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ABSTRACT−With the goal of developing an accurate and fast lane tracking system for the purpose of driver assistance, this

paper proposes a vision-based fusion technique for lane tracking and forward vehicle detection to handle challenging

conditions, i.e., lane occlusion by a forward vehicle, lane change, varying illumination, road traffic signs, and pitch motion,

all of which often occur in real driving environments. First, our algorithm uses random sample consensus (RANSAC) and

Kalman filtering to calculate the lane equation from the lane candidates found by template matching. Simple template

matching and a combination of RANSAC and Kalman filtering makes calculating the lane equation as a hyperbola pair very

quick and robust against varying illumination and discontinuities in the lane. Second, our algorithm uses a state transfer

technique to maintain lane tracking continuously in spite of the lane changing situation. This reduces the computational time

when dealing with the lane change because lane detection, which takes much more time than lane tracking, is not necessary

with this algorithm. Third, false lane candidates from occlusions by frontal vehicles are eliminated using accurate regions of

the forward vehicles from our improved forward vehicle detector. Fourth, our proposed method achieved robustness against

road traffic signs and pitch motion using the adaptive region of interest and a constraint on the position of the vanishing point.

Our algorithm was tested with image sequences from a real driving situation and demonstrated its robustness. 

KEY WORDS : Lane detection, Lane tracking, Kalman filtering, Vehicle detection, Lane change, Occlusion handling

1. INTRODUCTION

One of the essential elements of a driver assistant system

(DAS) is the detection of forward lanes and vehicles. As

image processing techniques have been improved, many

vision-based detection techniques for forward lanes and

vehicles have been developed to substitute hardware range

sensor-based method because hardware range sensor like

laser sensor is expensive and inconvenient to be equipped.

Previously, avery fast lane detection method on mobile

system by using simple edge detection and Hough

transform (Hsueh et al., 2009) and an hyperbola lane pair

detection method in PC-based system (Chen and Wang,

2006; Borkar et al., 2009) ere proposed. However, their

method cannot deal with the discontinuity in the lane and

pitch motion, which often occur in real driving situations;

however, their method is fast because of its simplicity.

Other PC-based methods that can deal with noisy

situations (Tsai et al., 2008; Wu et al., 2009) used a

complicated random walk or a Kalman filter to find lane

equation as a B-spline curve and achieved robustness

against lane discontinuity and road traffic signs. A fusion

technique of lane candidate detection by steerable filter and

forward depth information from laser sensor (Jung et al.,

2009) minimized the area of searching region for lanes and

also dealt with occlusion by forward obstacles. For dealing

with pitch motion of ego-vehicle, motion vector estimation

techniques by using optical flow (Chang et al., 2002),

motion inpainting (Matsushita et al., 2006), particle filtering

(Yang et al., 2009), and adaptive RANSAC (Choi et al.,

2009) have been proposed. However, the high processing

time of those methods, from ten to several hundreds of

millisecond on high performance PC system, and

expensive range sensor are not suitable for DSP based

stand-alone system which is the expected commercial form

of DAS.

The most time-consuming part of a lane tracking system

is the initial lane detection in which candidate searching

over a large area of an image is necessary. Therefore, it

takes a lot of time to execute a lane detection step every

time the tracked lane is lost. To reduce the time consumed

performing this repetitive detection, a novel method for

maintaining tracking in a missing lane situation, such as a

lane discontinuity, an abrupt illumination change, a lane

change, or an occlusion by a forward vehicle, is necessary.

We propose a fusion system of fast lane tracking and

vehicle detection in a single camera system that is robust

against lane changes, abrupt illumination changes, road*Corresponding author. e-mail: syoh@postech.ac.kr
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traffic signs, car occlusions, and pitch motion. Our system

consists of simple lane detection using template matching,

lane tracking using random sample consensus (RANSAC)

(Fishchler and Bolles, 1981) and a Kalman filter (Welch

and Bishop, 2006) and using Adaboost-based (Viola and

Jones, 2001) vehicle detection. Figure 1 shows the whole

flow chart of our proposed system. Once a lane pair is

detected using simple template matching, the detected lane

pair is tracked through the subsequent images using

RANSAC and Kalman filtering, which determine the

robustness against abrupt illumination changes and lane

discontinuities. Robustness against road traffic signs and

pitch motion is achieved with a small adaptive region of

interest (ROI) for the lane equation and a vanishing point

constraint. Additionally, the state transferring technique is

used to maintain tracking of the lane when the ego-vehicle

is changing lanes. The vehicle detection portion detects

both the rough regions of forward vehicles using the

Adaboost detector as well as the correct rectangular region

using our own post-processing techniques, which consist of

edge filtering and bottom line correction. This vehicle

region information is used to deal with occlusions in the

lane detection and tracking.

The contributions from this paper are the following.

- Very low computational complexity due to a very

simple template matching using integral images and a rule-

based lane pair detection, and the overall computational

complexity is reduced to several milliseconds when using a

PC.

- Robustness against illumination change, lane

discontinuity, pitch motion, and road traffic signs. Local

template matching for lane candidate extraction results in a

number of lane candidates under various lighting

conditions. Noisy candidates and temporal missing

candidates from lane discontinuities are dealt with using

RANSAC and Kalman filtering. Additionally, an adaptive

ROI technique and a vanishing point constraint prevent

failures in tracking as a result of pitch motion and road

traffic signs.

- Maintaining tracking during a lane changing situation.

Our proposed state transferring technique makes

continuous lane tracking during lane changing situations

possible without re-initialization using relatively time-

consuming lane detection.

- Accurate region detection for forward vehicles. Edge

filtering and bottom line correction followed by Adaboost

vehicle detection accurately determine the region of

forward vehicles.

- Dealing with occlusion by forward vehicles. Lane

candidates in the forward vehicle regions are eliminated in

the lane detection and tracking. Therefore, the effect of

noisy candidates from occlusion is reduced. The remaining

portions of this paper consist of the following. Section 2

describes the details about our lane detection and tracking

algorithm. Section 3 describes the vehicle detection and its

application to lane tracking for dealing with occlusions

from forward vehicles. The performance tests of our

algorithm are presented in section 4. The conclusions of

this work and future work for further improvement are

described in section 5.

2. FAST LANE DETECTION AND TRACKING

2.1. Extraction of Lane Candidates

Because the difference between the lanes and the road

intensities is obvious in the green channel with various

illumination conditions in a real driving situation, the green

channel input image is used for the lane candidate

extraction. Candidate extraction is performed by convolution

of the input intensity and the templates, as depicted on the

right side of Figure 1. The blue dotted lines on the left side

of the image in Figure 2 represent the ROI for searching for

lane candidates. The ROI is set as the forward area from 3

m to 30 m in which the lane is not occluded by an ego-

vehicle and not too narrow to be detected.

Because this convolution needs N additive steps when

Figure 1. Proposed lane tracking system.
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the length of the template is N, the computational cost can

be reduced by several additions using an integral image

(Viola and Jones, 2004). If the coordinate of the candidate

position is (u, v) and the integral image is I, then the left

and right convolution, CVL and CVR, can be calculated

from (1) and (2).

, (1)

, (2)

These two convolutions calculate the average intensity

difference between the road and the lane. Therefore, many

lane candidates can be obtained along a roughly horizontal

scan line by selecting the positions that have convolution

values greater than a threshold. Among these roughly

selected lane candidates, a representative candidate that has

the maximum convolution values is selected. Figure 3(a)

shows the result of candidate extraction. The extracted

candidates are presented as green dots.

2.2. Initial Lane Pair Detection

In the next step, the extracted representative candidates are

clustered based on the distance in the image coordinates. If

the distance of two candidates is less than 6 pixels, then

they are selected to be in the same cluster. Here, the

clusters that only have a small number of lane candidates

(less than 5) are assumed to be a noise cluster and are

excluded. Figure 3(b) shows the result of clustering. There

are two clusters in Figure 3(b): the dark red cluster for the

left lane and the light blue for the right lane.

After clustering the lane candidates, the lane equations

for each cluster are calculated in the world coordinate

system. The equations are all linear, as shown in Figure 4a.

To calculate the linear equations for each cluster, first, the

candidate points on the image coordinate (u, v) are

transformed into the corresponding world coordinates (X,

Z) using an inverse perspective transform matrix (IPT)

(Haralick, 1989) T -1 from (3)~(5).

, (3)

, (4)

. (5)
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Figure 3. Results of lane candidate extraction and clustering.
Figure 4. Lane equations in the world coordinates (a) and

the image coordinates (b).

Figure 2. Input image and templates for the lane candidate

extraction.
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The set of candidates in the world coordinate (Xi, Zi) is

used to calculate the coefficients (a1, a0) of a linear

equation using the least squares error method, as observed

(6).

(6)

Among the linear equations in world coordinates, one

pair of lanes that satisfies the following conditions is

selected as the final lane pair.

Condition #1) Each lane of the lane pair has more than

10 candidate points in the forward range of [3m, 10m]

Condition #2) The distance between two lanes is greater

than 2.5 m and less than 3.75 m at the forward position of

5 m, where the range of the lane width is based on the

Korean standard lane width of 2.75 m (common road) ~ 3.6

m (expressway).

Condition #3) The angle between the two lanes is less

than 2 degrees

If there are several lane pairs that satisfy these three

conditions, then the lane pair that has the minimum

distance between the two lanes is selected as the lane pair.

From the two selected lanes, the lane that has a smaller X

coordinate corresponding to 5 m in front of the vehicle is

the left lane and the other lane is the right lane.

The last step in the initial lane detection is transforming

the lane equations from world coordinates to image

coordinates. This step is necessary because the lane

tracking will be performed by the lane equations in the

image coordinates. The equations themselves cannot be

transformed because transferring between the world and

the image coordinates is not linear. Therefore, the points on

the lane equations are sampled and projected from the

world coordinates to the image coordinates. Then, the

hyperbola lane equation pair in image coordinates is

calculated using the projected points. The hyperbola lane

equation pair in the image coordinates is shown in Figure

4b, where (u, v) is the coordinate of the image point, k is the

curvature, bL and bR are the left and the right tangent of the

asymptotes, h is the height of the vanishing line, and c is

the horizontal center of the input image. First, the height of

the vanishing point h is calculated as the v coordinate

corresponding to an infinite Z from (7) using the IPT

described in (5).

. (7)

Next, the other parameters from the hyperbola equation

are calculated using the left and right lane sample points,

(uLi, vLi) and (uRi, vRi), in image coordinates using the least

squares method given in (8). Figure 3c shows the calculated

lane equation in image coordinates. The blue curve and the

red curve represent the left and the right lane for each. The

green cross represents the vanishing point (c, h).

(8)

. (9)

2.3. Adaptive ROI for Lane Candidate Extraction during

the Tracking Phase

Once a lane pair is detected, a small region of interest

(ROI) around the previously detected lane pair is used for

fast and robust lane tracking against road traffic signs. The

ROI in image coordinates for (u = 0, v) is calculated in (12)

using equations (3), (4), (10) and (11). Here, the region

from -0.6 m to +0.6 m centered on the previous lane

equation is used as the default ROI. For the coordinate

transformation from world coordinates to image coordinates,

the perspective transform (PT) matrix T is used.
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Figure 5. Example of the lane candidate extraction in the

ROI.
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, (10)

, (11)

. (12)

We used an adaptive ROI width to consider the

uncertainty of the previous lane equation. If the uncertainty

of the lane equation is large, then the lane candidates

should be searched for in a large ROI because the large

uncertainty of the lane equation means that the lane

equation does not represent the actual lane equation well.

Conversely, if the uncertainty of the lane equation is small,

then the lane candidates are assumed to exist near the

previous lane equation. The uncertainty of the lane

equation is proportional to the variances of bL and bR. Using

this uncertainty, ROIL and ROIR, the widths of the left and the

right ROI, can be adaptively calculated, as given in (13) and

(14). ROIo is the default width of the ROI corresponding to

the variance 0.05. p22 and p33 are the elements of the state

covariance that correspond to bL and bR, respectively. 

, (13)

. (14)

Figure 5 shows the result of the candidate extraction

from the ROI. The green lines represent the ROI regions

for the left and the right lanes, and the green dots represent

the detected lane candidates. The lane candidate was

extracted using the integral input image and the lane

candidate templates, as explained in section 2.1.

In a different process from the initial lane detection

process, the representative lane candidate in the tracking

phase is selected as the closest to the ego-vehicle in the

lane tracking process. In the case of Figure 6(a), if one lane

is separated in two different lanes, the results are an

incorrect lane equation. However, with the selection of the

left-most or the right-most candidate, the correct lane

tracking, as shown in Figure 6(b), is possible in the case of

double lanes.

2.4. Tracking Lane Equation with Noisy Lane Candidates

Using RANSAC and a Kalman Filter

Lane candidates often exist outside the ROI in situations

where pitch motions are caused by an unstable road or

speed bumps, obscure lane painting, or an illumination

change. The RANSAC algorithm (Fishchler and Bolles,

1981) is used to deal with noisy lane candidates because of

its good and fast performance when selecting inliers.

Additionally, an extended Kalman filter (EKF) (Welch and

Bishop, 2006) is used to track the non-linear lane equation

when there are noisy candidates and unstable shaking in the

real driving environment. Because the velocity of the

vehicle and other controls from outside the vehicle are not

used here, no control parameters or dynamic models are

needed for the EKF. Therefore, the equations of Kalman

prediction and correction are simplified as (15)~(18).

, (15)

, (16)

, (17)

, (18)

where k is the time step,  is the Kalman state,  is the

predicted state,  is the predicted covariance of the state,

Pk is the covariance of the state, Qk is the covariance of the

state noise, zk is the measurement, K is the Kalman gain,

h(x) is the function that maps the state to the measurement

space, and H is the measurement matrix. For lane equation

tracking using a Kalman filter, the initial parameters, such

as the state , the covariance of state P0, and the

covariance of state noise Q0, should be defined first. The

initial state  can be defined as a vector that consists of

the initially detected parameters of the hyperbola lane

equation pair, (k, bL, bR, c, h) as calculated in (14).

. (19)

The covariance of the state and the covariance of the

state noise have non-zero values only for the diagonal

elements because each element of the state is independent

except for bL and bR. bL and bR, which are not independent
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Figure 6. Effect of the representative lane candidate

selection. In the case of double right lanes, there can be two

representative lane candidates, and the incorrect right lane

equation is calculated (a). However, by selecting the

nearest candidate, the right lane equation is calculated

correctly (b).
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and have some covariance value because the tangents of

the two lanes in the hyperbola pair vary simultaneously.

Therefore, the initial state covariance and the state noise

covariance are defined, as shown (20). The values are

experimentally determined. Once the initial parameters of

the Kalman filter are defined, the Kalman prediction steps,

as defined in (15) and (16), are executed.

. (20)

After extracting the lane candidates from the adaptive

ROI, the outliers are removed using the RANSAC

algorithm. Here, the threshold for the inliers is set to 0.2 m.

The following descriptions outline the RANSAC process

for the selection of inliers.

Step1) select 3 different points from the left lane

candidates.

Step2) calculate the left lane equation (a, bL, c) with the

points selected using the least squares error method.

Step3) select, from the lane candidate, the inliers in which

the distance from the lane equation is less than 0.2 m.

Step4) store the index of the inliers and repeat steps 1-3

until a maximum repeat number is reached or the number

of inliers is equal to the number of left lane candidates.

Step5) repeat steps 1-4 for the right lane

Step6) if the number of inliers for the left or the right

lane is less than 10, the inliers are abandoned.

The Kalman update, which is the last step of lane

tracking, is executed with the selected inliers. If the inliers

do not exist, the predicted state is used as the new lane

equation without the Kalman update. If the inliers are valid,

then their u coordinates are used as the measurement zk for

the Kalman filter, as defined in (21). Here, the distance l

between the two lanes in world coordinates is 2.5 m, which

is the usual lane width for a Korean highway.

. (21)

The predicted measurement  is calculated as a

vector of u values from the predicted lane equation 

corresponding to v of each lane candidate, as defined in

(22)~(24).

. (22)

, (23)

. (24)

. (25)

The measurement matrix H is a first order derivative of

the predicted measurement with respect to the state, as

defined in (25).

The measurement noise matrix R is the diagonal matrix

in which the diagonal elements consists of the variances of

the elements in the measurement vector. The noise variance

is set as 5 pixels for each measurement element, for

example, 0.1 m for the width of lane l. Therefore, the

measurement noise matrix is shown in (26).

. (26)

Calculating the Kalman gain K requires the operation of

matrix inversion with a (n + m + 1) by (n + m + 1) matrix,

as shown in (27)

. (27)

As the number of lane candidates increases, the amount

of time consumed performing matrix inversion increases

enormously. To prevent this, (27) is modified into (29)

using the matrix inversion lemma (Haykin, 2001) (28) to

reduce the computational complexity. In equation (29), the

inversion of the measurement noise matrix R can be

calculated simply by calculating the inverses of its diagonal

elements in advance and the inversions of state covariance

matrix P, and the matrix inside the parenthesis is also

simple because its size is 6 by 6.

matrix inversion lemma: 
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. (29)

With these Kalman gains, measurements, and the

predicted measurements, a corrected state of the lane

equation and a state covariance matrix are calculated using

(17) and (18).

For the stability against pitch motion, instead of complex

image stabilization techniques (Chang et al., 2002;

Matsushita et al., 2006; Yang et al., 2009; Choi et al.,

2009), the height of the vanishing line of the hyperbola

lane equation, h, is restricted to be in the range from 30

pixel index to 80 pixel index in image coordinates, as

shown in (30).

. (30)

For the effective output of the lane equation, we assume

that the tracked lane equation is valid if lane tracking is

successful for 10 continuous frames. Successful tracking

means that the number of lane candidates after RANSAC is

greater than 10 for either the left or the right lane. Once the

output is valid, the output remains valid until tracking fails

for 10 continuous frames. If the output becomes invalid,

then the initial detection described in sections 2.1 and 2.2 is

executed again to find the new lane equation.

2.5. State Transferring for dealing with Lane Change

When the vehicle changes lanes to the left, the equation for

the left lane becomes that of the right lane, and a new

equation for the left lane should be recalculated. Instead of

repeating the detection process as explained in sections 2.1

and 2.2, the state of the Kalman filter is transferred from

the left to the right and a new estimate for the left state is

made with the lane width. This scheme can reduce the

number of detections during the lane change situation and

can reduce the processing time. When the vehicle is

approaching the left lane, the tangent of the left lane bL

changes from a negative value to zero. After the vehicle

crosses the left lane, bL becomes positive. Therefore, we

assume that the lane change to the left occurs when bL is

greater than a positive margin of 0.2 to detect the moment

of the lane change. State transferring is simply copying bL

to bR when the lane change is to the left. Because the other

parameters of the lane equation, (k, h, c), are the same for

both the left and right lanes, and because p22, the variance

of bL, is also copied to p33, the variance of bR. p23 and p32,

and the covariance between bL and bR is not changed

because the relationship between them does not change

much during the lane change situation. bL of the new left

lane equation can be estimated as bL−l. Additionally, p22 is

not changed because we assume that the uncertainty of the

new left lane equation is the same as that of the right lane

equation. In the case of a lane change to the right, the same

process in the opposite direction is applied. Equations (31)

and (32) describe the state transfer process for the lane

change to the right and to the left, respectively.

(31)

(32)

3. DEALING WITH OCCLUSION USING 
FORWARD VEHICLE DETECTION

3.1. Fast Forward Vehicle Candidate Extraction using

Adaboost and the ROI

The AdaBoost vehicle detector and 15 Haar-like features,

which include the original features (Viola and Jones, 2004)

and the extended features (Lienhart and Maydt, 2002) as

shown in Figure 7, are used for the vehicle candidate

extraction.

The ROI of the forward vehicle extraction is set to 6 m

to 50 m because vehicles beyond 50 m are too small to be

K H
T
R

1–

H P
1–

+( ) 1–

H
T
R

1–

=

h max 30 min 80 h,( ),( )=

if bR 0.2 then–<
   bL bR p22 p33 and bR bR l,+=,=,=

if bL 0.2 then>
   bR bR p33 p22 and bL bL l– .=,=,=

Figure 7. Haar-like features used to train the AdaBoost: (a)

original Haar-like features; (b) upright extended features,

and (c) 45o rotated features.

Table 1. Algorithm for computing the range of the sub-

window size.

• for (u, v)
Compute the real world coordinate (xL, y) of (u, v)

Compute the minimum and maximum right position:
xR,min = xL +1.5, xR,max = xL+2.7.
Compute the image coordinate of the right positions:

Compute the minimum and maximum window width:
Wmin (u, v) = umin-u, Wmax(u, v) = umax-u.
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detected, and vehicles closer than 6 m are both seriously

affected by the camera lens distortion and are not completely

shown in the input images. The image coordinates v6m and

v50m corresponding to 6 m and 50 m are calculated using

perspective transform (PT) matrix T, as defined in (33) and

(34).

, (33)

. (34)

Then, the input image is scanned using a sub-window

whose bottom position is between v6m and v50m to locate the

vehicle candidates using AdaBoost. To speed up this

process, we exploit the following facts: the width of

vehicles of our interest range from 1.5 m to 2.7 m; vehicles

at further distances are smaller and located at higher

positions in the images compared with the vehicles that are

closer to the vehicle. The range of the expected vehicle

width [Wmin, Wmax] at each image coordinate (u, v) can be

calculated using the IPT matrix as described in table 1.

Once the range of the vehicle width is computed, the

width does not need to be computed again unless the

camera position changes because the widths only depend

on the IPT matrix. Then, our modified scanning scheme

only classifies the sub-windows whose left-bottom position

is (u, v) and whose width W is between Wmin (u, v) and Wmax

(u, v) (Table 2). The sizes of the vehicles vary widely in the

images depending on the distance from the scanning

vehicle. Therefore, we set the parameters for the sub-

window scale: Smin = 1, Smax = 10, Sstep = 1.2. The vertical

and horizontal scanning steps were tuned to be ustep = 2 and

vstep =1. The initial sub-window size is 24 by 24. This

process both filters the extracted vehicle candidates based

on their width and reduces the scanning time.

3.2. Vehicle Candidate Verification Using Edge Filtering

Although the extracted vehicle candidates are filtered

based on their width, it is still probable that non-vehicles

will be detected as vehicles. To reduce the number of

detected false positives, the extracted vehicle candidates

are verified based on the facts that vehicles have strong

vertical edges on their left and right sides, and vehicles

have strong horizontal edges at the bottom. The edges are

detected using a 3 by 3 Sobel mask as:

Gx(u, v) = I(u, v)* Sx, (35)

Gy(u, v) = I(u, v)* Sy, (36)

Where Sx and Sy define the Sobel mask, I represents the

grayscale input image and * represents the convolution

operation. The condition for edges to be vertical is (37),

and the condition for edges to be horizontal is (38).

v6m v50m,[ ] v'6m
s6m
--------

v'50m
s50m
---------,=

u'6m u'50m
v'6m v'50m
s6m s50m

T
0 0

6 50

1 1

=

Table 2. Modified scanning scheme.

for (scale = Smin; scale ≤ Smax; scale× = Sstep)

        vstep ← Sstep×vstep

        ustep ← Sstep×ustep

       W ← Sstep×W

       for (v = v50m; v ≤ v6m ; v + = vstep)

       for (u = 0; u ≤ Wimage ; u + = ustep)

           if Wmin (u, v) ≤ W ≤ Wmax (u, v)

               classify the sub-window
              else

                 skip

Figure 8. Detected vertical and horizontal edges; (a) original

image; (b) vertical edges and (c) horizontal edges.

Figure 9. Region in which edges were searched for to

verify the vehicle candidates dotted box: a detected region;

solid box; regions in which edges were searched.
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, (37)

. (38)

The orientations of the edge pixels are calculated as the

absolute value of the slope because this method is much

faster than the arc tangent function. The edge images of

Figure 8 show that vehicles have strong vertical edges on

both sides (Figure 8(b)) and have strong horizontal edges

on many parts of the vehicle: the bumper, the rear

windshield, and the shadow (Figure 8(c)). Therefore, the

existence of such edges is an important feature of the vehicle

appearance.

In urban areas, however, many buildings exist that have

strong vertical and horizontal edges as well. Those edges

can cause false detections. To avoid this, the longest

vertical edges are searched for in the lower regions of the

detected regions (Figure 9(a)). The regions are centered at

the left and right side of the detected regions, and the width

and heights are proportional to the width of the detected

window size. The longest horizontal edges are also

searched for in the lower region of each vehicle candidate

(Figure 9(b)). The size of the region is also proportional to

the size of the vehicle candidates. f1 = 0.5, f2 = 0.25, and

f3 = 0.5 are used in this work.

Vehicles at a close distance may have discontinuous

edge pixels because of their detailed texture and distortion

caused by the camera. Therefore, we allow the longest

edges to have a small number of discontinuous edge pixels.

In our algorithm, the number of maximum discontinuous

pixels is 5. The candidates that have edges longer than

thresholds are selected as vehicles. The threshold for the

vertical edges on the left and the right sides is determined

to be W×Tvertical. Likewise, the threshold length of horizontal

edges is determined to be W×Thorizontal. Tvertical = 0.25 and

Thorizontal = 0.5 are used in this work.

3.3. Correct Vehicle Region Calculation by Edge and

Shadow Filtering

Many regions around vehicles (Figure 10(a)) obtained as

the result of AdaBoost detector with edge filtering should

be clustered to represent one region for each vehicle

(Figure 10(b)) when dealing with occlusion in the lane

tracking process.

Let two detected regions have widths W1 and W2 and be

centered at (w1, y1) and (x2, y2), respectively, as shown in

Figure 11. Then, the criteria for the two detected regions to

belong to the same vehicle are the distance, given in (39),

and the size, given in (40).

Gy

Gx

-----
1

3
---<

Gy

Gx

----- 3>

Figure 10. Detected vehicles: (a) detected region and (b)

average of the detected regions.

Figure 11. Parameters that are used in the clustering.

Figure 12. Position correction: (a) incorrect vehicle region

and (b) corrected vehicle region.

Figure 13. Shadow estimation: (a) input image; (b) histogram

equalization; (c) binary image and (d) estimated shadow.
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, (39)

, (40)

where Wlarge is the side length of the larger region, and Wsmall

is the side length of the smaller region between W1 and W2.

Here, the ratios of the overlap length foverlap = 0.5 and the

area fsize = 0.5. 

Because the detected vehicles can have incorrect vehicle

regions, as shown in Figure 12(a), the detected regions are

corrected (Figure 12(b)) using the edges and the shadows

of the detected vehicles. The left and the right positions of

the detected vehicles are corrected to be the position at

which the longest vertical edges are in the verification step.

The bottom position of the detected vehicles can be

corrected using the shadows below the vehicles. Although

the shape and the intensity of shadows can vary depending

on both the lighting and the surface conditions, the bottom

position can be estimated from the shadow.

First, histogram equalization (Figure 13(b)) is performed

to reduce the effects of the lighting condition. Next,

binarization is executed to obtain the dark regions from the

images, which include the vehicle’s shadows (Figure

13(c)). Finally, the dark pixels are filtered out based on the

expected width of vehicle in that position (Figure 13(d)).

The filtering process scans the binary image in the

horizontal direction searching for the start position and the

end position of the dark pixels. If the width is not shorter

than the minimum width of vehicles at that position, the

dark pixels are marked as a shadow. Then, the bottom

position of a detected vehicle is estimated to be the bottom

position of the filtered shadow. There is no information that

indicates if the detected region is either below or above the

actual vehicle region. Therefore, we scan the bottom of the

filtered shadow around the bottom position of the detected

vehicle region. The shadow searching range is determined

to be proportional to the height of the detected vehicle. The

bottom position is corrected if the estimated bottom

position exists in the search range. Table 3 presents the

whole process of this shape filtering algorithm.

3.4. Dealing with Occlusion by Forward Vehicles

In the lane detection and tracking process, the falsely

detected lane candidates on the rectangular regions of

forward vehicles are eliminated using the result of the

forward vehicle detection. Every detected lane candidate

defined in sections 2.1 and 2.3 is tested if it is in these

regions. If a candidate is in one of the regions, then we

conclude that the candidate is not valid and it is not used as

a measurement for the Kalman correction process.

4. EXPERIMENTAL RESULTS

4.1. Camera Installation and Calibration

For the experiment, a CCD camera (Point Grey FL2-

03S2C) was installed on the front windshield of our

experimental vehicle to be directed forward and slightly

downward to obtain the road image sequence. Then, an IPT

matrix, which maps the image coordinates to the world

coordinates is calculated under the assumption that the

vehicles are on a flat road. First, we specified markers and

measured the world coordinates (X, Z) of the markers in

x1 x2– W1 W2+( ) foverlap×≤

y1 y2– W1 W2+( ) foverlap×≤
Wl earg fsize Wsmall Wl earg≤ ≤× 2 fsize–( )×

Table 3. Shadow filtering algorithm.

• Histogram equalization
• Compute binary image B
• Estimate shadow
  for v
    for u
       if B(u, v) = 0 and darkpixel = false
         start = u
         darkpixel = true
      else if B(u, v) ≠ 0 and darkpixel = true
          end = u-1
          width = end - start
          darkpixel = false
          if width >=Wmin

             mark pixels between (start, v) and (end, v)
             as shadow

Figure 14. Camera Installation and calibration.

Table 4. Details of database for testing the lane detection

and tracking.

DB Time Road condition
Lighting
condition

#of images

#1 6:00

Highway including
unnels
curved lanes 
zebra crossings
lane discontinuities
lane changes

Twilight 19453

#2 9:00 Daylight 15050

#3 12:00
Daylight with 
specular light

9483

#4 16:00 Daylight 8500

#5 18:30 Twilight 5191

#6 21:30 Street lamp 12202

* Camera Setting: 320 × 240, 24-bit RGB color, 20 fps and
FOV of 45 degrees
* All DB were obtained in a vehicle speed range of ~30 km/h
- 60 km/h
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meters. During this step, we set the origin to be the front

center of the experiment vehicle. Second, we manually

obtained the image coordinates (u, v) of the markers.

Figure 14a shows the hand-labeled markers in an image

sample used to calculate the IPT. Then, we computed the

elements of the 3 by 3 IPT matrix T−1 using the least squares

method given in equations (3)~(5). Mathematically, the

computation requires only four matches of image and world

coordinates. However, for accuracy, we used 14 matching

points that are spread over the entire area of interest. If the

matching points are concentrated in a small area, the

resulting IPT matrix would be over-fitted to the small area

and would fail to describe the relation for the entire area of

interest correctly. The calculated IPT matrix has a mean

square error of 0.068 m for the 14 matching points (Figure

14(b)).

4.2. Test of Lane Tracking with an Illumination Change

To test the lane detection, we constructed a database that

included 6 image sequences from different times (5 from

the daytime and 1 from the night time) in the real highway

driving environment. Varying illumination conditions for

different times of the day and night, tunnels, curved lanes,

lane discontinuity, road markers, and lane changing

situations are included in this database. Table 4 shows the

details of the database.

We used 10 cm as the lane marking width and 20 as the

threshold for template matching during the lane candidate

extraction. These values are determined experimentally to

achieve the best lane tracking performance. To calculate

the lane detection rate and the false detection rate, we

defined the success and the failure in lane tracking as the

existence or the absence of lane. We defined a success in

lane tracking when the tracked hyperbola lane equation did

not deviate by more than one lane marking width (20 cm)

from the lane pair on the image (ground truth) in the frontal

range from 3 m to 30 m, as shown in Figure 15(a).

If the tracked lane equation deviates by more than 20 cm

from the real lane pair, as shown in Figure 15(b), then the

Figure 15. Definition of a lane tracking success (a), lane

tracking failure (b), and no lane conditions (c, d).

Table 5. Overall test results of the lane tracking.

DB
True positive rate 

(true positive/positive)
False positive rate

(false positive/negative)

#1 96.91 % (18562/19153) 1.7 % (5/300)

#2 96.82 % (14340/14800) 2 % (5/250)

#3 88.15 % (8271/9383) [A] 5 % (5/100)

#4 96.36 % (8094/8400) 2 % (2/100)

#5 98.37 % (5008/5091) 0 % (0/100)

#6 89.27 % (1239/11546) [B] 6.7 % (44/656)

Figure 16. Examples of lane tracking results during the

daytime.
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result is a failure. For the lane existence, we assumed that

no lane exists in the image if there is no lane in the frontal

range from 3 m to 15 m (Figure 15(c)) or if some part of a

zebra crossing is on the bottom of the image (Figure 15(d)).

We also defined the true positive rate and the false positive

rate as an indicator of the lane tracking performance, as

given in (41) and (42).

, (41)

. (42)

The overall test results of the lane tracking using the

database shown in table IV are presented in table 5. We

find that the overall test performance of our algorithm is

greater than 96 % for the true positive rate and less than 2

% for the false positive rate except in the case of DB #3 and

DB #6. The reason for the low true positive rate in DB #3

[A] is that the road image was affected by specular light

due to the very strong sun light at noon. If the specular light

affects a small region of the image, then our algorithm does

not fail to track the lanes because the Kalman filtering can

cope with a small loss of lane candidates or noisy

candidates. However, in the case of DB #3, the interference

by the specular light was continuous and on most of the

image region. Therefore, our algorithm failed to track the

lane equation occasionally. The low true positive rate in

DB #6 [B] is because of the low illumination condition at

night and the specular light projected on the frontal

window. During night time illumination conditions, the

performance of the lane tracking depends on how

adjustable the camera is with respect to the lighting

condition and how intense the specular light is from the

street lamps or the tail lights of vehicles in front of the test

vehicle.

Figure 16 shows some examples of lane tracking results

using our algorithm. The blue and sky blue lines represent

the tracked left lane. The red and yellow lines represent the

tracked right lane. Our algorithm could track straight and

curved lanes in several illumination conditions of specular

true positive rate
# of success lane tracking

# of images on which lane exists
------------------------------------------------------------------------------=

false postitve rate
# of positive lane tracking

# of images on which lane does not exist
-------------------------------------------------------------------------------------------------=

Figure 17. Examples of lane tracking results during night

time.

Figure 18. Result of lane tracking going into and out of a tunnel.
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light and in tunnels, with speed bumps, and road traffic

signs (six left images marked as successes in Figure 16)

although there were some failures with a small mismatch

between the tracked lane and real lane just after a speed

bump (top right image marked as a failure in Figure 16) or

in the beginning of strong curved lanes that had a curvature

radius of less than 35 m (bottom right image marked as a

failure in Figure 16).

Figure 17 shows some examples of lane tracking at

night. Although the brightness of the image was low and

some specular light from the street lamps and vehicles in

front of the test vehicle existed, the lane tracking results

were correct, as shown in the six left images of Figure 17.

When the brightness of the image was very low (bottom

right of Figure 17) or the specular light was strong enough

to affect the entire image (top right of Figure 17), our

algorithm occasionally failed to track the lane.

Figure 18 shows the lane tracking result when the

vehicle is going in and out of a tunnel. When the vehicle is

going into the tunnel (the images on the first row of Figure

18), there is an abrupt change in the white balance and a

reduction in the brightness. After allowing some time for

the camera to adjust to the illumination, the brightness

increases to a normal condition and the white balance

becomes stable (the images on the second row of Figure

18). When the vehicle is exiting the tunnel, the brightness

of the image abruptly increases and the white balance

changes again because of the light coming from outside the

tunnel (the bottom row of Figure 18).

Because of these abrupt changes in the illumination, the

number of lane candidates became too small to track the

lane with the detection technique alone. However, our

algorithm using RANSAC plus Kalman filtering can track

the lane successfully in this situation because it can predict

the lane equation without the lane candidates for a short

duration of time, as shown in Figure 18.

4.3. Test of Lane Tracking during a Lane Changing

Situation

We tested our lane tracking algorithm using an image

sequence that records a lane changing situation. Figure 19

shows how our state transferring method can deal with a

lane changing situation. Here, the solid red line on the

graph represents the trajectory of the lateral position of the

right lane, the solid blue line the trajectory of the left lane,

the dashed red line the threshold of the rightward lane

change, and the dashed blue line the threshold of the

leftward lane change. We set the threshold to 0.2 m for the

leftward lane change and -0.2 m for the rightward lane

change. From frame no. 50 to 110, the ego-vehicle was

approaching the right lane, which is the red line on the left

most image of Figure 19. When the lateral position met the

threshold for the rightward lane change, around frame no.

111, the right lane equation was transferred to the left lane

Figure 20. Examples of training images: (a) vehicle images

and (b) non-vehicle images.

Figure 19. Lane tracking during a lane changing situation.
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equation and a new right lane was estimated, as defined in

(31). As the ego-vehicle was approaching the center of the

new lane pair, our algorithm kept tracking the new lanes

without an additional detection step.

4.4. Test of the Vehicle Detection and dealing with

Occlusions

The AdaBoost vehicle detector was trained with a number

of 24 by 24 sized training images in which 671 positive

(vehicle) samples and 24,593 negative (non-vehicle)

samples were included. The positive sample set includes

various types of vehicles, i.e., sedans, buses, trucks, and

SUVs (Figure 20(a)). The bottom of the positive training

image is aligned at the position where the road and the rear

tires make contact. Additionally, the left and right sides of

the positive training image are aligned at the left and right

sides of the vehicles, respectively. Negative image samples

include the surface of the road, the traffic signs on the road,

parts of vehicles, and many other objects that can be seen

on the road (Figure 20(b)).

During urban driving, drivers should pay attention to the

three closest vehicles in the left, the right and the ego lanes

because it is possible that those vehicles can collide with

the ego-vehicle if the drivers are careless. Therefore, we

counted the detections of those vehicles and the false

detections in the three lanes under various lighting

conditions in urban traffic. The vehicle detection rate was

defined as the ratio of the number of positive detections to

the number of vehicles, as defined in (43).

. (43)

The false detection rate was defined as the ratio of the

number of false detections to the number of detections, as

defined in (44). Detections of non-vehicle regions and parts

of vehicles were considered false detections.

. (44)

The detection rate and the false detection rate are

presented in table 6.

The lighting conditions at noon (Figure 21(c)) were the

best for our vehicle detection algorithm. In the morning,

shadows of buildings and trees are on the road and on

vehicles (Figure 21(b)), which caused lighting conditions

to frequently change. Therefore, the vehicle detection rate

and false detection rate were the worst in the morning.

Under the lighting conditions at dawn (Figure 21(a)) and in

the afternoon (Figure 21(d)), vehicles are shown less

clearly in the images because the input images are darker

than they are in the daytime. Back lighting sometimes

makes the situation worse. Therefore, the detection rates at

dawn were worse than the detection rate at noon. On rainy

days, the shape and the intensity of the shadow appear

differently than the way they appear on sunny days, and the

appearances of the vehicles are reflected on the wet road

surface (Figure 21(e) and (f)). The proposed algorithm can

detect vehicles on a rainy day because our algorithm does

not utilize the shadow below the vehicles in the detection.

For the detection range in the forward vehicle position,

vehicles in the range of 5 m to 50 m were considered.

Although vehicles up to 100 m that corresponded to the

minimum size of the scanning window (24 × 24 pixels) can

be detected with low precision, we used a limited range of

up to 50 m for more accurate results.

However, there are two major factors that negatively

affect our algorithm’s detection rate. One factor is the

raindrops on the front windshield, which cause the input

 Detection rate
# of positive detections

# of vehicles
-------------------------------------------------------=

 False detection rate
# of false detections

# of detections
------------------------------------------------=

Figure 21. Illumination conditions of the test images

obtained at dawn (a), in the morning (b), at noon (c), in the

afternoon (d), and on a rainy day (e, f).

Table 6. Vehicle detection rates and false detection rates

under various lighting conditions.

Time
Detection 

rate
False 

detection rate
Range of forward 

vehicle position

Dawn 79.37 % 7.33 %

5 m (near) ~ 
50 m (far)

Morning 70.83 % 16.78 %

Noon 90.77 % 7.81 %

Afternoon 85.57 % 8.42 %

* Average bottom line error is only the amount of several pix-
els
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images to be locally distorted. The cause of this problem is

that raindrops on the front windshield are not immediately

wiped off as they fell on the front windshield. If the vehicle

is completely distorted (Figure 22(a)), our algorithm fails

to detect the vehicle. Conversely, our algorithm can

partially detect distorted vehicles (Figure 22(b)). Another

factor is occlusion by the window wipers. In the case where

the wipers on the window make a vehicle appear darker,

our algorithm could detect the vehicle (Figure 22(c)).

However, wipers can interfere with the verification of a

vehicle using a horizontal edge, which causes our

algorithm to fail to detect the vehicle (Figure 22(d)). These

problems are inevitable on a rainy day. Therefore, the

vehicle detection rate of our algorithm is degraded on a

rainy day.

Figure 23 shows an example of dealing with occlusions

caused by forward vehicles. When a forward vehicle was

close to the ego-vehicle, several false lane candidates were

detected in the vehicle region (Figure 23(b)) because the

pattern of tail lights of the forward vehicle is similar to the

lane pattern. Therefore, the tracked lane equation was

affected by the false candidates and resulted in the wrong

equation (Figure 23(a)). Using the result of the vehicle

detection, the false lane candidates were omitted (Figure

23(d)), and the calculated lane equation without the false

lane candidates was corrected (Figure 23(c)).

4.5. Processing Time

Our algorithm was tested on a laptop computer (Intel ®

Core™2 T7200, 2.00 GHz, 1.00 GB RAM) with a 320 by

240 input image size sequences. Table 7 shows the time

consumption for each part of our algorithm. In the

detection mode of our algorithm (initial lane detection in

sections 2.1 and 2.2), the processing time without vehicle

detection is 36 ms per frame, which is almost nine times

greater than the tracking mode, which was 4 ms. Because

of lane candidate extraction on a small ROI, no clustering,

and very simple RANSAC and Kalman filtering for the

lane equation in the tracking mode, the time consumption

for each portion of the tracking mode is much less than that

of the detection mode. Even with the most time-consuming

part, which is the forward vehicle detection, time

consumption in the detection mode is 73 ms, which is

greater than the 41 ms observed in the tracking mode.

Therefore, continuous tracking in abnormal cases,

especially during a lane changing situation, is much more

efficient than repeating the detection step. Because our

algorithm can continue tracking in this situation with the

state transferring technique, this system can save much of

the computational time that is expected when repeating the

Figure 23. Result of occlusion handling.Figure 22. Major factors that degrade the vehicle detection

rate on a rainy day: (a, b) distortion caused by raindrops on

the front windshield and (c, d) occlusion by the wipers.

Table 7. Time consumption for each part of the proposed algorithm.

Modes\Opera-
tions

Lane candidate 
extraction

Lane candidate 
clustering

Lane equation 
calculation

Forward vehicle 
detection

Lane change and 
occlusion handling

Total time

Detection 10 ms 20 ms 5 ms 37 ms 1 ms 73 ms

Tracking 1 ms . 2 ms 37 ms 1 ms 41 ms
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detection.

5. CONCLUSION

This paper proposed a vision-based fusion technique for

lane tracking and forward vehicle detection to handle the lane

occlusions, lane changing situations, abrupt illumination

changes, and pitch motions. First, the initial lane equation

was calculated using the template matching method for

lane candidates and several constraints for the lane pair.

Then, RANSAC and a Kalman filter were sequentially

used to calculate the new lane equation from the lane

candidates found in the adaptive ROI from the next image

frame. In this process, we used a state transferring

technique to deal with the lane changing situation without

stopping the tracking. At the same time, we detected all of

the rectangular regions of forward vehicles using the

AdaBoost object detector followed by edge and shadow

filtering. The detected vehicle regions were used to prevent

falsely detected lane candidates from being used to track

the lane equation. Finally, to prevent the algorithm from

diverging due to the car shaking, a constraint for the

vanishing point of the hyperbola lane equation pair is used.

Our algorithm could find the lane equation very quickly

and robustly against illumination changes and discontinuities

in the lane, which usually occur when the ego-vehicle is

going into or out of a tunnel. Due to the combination of the

vehicle detection results, RANSAC, and the Kalman

filtering, falsely detected lane candidates could be omitted

and more accurate and stable lane tracking was possible.

Our algorithm could obtain the correct lane tracking results

in the situation of pitch motion on speed bumps with

reasonable constraints for the vanishing point of the lane

equation. The overall lane tracking performance of our

algorithm was over 96 % for our own road image database

with varying illumination conditions during different times

of the day except when the specular light was too strong or

lighting conditions were too dark to differentiate the lane

from the road. Additionally, the lane transferring technique

of our algorithm made it possible to maintain lane tracking

continuously in spite of the lane changing situation with a

very low computational cost: 4 ms on a standard laptop

computing system.

However, the vehicle detection, the most time-consuming

portion of our algorithm, still needs to be improved for

faster processing with an object tracking technique, i.e.,

robust second order minimization (Benhimane and Malis,

2004). Additionally, when very strong specular light exists

on the road or road structures, our algorithm did not work

well. Dealing with specular light is one of the hardest

problems in the field of computer vision research because

image restoration from damaged images by specular light

needs a complicated computation and is not appropriate for

real-time applications. Some hardware-based techniques,

such as using optical filters to prevent intensity saturation

in the image, can be a rough solution for this problem.

These two types of problems, vehicle tracking and dealing

with specular light, will remain the focus of future work.
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