studies have

utilized commercial tools to generate test cases, but these

only work if the UML model is described using specific

rules. This is possible if the UML model is described using

C/C++, Java, or object constraint language (OCL).

Nevertheless, an automatic test generator should be able to

analyze any kind of description of UML models applied in

various development environments. To this end, we

propose a new method to analyze UML model descriptions

using a custom parser. In earlier studies in which test cases

were generated using custom parsers, test cases were

generated from source code or platform-independent

models (Fraser and Wotawa, 2007). As stated above, to

apply this technique in the automotive industry, actual test

cases are generated from a model directly instead of

converting abstract test cases to actual test cases.

For generating test cases various approaches are used,

including search-based test case generation and divide-and-

conquer (Chen et al., 2012). To generate test cases using a

model, genetic algorithms can be used to find test cases

(Lefticaru and Ipate, 2007). With respect to non-model-

based automatic test case generation, Windisch studied

software test case generation for structural code coverage

using particle swarm optimization (PSO). PSO performed

better than genetic algorithms (GA) for some industrial

problems (Windisch et al., 2007). In this paper, both

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR AUTOMOTIVE EMBEDDED SOFTWARE TESTING 109

algorithms are included: the divide-and-conquer approach

is proposed for generating integration test cases, and

simulated annealing is applied to find near-optimal solutions.

Hartig et al. (2009) introduced a new method of

converting software test cases into hardware test cases

using model-in-the-loop (MIL) testing. Then these were

converted into appropriate hardware test cases for hardware-

in-the-loop testing. The logical inputs and outputs of

software test cases were mapped to hardware signals. The

advantage of this method is that it is unnecessary to

recreate test cases for use in acceptance testing. In this

paper, a generated integration test case is converted into a

hardware test case using a hardware information table, and

used for HIL testing.

3. TEST CASE GENERATION

Model-based development techniques can find errors at an

early stage in the system design process and thus reduce

errors in the end product. UML is normally used for such

model-based development and could become the standard

method for visualizing software design. A model-based

development approach can be applied step-by-step during

the testing process, depending on the model used.

In the typical case of embedded software, unit testing

should be done to verify the individual software functions.

In addition, integration testing is a necessary method to

verify the overall software functions integrated for each

unit. Finally, hardware testing is required to ensure all

functions operate correctly, even when the software is

downloaded on to the actual hardware. Therefore, suitable

MIL, software-in-the-loop (SIL), and HIL tests must be

performed as part of the regression testing of model-based

software. This process requires test cases for each stage.

However, most studies on the automatic generation of test

cases have been limited to the software level.

This paper proposes a new method for the generation of

test cases, using a custom parser from a UML model,

which can be applied to embedded software as shown in

Figure 1. First, unit test cases are generated via a UML

state diagram based on a breadth-first search and then these

are used for unit testing. During this process, to deal with

the various types of UML specification language, a new

software structure of test case generator is proposed based

on a custom parser generator. In the second step, integration

test cases are generated from the previously generated unit

test cases and the relational diagrams in the UML model. In

the final step, hardware test cases are converted from the

integration test cases using a hardware mapping table, and

then these are used to test the software on embedded

systems.

3.1. Unit Test Case Generation

First, UML model metadata are extracted from the model

using the Extensible Markup Language (XML) metadata

interchange (XMI), which allows the information to be

exchanged with external programs.

If software is developed via a model-based approach, the

model will contain a great deal of software information.

This is why our method uses metadata from the UML-

based modeling tool using the XML metadata interchange.

In UML modeling, the behaviors of a system can be

represented by behavioral diagrams. The software

specifications are normally modeled using the UML

standard. However, it is sometimes necessary to describe

platform-dependent specifications using any description

language such as source-level languages. In this paper, to

generate test cases from state diagrams represented by

various methods, we propose a process for analyzing each

specification (Figure 2).

Considering the example shown in Figure 2, suppose

that a transition in UML is descripted using the C language,

not an action language. Then it is necessary to parse the

text by a parser, which is generated by a parser generator

with a grammar for C language. Because parser generators

such as ANTLR can generate a lexer and parser from a

grammar file, the statement can be parsed by a grammar,

which is suitable for ANSI C. Parsed text can be

represented in a tree structure such as an abstract syntax

tree. Then this is used to generate the test cases. One of the

advantages of this method is that it is possible to parse state

diagrams through a custom parser regardless of the

programming language used.

For example, to describe a functionality of system from

a model based development software, a natural language or

a program language can be used depending on the model

abstract level. If a platform independent model will be

made for architecture design, it needs to be considered that

the model should not be implemented using a specific

program language as possible. After then, when a platform

dependent model is made based on the platform independent

model, a specific program language such as C/C++, C# and

Java can be used to implement a specific behavioral model.

These specific behavioral models can be helpful in

simulation of the software model and automatic generation

of source code.
Figure 1. Process for automatically generating model-

based test cases.

110 Ki-Wook Shin and Dong-Jin Lim

From this paper, suppose that a test data generator can

generate test cases from both a platform independent model

and a platform dependent model for the usability of the test

data generator. If a syntax definition of the natural language

is changed or an action language is used to implement the

platform independent model, parser should be generated

again for this development environment. Therefore, a test

data generator is proposed to appropriate for the various

changes of the test model using the parser generator.

Unit test cases are generated using the information on

the states and transitions available in the state diagrams.

First, the triggers and guards are used as the input

conditions to generate the necessary input values within the

variable range. For example, when the transition has a

trigger of “evOpen” and the guard is a Boolean variable

such as “isReady,” test cases from the input values of false

or true can automatically be generated. There can be an

enormous number of such input conditions depending on

the transition conditions of the state diagrams. In particular,

the wide range of input values available could lead to the

Figure 2. Specification analysis of UML state diagrams using a custom parser generator.

Figure 3. Simple example of courtesy lamp statechart.

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR AUTOMOTIVE EMBEDDED SOFTWARE TESTING 111

generation of a large number of cases and thus take a very

long time to process.

Output signals that correspond to a combination of

inputs can be analyzed through transition actions. The

input and output data corresponding to the paths for test

case generation are stored in a record table. This is used to

generate expected values and to check for the possibility of

transition.

Unit test cases generated from state diagrams may be

created using various path search algorithms. We used a

breadth-first search algorithm for transition coverage. This

traverse process can be continued until all of the test cases

are generated covering all of the possible paths, including

control statements such as loop and conditional statements,

until no better solution is found in the given time.

Figure 3 can be shown as an example how test cases are

generated on statechart. As a result, Table 1 is showing

transition paths of generated test cases for satisfying the

transition coverage.

3.2. Integration Test Case Generation

The automatic generation of integration test cases has been

one of the most challenging problems in test automation. It

is especially difficult to discern all of the possible paths

produced by the complex integrated modules within a

given period of time. To solve this problem, many studies

have produced results based on genetic algorithms. In

general, these reduce the time required to solve

nondeterministic polynomial-time complete problems such

as the travelling salesman problem. Nevertheless, as the

software becomes more complex, the creation of

integration test cases also becomes more difficult, to the

point where it may not be possible to create a suitable

integration test case within a given amount of time.

Unit test cases may include basic input and output

signals that can allow each function or module to be tested

(Leitner et al., 2007). We propose a new method that

allows unit test cases to be integrated using the relationship

information from the UML. The software is combined

from each unit module, and then the integration test cases

can be integrated from these. Input and output signals used

only for each module must be removed at the integration

stage so that internal and external variables in the unit

module can be distinguished from each other. In this paper,

variables are classified into internal variables and external

variables using a specific variable-naming rule and the

UML specifications. This method can be considered gray-

box testing, which is a combination of black-box and

white-box testing.

In general, integration testing approaches can be

categorized as either top-down or bottom-up. Although the

advantages and disadvantages of each can vary, it is

necessary to select the proper integration approach

depending on the complexity of the inputs and outputs. For

example, if one input can affect many functions, a top-

down approach makes it possible to test several functions

at any time. If a bottom-up approach is used for the same

Table 1. Example of generated unit test cases from each

classes.

Unit test
cases

Path

A-1 Root(A) → NoPressed

A-2 Root(A) → NoPressed → Pressed

A-3 Root(A) → NoPressed → Pressed → NoPressed

B-1 Root(B) → Standby

B-2 Root(B) → Standby → On

B-3 Root(B) → Standby → On → Off

B-4 Root(B) → Standby →On→Off → Standby

B-5
Root(B) → Standby → On → Off → Standby
→ Off

Figure 4. Generation process of integration test cases.

112 Ki-Wook Shin and Dong-Jin Lim

system, it is possible to undertake tests that focus on one

particular function, because the focus is on the input

conditions relating to the output for a particular function

(Myers et al., 2011). As mentioned in the case study of the

Power Window Switch Module described in Section 4, a

bottom-up integration approach is used for the embedded

system, which requires input combinations for the

production of many outputs.

First, a base module needs to be selected. Because the

bottom-up approach tracks from the base of the modules in

the lowest level to the top within the subsystem, a test is

needed to determine which base module is to be used.

In general, a class is composed of methods, events,

properties, and so on. Relational diagrams such as class

diagrams and object diagrams can be used to identify the

relationship between each of these classes. Several types of

relationship are given in UML, but class diagrams,

association, aggregation, composition, and dependency are

useful for understanding the relationship between various

classes.

Once the relationships between each class have been

analyzed, a relation table is created based on the results.

The relational information within this table can also be

represented as a flow diagram, such as that shown in

Section 4 (Figure 7).

In this paper, a divide-and-conquer approach is proposed

to generate integration test cases as shown in Figure 4. Test

input data for integration testing is divided into individual

units of test input and expected values with reference to the

flow control. Then, each unit test input and expected value

for integration testing is recycled from test input data and

the test oracle for unit testing. For this process, unit test

cases are divided into partial test cases at the external signal

point, and then lower partial test cases begin to integrate

upper partial test cases sequentially through the relation

table. The test cases that are generated then pass through a

process of validation.

 From the above example, to enter the path of B-2 shown

in the right column of Figure 3, the “evOn” event needs to

be generated. If the current path in state diagram A is

moved from A-1 to A-2, as shown in left column, the

“evOn” event is generated and then the current path in state

diagram B can be moved from B-1 to B-2. Therefore, the

guard condition for the transition from A-1 to A-2 is given

by L_FL_Switch == On. As a result of this combination,

generated integration test cases are shown in Table 2.

The UML state machine includes characteristics of both

the Moore and Mealy models; however, we defined our

state machine based solely on the Mealy model. The output

functions can be represented by ω = S × Σ → ⎡, where S is

a set of states, Σ is an input character, ⎡ is an output

character, and ω is the output function. The execution path

of the state machine can be represented as a sequence of

states,

where s1 is the initial state, sn is the final state, and the range

of the passed states is si (1 < i < n) (Zeng et al., 2003).

In addition, there are two related state diagrams that

have n number of path elements of the upper module Pu,

and m number of path elements of the lower module Pl.

This can be represented as

[]1 2 3 n
, , , ,P s s s s= �

u u u u u

1 2 3 n
, , , ,P s s s s⎡ ⎤= ⎣ ⎦�

l l l l l

1 2 3 m
, , , ,P s s s s⎡ ⎤= ⎣ ⎦�

Table 2. Example of a newly generated integration test case list.

Generated inte-
gration test cases

Path Validity

A-1 & B-1 ROOT(A) → NoPressed → ROOT(B) → Standby Valid

A-1 & B-2 ROOT(A) → NoPressed → ROOT(B) → Standby → On Invalid

A-2 & B-2 ROOT(A) → NoPressed → Pressed → ROOT(B) → Standby → On Invalid

A-2 & B-2: 2 ROOT(A) → NoPressed → ROOT(B) → Standby → Pressed → On Valid

A-2 & B-3 ROOT(A) → NoPressed → Pressed → ROOT(B) → Standby → On → Off Invalid

A-2 & B-3: 2 ROOT(A) → NoPressed → ROOT(B) → Standby → Pressed → On → Off Invalid

A-2 & B-3: 3 ROOT(A) → NoPressed → ROOT(B) → Standby → On → Pressed → Off Invalid

A-3 & B-3 ROOT(A) → NoPressed → ROOT(B) → Standby → Pressed → On → NoPressed → Off Valid

A-3 & B-3: 2 ROOT(A) → NoPressed → ROOT(B) → Standby → Pressed → On → Off → NoPressed Invalid

A-3 & B-3: 3 ROOT(A) → NoPressed → ROOT(B) → Standby → Pressed → NoPressed → On → Off Invalid

A-3 & B-3: 4 ROOT(A) → NoPressed → ROOT(B) → Standby → On → Off → Pressed → NoPressed Invalid

A-3 & B-3: 5 ROOT(A) → NoPressed → ROOT(B) → Standby → On → Pressed → Off → NoPressed Invalid

A-3 & B-3: 6 ROOT(A) → NoPressed → ROOT(B) → Standby → On → Pressed → NoPressed → Off Invalid

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR AUTOMOTIVE EMBEDDED SOFTWARE TESTING 113

If the output of the ith (i < n) state element of the upper

module is related to the input of the jth (j < m) state

element of the lower module,

then an execution path for the upper module can be divided

as follows:

Similarly, an execution path of the lower module is as

follows:

Each of these paths can be integrated into one path, as

follows:

This is represented in Figure 5.

It is considerably difficult to obtain a desired integration

test case by recombining unit test cases alone because

integration test case generation depends on the generated

unit test cases. If the unit test cases for a state machine are

generated, these paths can be used to generate integration

test cases for all combinational paths.

However, when there are many unit test cases, it is

inefficient to use all of them to generate integration test

cases. To solve this problem, our method deletes infeasibly

combined test cases and explores the neighbors of the

generated integration test cases using a simulated annealing

algorithm (Bertsimas and Tsitsiklis, 1993). This process is

summarized in Algorithm 1.

This generation method can reduce the time needed for

generating integration test cases because of the

recombination of paths and input/output signals from the

unit test cases, compared to typical random input

generation methods. However, the main disadvantage of

u u u u

i i i i
: sω × Σ → Γ

l l l l

j j j j: sω × Σ → Γ

u l

i jR ϕ= Γ ∩ Σ ≠

u u u u

before i after
, ,P P s P⎡ ⎤= ⎣ ⎦

u u u u u

before 1 2 3 i 1
= , , , ,P s s s s

−

⎡ ⎤⎣ ⎦�

u u u u u

after i+1 i+2 i+3 n
, , , ,P s s s s⎡ ⎤= ⎣ ⎦�

l l l l

before j after, ,P P s P⎡ ⎤= ⎣ ⎦

l l l l l

before 1 2 3 j 1, , ,P s s s s
−

⎡ ⎤= ⎣ ⎦�

l l l l l

after j+1 j+2 j 3 m, , ,P s s s s
+

⎡ ⎤= ⎣ ⎦�

int egration l u u l l u

before before i j after after[, , ,]P P P s s P P= ∩ ∪

Algorithm 1. Test case integration.

Input: a set of upper unit test cases Pu, a set of lower

unit test cases Pl and relational information Σr .

Output: a set of integration test cases IPs.

IPs← Ф

for each L ∈ Pl do

for each U ∈ Pu
 do

RPs ← Ф

if IsNotRelated(U, L, Σr) then next for

SPu
 = DivideUnitTestCase(U, Σr)

SPl
 = DivideUnitTestCase(L, Σr)

RPs ← RPs ∪ Combine(SPu, SPl,Σr)

RPs ← RPs ∩ GetValidateSet(RPs)

for each RP ∈ RPs then

T←Initialize temperature

if IsNotDuplicated(IPs,RP) then

IPs←IPs ∪ RP

end if

while time limit is not exceeded do

while T > 0 do

RP'←FindNeighbor(RP,T)

if IsCoveredNewPath(IPs, RP') or

(Probability(RP',RP,T) > random(0,1))

then

RP←RP'

end if

if IsNotDuplicated(IPs,RP) and

IsValidate(RP) then

IPs←IPs ∪ RP

end if

end while

T ←Decrease(T)

end while

 end while

 end for

end for

return IPs;

Figure 5. Path-based integration test case generation.

114 Ki-Wook Shin and Dong-Jin Lim

this method is that it can lead to an insufficient number of

integration test cases when there is not a variety of unit test

case paths and input signals. The low probability of

random mutations can lead to new test input combinations

that can be used to explore unknown areas.

3.3. Test Case Conversion and HIL Testing

To do the hardware testing, it is necessary to convert the

software variables to the appropriate hardware signals. For

example, the hardware target can be tested via digital/

analog IO devices and several communication interfaces.

In this process, unlike the software variables, hardware

signal delays can occur when passed through other internal

circuits. In the case of manual test case generation, this

delay is important. In this paper, hardware test cases were

automatically generated from software integration test

cases, and the hardware signal delay was taken into

consideration in the conversion process.

As shown in Table 3, hardware mapping tables are used

to store the hardware and software mapping information

and make it possible to keep changes in hardware test cases

to a minimum when the hardware test environment is

altered. In other words, such tables are used to convert

software integration test cases into hardware test cases. In

addition, they contain information such as the type of test

instruments that can be connected to the hardware, and the

type of input and output signals (e.g., digital, analog, and

pulse-width modulation). This information is changed

according to the target and test instruments used when the

test environment is changed. If the change in hardware

environment occurs frequently without the need to convert

the software test cases in advance, it can be more efficient

to convert into a hardware test case at runtime, because it is

better to modify the table rather than all of the hardware

test cases whenever the environment changes.

Unlike software tests, hardware tests include a delay

between the signals. For example, in the case of TTL-

compatible digital input signals, “0” and “1” can be seen to

change on the rising edge from zero to five Volts through a

reasonable time delay. For this reason, it is necessary to

insert a time delay between the continuous inputs of a

signal so that the test target can be properly processed. In

addition, if necessary, an appropriate time delay needs to be

inserted between signals not only for the continuous input

of one signal, but the continuous inputs of multiple signals.

Moreover, even if time is needed to get the output value

corresponding to the input combination, a time delay may

be inserted between the signals through a conversion

process like Table 4.

The hardware mapping table is saved in XML format

and can be used for the conversion. To facilitate the

conversion process, extensible stylesheet language

transformations (XSLT) and XQuery can be used (Shin et

al., 2013). XSLT is seen as a standard for the

transformation of XML documents and can transform

XML documents into other types of document (Kay, 2007).

On the other hand, XQuery is a query language for XML

documents that can flexibly retrieve the necessary

information from XML documents (W3C, 2010). The

advantage of each method for conversion may vary

depending on the case, but we used XSLT because it more

easily retrieves information from small files.

4. CASE STUDY: POWER WINDOW SWITCH

MODULE

We applied our system to the power window switch

module of a Hyundai Santa Fe vehicle. First, a UML model

was implemented using IBM Rational Rhapsody. Power

window switch behavior was implemented using a state

diagram. While UML models are usually made as

Table 3. Example of a hardware mapping table.

Name Type Hardware Location Direction Min Max

LogicIgnition Boolean Digital I/O card PortA.0 Input 0 1

WindowDownSwitch Boolean Digital I/O card PortB.0 Output 0 1

AnalogVoltage Integer Analog output card Channel 1 Input 0 1023

DriverDoorClosed Integer CAN interface 600h.12.2 Input 0 255

PwmLampBrightness Double Counter/Timer card Channel 1 Output 0 100

Table 4. Conversion process of software variables into

hardware signals.

Case
Before changing

signals
After changing

signals

Change of value
for a continuous
input signal

IgnitionOn.Write(0);
IgnitionOn.Write(1);

IgnitionOn.Write(0);
Wait(100);

IgnitionOn.Write(1);

Continuous input
from several

signals

IgnitizonOn.Write(1);
AccessoryOn.Write(1);
InputSwitch.Write(1);

IgnitionOn.Write(1);
Wait(100);

AccessoryOn.Write(1);
Wait(100);

InputSwitch.Write(1);

Checking
output after

specific inputs

IgnitionOn.Write(1);
OutputSignal.Read(1);

IgnitionOn.Write(1);
Wait(100);

OutputSignal.Read(1);

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR AUTOMOTIVE EMBEDDED SOFTWARE TESTING 115

platform-independent models (PIM), some UML tools for

automatic code generation are able to implement platform-

specific models using a source-level language (Douglass,

2002). In this case, we used C. Then the UML model was

converted into XMI. Because the platform-specific model

uses the state diagram specification in C and is mixed with

the PIM into XMI, an software structure of test case

generator is proposed so that the various specified

languages can be parsed by the parser generator, including

support for language-dependent custom grammar rules.

C language syntax is parsed by a custom parser, and is

represented by the abstract syntax tree shown in Figure 6.

This tree is used to generate test cases. In general,

source-level languages in C include control statements

such as condition statements and loop statements. These

statements comprise relational operators, conditional

operators, numerical operators, variables, constants, and so

on. After the parser has analyzed these elements, test cases

are generated based on branch coverage. In particular, to

generate a valid test case, the test input values must be

changed within a meaningful range. To reduce the search

space, in the case of a variable that uses the enumerator, the

test case input values are generated from the enumerator

list. If a suitable path cannot be found, the input value

space is extended to cover the entire range of the variable

type.

Software test cases generated via a model are used to

measure the code coverage. If there are any errors present

in the source code (because the test case is generated from

the source code) the test case can be made to show these

errors. However, the advantage of our method is that it can

detect an error that occurs during coding using a generated

test case from a model.

Code coverage analysis was performed using

VectorCAST (one of a number of commercial tools used

for dynamic testing). Software test cases in XML format

were converted into a comma-separated values (CSVs)

files format, and then imported into VectorCAST. Code

coverage was analyzed during unit testing and produced a

test result that can be compared to the expected value (Shin

et al., 2014).

The power window switch module includes a number of

functions in addition to the window control, depending on

the model. For example, the module used in the Santa Fe

DM controls the side mirror, courtesy lamp, puddle lamp,

and heater. We applied our method to produce a thousand

test cases to achieve branch coverage in the power window

switch module of the Santa Fe DM. Of course, the number

of test cases might be different from this depending on the

target code coverage and optional add-on features.

The unit test cases generated can be utilized to generate

other integration test cases. To integrate cases, each unit

module has to be integrated. First, the relationship between

each unit module needs to be identified using a relational

diagram such as a class diagram or an object diagram. If a

tester selects the lowest node as a reference module, the

relationship between each module can be analyzed using a

bottom-up approach and starting from the reference

module.

After conducting relationship analyses, integration test

Figure 6. Example of an abstract syntax tree.

116 Ki-Wook Shin and Dong-Jin Lim

cases were created on the basis of the information gained

from these analyses. Because each module was considered

a flow-based association, the program created a

relationship diagram in terms of a module flow diagram as

shown in Figure 7. In this case it is better to decide the

variable names using a specific naming rule because it is

difficult to distinguish between internal and external

variables. Other variables can be considered actual input

and output signals of the integrated module and can act as a

stimulus for the integrated test cases.

As mentioned in Section 3.2, after the unit test cases are

divided during the integration process based on the point at

the external symbol, all related unit test cases are integrated

step-by-step, starting from the reference node. To eliminate

infeasible test case after integration, the program references

a test oracle, which is generated for unit testing based on

model. Finally, the remaining test cases are recycled again

to integrate the other upper modules.

We compared the results using our system to those using

automatic generated path-based test cases. The generation

algorithm was developed using C# and the recorded times

were obtained using a PC with an Intel Xeon E3-1231 v3

with a 3.4 GHz processor.

Each experiment was repeated 10 times. The upper side

of Figure 8 shows how the number of test cases is related to

the running time of each algorithm. As a system under test

(SUT), the courtesy lamp is related with two classes, and

two state diagrams that contain eight states and a dozen

transitions. It has a function of eight input parameters,

including a logic input value and time variable, increasing

every 0.1 seconds (time step). First, the divide-and-conquer

generation algorithm without simulated annealing could

not explore other test cases because integration test cases

are generated only from unit test cases, and it has

insufficient code coverage – as shown at the below side of

Figure 8. On the other hand, random data generation and a

divide-and-conquer generation algorithm with simulated

annealing generate a number of test cases that increase

proportionally to the execution time. The divide-and-

conquer method does not produce a sufficient number of

test cases during a short execution time due to the overhead

corresponding with the division of unit test cases before the

generation of integration test cases. Figure 9 shows the

result of integration test case generation on the courtesy

lamp, which has eight classes and state diagrams with over

a hundred variables. The range of integer values was set

from 0 to 65535. In the random input generation method,

code coverage is below 50 % even after 10 minutes.

Figure 7. Module flow diagram of a puddle lamp.

Figure 8. Performance comparison of integration test case

generator for courtesy lamp.

Figure 9. Performance comparison of integration test case

generator for puddle lamp.

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR AUTOMOTIVE EMBEDDED SOFTWARE TESTING 117

However, divide-and-conquer approaches with simulated

annealing can generate a lot of integration test cases, and

their code coverage is 100 %. Generally, the performance

of proposed approaches was better than the random input

generation on the power window switch module by at least

30 %.

The number of generated test cases and their execution

time changed according to the number of unit test cases, as

show in Figure 10. If unit test cases are selected over 100,

transition coverage is 100 % because various combinations

of integration test cases can be generated – but it is too

slow. In that case, the unit test cases are selected only

below 10; although the execution time is short, it is not

enough to combine new integration test cases for code

coverage. The choice between these parameters should be

made depending on the size of the problem.

Then we used our method to generate hardware test

cases. To this end, irrelevant variables must be eliminated

from the test cases and then the cases must be converted

into hardware test cases composed of actual hardware

signals, such as digital and analog signals. These are

mainly eliminated during the integration process. At the

end of this process, the final remaining variables are

converted into input and output signals needed for

hardware testing.

Note that a suitable time delay must be considered for

the hardware application. As described above, these are

added between signals after the information related to the

time delay is stored in the mapping table. In addition, other

commands such as device initialization may be required

before and after testing. A hardware mapping table is

Figure 10. Parameter effect on the unit test case selection

using divide-and-conquer.

Table 5. PXI-based testing instruments used to test the

power window switch module.

Device name Description

PXI-8110
2.26 GHz quad-core PXI-embedded
controller

PXI-1044 14-slot 3U PXI chassis

PXI-8432/4 Serial interface

PXI-8513/2 × 2 CAN interface

PXI-6143 × 2 16-bit multifunction DAQ

PXI-6733 16-bit, 8 channel, analog output

PXI-6533 × 2 32 digital input and output

PXI-6624 8 channel counter/timer

Figure 11. Hardware testing process for the power window switch module.

118 Ki-Wook Shin and Dong-Jin Lim

created so such commands can be automatically added

during the conversion process.

To verify which power window switch modules used the

generated hardware test cases, we used National Instruments

real-time PXI-based instruments as outlined in Table 5.

The converted test cases were transferred to the test

instruments via the network and then executed for

hardware testing. This entire hardware test process is

represented in Figure 11.

If the test instruments receive a hardware test case from

the host computer, the instruments perform a hardware test

according to the test case input and output stimuli, and send

the results to the host computer. This process differs from a

general HIL test system because the test cases and their

results are transmitted across the network. The names of

the input and output stimuli in the files are stored as

software variables. Each variable name is then converted

via a hardware mapping table into a signal for use by the

hardware as soon as the test case is transmitted across the

network. Then these test cases can be managed

independently of the hardware, and it is possible to

construct a more flexible test environment. Although test

evaluation environments that use networks can be self-

constructing, we used a commercial program (Test

Executor of BTS Technologies Inc.) for execution and

evaluation.

5. CONCLUSION

Our proposed process generates software and hardware test

cases for embedded systems using a UML model. The

UML model is first converted into XMI format to generate

test cases, and then state diagram specifications are

converted into an abstract syntax tree using a custom parser

generator. The unit test cases taken from the AST and state

diagrams are generated based on breadth-first searching.

This proposed method generates proper test cases without

any dependence on a specific source-level language (C/

C++, java).

Next, we integrate the unit test cases, using a new

divide-and-conquer approach based on the bottom-up

relationships of each module. Because this approach reuses

the path and input/output information from each unit test

case it reduces the time required to generate an integration

test case compared to random input generation.

Finally, integration test cases are converted back into

hardware test cases. For this process, software test cases

need to be converted according to the particular hardware

test environment. We used XSLT for this. Then, utilizing

the transformed hardware test cases, the software in the

embedded system is tested by means of PXI-based

hardware test instruments. We applied our approach to the

power window switch module of a Hyundai Santa Fe

vehicle.

Our method successfully automates the overall software

and hardware tests for embedded software, helping to

minimize the resources needed during the test phase. It also

allows for modifications without increasing the amount of

processing time because the integration test cases are

generated from the unit test cases. This could be improved

dynamic testing and make it possible to further automate

the generation of hardware test cases. However, our

method cannot be used for all types of test; for example, it

is not possible to create a test case based on human

experience, e.g., fault injection testing. Nonetheless, our

method should prove useful in preventing human error

during the manual generation of test cases.

ACKNOWLEDGEMENT−This work is supported by the

GRRC program of Gyeonggi province (GRRC Hanyang 2014-

B03) and also by World Class 300 project (10050405) of the

Ministry of Trade, Industry and Energy (MOTIE) and the Small

and Medium Business Administration (SMBA) of South Korea.

REFERENCES

Anand, S., Burke, E., Chen, T. Y., Clark, J., Cohen, M. B.,

Grieskamp, W., Harman, M., Harrold, M. J., Mcminn, P.

and Bertolino, A. (2013). An orchestrated survey on

automated software test case generation. J. Systems and

Software 86, 8, 1978−2001.

Beizer, B. (2003). Software Testing Techniques. Dreamtech

Press. New Delhi, India.

Bertolino, A. (2001). Guide to the Software Engineering

Body of Knowledge − SWEBOK. IEEE Press.

Washington, USA.

Bertsimas, D. and Tsitsiklis, J. (1993). Simulated annealing.

Statistical Science, 8, 10−15.

Bringmann, E. and Kramer, A. (2008). Model-based

testing of automotive systems. IEEE 1st Int. Conf.

Software Testing, Verification, and Validation, 485−493.

Chen, T. Y., Poon, P.-L., Tang, S.-F. and Tse, T. (2012).

DESSERT: A divide-and-conquer methodology for

identifying categories, choices, and choice relations for

test case generation. IEEE Trans. Software Engineering

38, 4, 794−809.

Douglass, B. P. (2002). Model Driven Architecture and

Rhapsody. Technical Report. I-Logix.

Florin Pinte, F. S. and Norbert, O. (2008). Automatic

generation of optimized integration test data by genetic

algorithms. Software Engineering Workshops (W. Maalej,

B. Bruegge (Hrsg.)), Gesellschaft für Informatik, Bonn,

Germany.

Fraser, G. and Wotawa, F. (2007). Using LTL rewriting to

improve the performance of model-checker based test-

case generation. Proc. 3rd Int. Workshop Advances in

Model-based Testing, London, UK, 64−74.

Gulia, P. and Chillar, R. S. (2012). A new approach to

generate and optimize test cases for UML state diagram

using genetic algorithm. ACM SIGSOFT Software

Engineering Notes 37, 3, 1−5.

Hartmann, J., Imoberdorf, C. and Meisinger, M. (2000).

MODEL-BASED AUTOMATIC TEST CASE GENERATION FOR AUTOMOTIVE EMBEDDED SOFTWARE TESTING 119

UML-based integration testing. ACM SIGSOFT Software

Engineering Notes 25, 5, 60−70.

Heumann, J. (2001). Generating Test Cases from Use

Cases. http://students.mimuw.edu.pl/~zbyszek/posi/

GeneratingTestCasesFromUseCasesJune01.pdf

Kay, M. (2007). Xsl Transformations (xslt) Version 2.0.

http://www.w3.org/TR/xslt20

Shin, K.-W., Kim, S. S. and Lim, D.-J. (2013). Automatic

test-case generation for hardware-in-the-loop testing of

automotive body control modules. SAE Paper No. 2013-

01-0161.

Lefticaru, R. and Ipate, F. (2007). Automatic state-based

test generation using genetic algorithms. IEEE Int.

Symp. Symbolic and Numeric Algorithms for Scientific

Computing, SYNASC, 188−195.

Leitner, A., Oriol, M., Zeller, A., Ciupa, I. and Meyer, B.

(2007). Efficient unit test case minimization. Proc.

Twenty-second IEEE/ACM Int. Conf. Automated Software

Engineering, Atlanta, Georgia, USA, 417−420.

Myers, G. J., Sandler, C. and Badgett, T. (2011). The Art of

Software Testing. John Wiley & Sons. Hoboken, New

Jersey, USA.

Offutt, J. and Abdurazik, A. (1999). Generating Tests from

UML Specifications. «UML»’99 − The Unified Modeling

Language. Spriger-Verlag Berlin Heidelberg. Heidelberg,

Germany.

Ogata, S. and Matsuura, S. (2010). A method of automatic

integration test case generation from UML-based

scenario. WSEAS Trans. Information Science and

Applications 7, 4, 598−607.

Samuel, P., Mall, R. and Bothra, A. K. (2008). Automatic

test case generation using unified modeling language

(UML) state diagrams. IET Software 2, 2, 79−93.

Samuel, P., Mall, R. and Kanth, P. (2007). Automatic test

case generation from UML communication diagrams.

Information and Software Technology 49, 2, 158−171.

Shafique, M. and Labiche, Y. (2010). A Systematic Review

of Model Based Testing Tool Support. Carleton

University, Canada, Tech. Rep. Technical Report SCE-

10-04.

Shin, K., Kim, S., Park, S. and Lim, D. (2014). Automated

test case generation for automotive embedded software

testing using XMI-based UML model transformations.

SAE Paper No. 2014-01-0315.

W3C (2010). XQuery 1.0: An XML Query Language.

Second Edition ed.

Windisch, A., Wappler, S. and Wegener, J. (2007). Applying

particle swarm optimization to software testing. Proc.

9th Annual Conf. Genetic and Evolutionary Computation,

London, UK, 1121−1128.

Hartig, W., Habermann, A. and Mottok, J. (2009). Model-

based Testing for Better Quality. http://www.vector.com/

portal/medien/cmc/press/PND/Modellbasiertes_Testen_

ElektronikAutomotive_200903_PressArticle_EN.pdf

Tung, Y.-W. and Aldiwan, W. S. (2000). Automating test

case generation for the new generation mission software

system. Proc. IEEE Aerospace Conf., 431−437.

Zelkowitz, M. V. (1978). Perspectives in software

engineering. ACM Computing Surveys (CSUR) 10, 2,

197−216.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J. and

Sheng, Q. Z. (2003). Quality driven web services

composition. Proc. 12th Int. Conf. World Wide Web,

Budapest, Hungary, 411−421.

Zhan, Y. and Clark, J. A. (2005). Search-based mutation

testing for Simulink models. Proc. 7th Annual Conf.

Genetic and Evolutionary Computation, Washington

DC, USA, 1061−1068.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 150
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

