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Abstract
In the face of accelerating climate change and rising sea levels, quantifying surface elevation change dynamics in coastal 
wetlands can help to develop a more complete understanding of the implications of sea-level rise on coastal wetland stability. 
The surface elevation table-marker horizon (SET-MH) approach has been widely used to quantify and characterize surface 
elevation change dynamics in coastal marshes and mangrove forests. Whereas past studies that utilized the SET-MH approach 
have most often quantified rates of surface elevation change using simple linear regression analyses, several recent studies have 
shown that elevation patterns can include a diverse combination of linear and non-linear patterns. Generalized additive models 
(GAMs) are an extension of generalized linear models (GLMs) that have previously been used to analyze a variety of complex 
ecological processes such as cyclical changes in water quality, species distributions, long-term patterns in wetland area change, 
and palaeoecological time series. Here, we use long-term SET data to demonstrate the value of generalized additive models for 
analyzing non-linear patterns of surface elevation change in coastal wetlands. Additionally, we illustrate how the GAM approach 
can be used to effectively quantify rates of elevation change at both landscape- and local site-level scales.

Keywords  Surface elevation change · Vertical accretion · Sea-level rise · Coastal wetlands · SET-MH · Surface elevation 
table · Marker horizon · Generalized additive models

Introduction

The surface elevation table (SET)–marker horizon (MH) 
approach (SET-MH, together) is a method for quantifying sur-
face elevation change through measurements of both surface 
and subsurface processes that control wetland soil elevation 
(Cahoon et al. 2002a, b, 1995; Callaway et al. 2013; Lynch 
et al. 2015). The SET-MH approach has been widely used 
for documenting and interpreting trends in surface elevation 
dynamics over time, comparing elevation trends between 

different wetland types (Howard et al. 2020; Krauss et al. 2010; 
McKee and Vervaeke 2018), differentiating between surface 
and subsurface contributions to surface elevation change 
(McKee 2011; McKee et al. 2007; Stagg et al. 2016), under-
standing the effects of disturbance on surface elevation change 
(Cahoon 2006; Yeates et al. 2020), and assessing wetland vul-
nerability to sea-level rise (Cahoon et al. 2006; Jankowski et al. 
2017; Saintilan et al. 2022; Sasmito et al. 2016), in addition to 
many other applications (Webb et al. 2013). Traditionally, rates 
of surface elevation change derived from SET data have been 
estimated from simple linear regression analyses where the 
independent variable is time since the first measurement and 
the dependent variable is cumulative surface elevation change 
relative to the first measurement (Cahoon and Lynch 1997; 
Krauss et al. 2010) (Fig. 1a). However, several recent studies 
have shown that elevation change dynamics in coastal wet-
lands can include both linear and non-linear relationships. For 
example, surface elevation data can include abrupt changes or 
disjunct patterns resulting from the impact of extreme events, 
such as hurricanes or floods (Fig. 1b) (Feher et al. 2020; 
Moon et al. 2022; Osland et al. 2020; Whelan et al. 2009), or 
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from planned management or restoration activities (Fig. 1c) 
(Anisfeld et al. 2016; Cahoon et al. 2019; Krauss et al. 2017). 
Additionally, surface elevation data can also include repeating, 
cyclical patterns related to short-term seasonal effects (Fig. 1d) 
(e.g., growing season vs. non-growing season, or dry season 
vs. wet season) (Cahoon et al. 2011; Whelan et al. 2005), or 
long-term climate cycles (e.g., El-Niño vs. La-Niña) (Rogers  
and Saintilan 2008). Thus, additional methods can help to  
quantify rates of surface elevation change when complex non-
linear patterns are apparent in the data.

Generalized additive models (GAMs) are an extension 
of generalized linear models (GLMs) that replace the linear 
component with a known function referred to as the sum 
of the smooths of the predictor (James et al. 2013). These 
smooth terms are penalized regression splines that are fit 
by restricted likelihood maximization and are composed of 
basis functions that can be conceptualized as a continuous 
set of connected piecewise polynomial functions (Hastie 
et al. 2009; Wood 2017). GAMs have previously been used 
to analyze other complex ecological processes such as cycli-
cal changes in water quality (Murphy et al. 2019), modeling 
the spatial distribution of species and communities (Guisan 
et al. 2002), quantifying long-term patterns in wetland area 
change (Couvillion et al. 2017), and assessing historical 
environmental conditions based on palaeoecological time 
series (Simpson 2018), among multiple other applications. 
In contrast to traditional linear models, GAMs offer greater 
flexibility in modeling because the underlying form of the 

relationship between variables is not specified prior to esti-
mation but is instead automatically derived from the data 
itself during model fitting (Yee and Mitchell 1991). Addi-
tionally, GAMs can include diverse combinations of both 
linear and non-linear components that reveal hidden or unex-
pected patterns in the data while improving the model fit 
(Simpson 2018). Compared to non-parametric modeling or 
other data-driven methods (e.g., artificial neural networks or 
random forests), GAMs maintain a high level of interpret-
ability since many well-known tools for model selection and 
inference in linear models are applicable to GAMs (Wood 
2020a). GAMs are sometimes described as an interpretable 
machine learning method (Molnar 2022) because the form of 
the relationship between variables is learned from the data. 
Thus, GAMs can be considered semi-parametric models that 
combine the interpretability of parametric models with the 
flexibility of non-parametric models (Guisan et al. 2002).

Here, we demonstrate the value of GAMs for analyzing 
non-linear patterns of surface elevation change in coastal 
wetlands. First, we compared rates of surface elevation cal-
culated from a simple linear model and a GAM in order to 
illustrate the utility of GAMs for calculating surface eleva-
tion change from long-term SET data with an apparent lin-
ear trend. Second, we compared rates of surface elevation 
change calculated from a simple linear model, a segmented 
model (also known as a piecewise model), and a GAM to 
demonstrate the utility of GAMs for calculating surface 
elevation change from SET data with apparent non-linear 

Fig. 1   Examples of surface eleva-
tion change data with linear (a) 
or non-linear patterns resulting 
from (b) a sudden increase in 
surface elevation resulting from 
sediment deposition during a  
hurricane, (c) a rapid increase  
in surface elevation resulting 
from the growth of mangroves 
planted during restoration, or 
(d) a cyclic trend resulting from 
water table fluctuations during 
the dry vs. wet seasons
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trends. Finally, we illustrate how the GAM approach can 
be used to effectively quantify and compare rates of surface 
elevation change at both the site- and landscape-level scales.

Methods

Surface Elevation Change Data

We quantified and compared rates of surface elevation 
change using surface elevation table (SET) data from five 
sites (NE Florida Bay-7, Shark River-3, Shark River-1, 
Shark River-4, and Shark River-2) located within Everglades 
National Park (USA). Data from these sites were originally 
presented and analyzed as part of a regional synthesis of 
surface elevation change data from mangrove forests and 
coastal marshes in the Greater Everglades region (Feher 
et al. 2019, 2022a). Data from these five specific sites were 
selected for our model comparisons due to (a) the relatively 
long length of the data records (> 10 years), (b) the consist-
ency of data collection (bi-annual or annual), and (c) the 
variety of linear and non-linear trends apparent in the data 
from these sites. Further details on the SET-MH approach 
can be found in Cahoon et al. (2002a), Cahoon et al. (2002b), 
Callaway et al. (2013), and Lynch et al. (2015).

The first site—NE Florida Bay-7—is a tall, highly pro-
ductive mixed mangrove forest located in the western basin 
of Florida Bay (Coronado-Molina et al. 2012). SET meas-
urements were conducted on an annual basis between 1997 
and 2019, for a total of 23 sampling events. Visual inspec-
tion of the SET data from NE Florida-7 appeared to show a 
linear increase in surface elevation over time. We compared 
rates of surface elevation change for NE Florida Bay-7 that 
were estimated from either a simple linear model, or a gen-
eralized additive model to demonstrate the utility of general-
ized additive models (GAMs) for calculating surface eleva-
tion change from SET data with an apparent linear trend.

Shark River-3 is located along the lower Shark River 
within a mature mangrove forest dominated by a mix of 
red, white (Laguncularia racemosa), and black mangroves 
(Avicennia germinans). Three replicate SETs were used to 
monitor surface elevation change on a bi-annual to annual 
basis between 1998 and 2021, for a total of 66 sampling 
events. Previous work by Feher et al. (2020) found that sur-
face elevation change at Shark River-3 was characterized 
by abrupt changes due to sediment inputs from the passage 
of Hurricanes Wilma and Irma in 2005 and 2017, respec-
tively. Indeed, visual inspection of the SET data from Shark 
River-3 shows a sudden increase in elevation following 
Hurricane Wilma in 2005, followed by a short period of 
elevation loss, and then a secondary period of elevation gain 
prior to another sudden increase in elevation following Hur-
ricane Irma in 2017. We compared rates of surface elevation 

change for Shark River-3 that were estimated from a simple 
linear model, a segmented model, and a generalized additive 
model to demonstrate the utility of GAMs for calculating 
surface elevation change from SET data with apparent non-
linear trends.

Shark River-1 is located along the lower Shark Slough 
within a freshwater sawgrass (Cladium jamaicense) dominated 
marsh. Three replicate SETs were used to monitor surface ele-
vation change at Shark River-1 on a bi-annual to annual basis 
between 1999 and 2018, for a total of 39 sampling events. 
Shark River-4 is located along the lower Shark River within a 
mature mangrove forest dominated by a mix of red, white, and 
black mangroves. Three replicate SETs were used to monitor 
surface elevation change at Shark River-4 on a bi-annual to 
annual basis between 2006 and 2021, for a total of 31 sampling 
events. Shark River-2 is located along the lower Shark River 
within a mature mangrove forest dominated by a mix of red, 
white, and black mangroves interspersed with sawgrass (C. 
jamaicense). Three replicate SETs were used to monitor sur-
face elevation change at Shark River-2 on a bi-annual to annual 
basis between 1998 and 2021, for a total of 55 sampling events. 
We calculated rates of surface elevation change from site-level 
GAMs for Shark River-1, Shark River-4, and Shark River-2 to 
illustrate how the GAM approach can be used to effectively 
quantify and compare rates of surface elevation change across 
landscape-level scales. Note that for sites with multiple repli-
cate SETs, data were averaged to the site-level prior to analy-
ses. Further details about site conditions, data collection, and 
data preparation can be found in Feher et al. (2022a).

Simple Linear Models: Calculating Rates of Change

In the site-specific simple linear models for NE Florida 
Bay-7 and Shark River-3, surface elevation change on each 
sampling date was the response variable and time relative 
to the establishment of the SET-MH site in decimal years 
was the explanatory variable (Table 1). We used the func-
tion “lm” from the R package “stats” to fit a separate linear 
model for each site (R Core Team 2021).

Segmented Models: Calculating Rates of Change

Segmented regression models, the nonlinearity in the relation-
ship between two variables with separate regression slopes in 
distinct intervals of the independent variable domain (Toms 
and Lesperance 2003). To determine time-period specific rates 
of surface elevation change for Shark River-3, we first divided 
the data into four time periods: (1) Pre-Wilma—a consistent 
period of elevation gain leading up to the landfall of Hurri-
cane Wilma in October 2005; (2) Post-Wilma #1—a consist-
ent period of linear elevation loss following Wilma between 
October 2005 and spring of 2008; (3) Post-Wilma #2—a 
consistent period of linear elevation gains between spring of 
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2008 and the landfall of Hurricane Irma in September 2017; 
and (4) Post-Irma. We did not assess rates of change for the 
post-Irma period because this period is still underway and will 
require additional data collection for accurate rate determina-
tion. Whereas the breakpoints for the Pre-Wilma and Post-
Irma periods corresponded to the landfall dates of Hurricane 
Wilma and Hurricane Irma (October 2005 and September 
2017, respectively), we used the “segmented” function from 
the R package “segmented” to estimate the breakpoint loca-
tion between the Post-Wilma #1 and Post-Wilma #2 periods 
(Muggeo 2022). We then used the “lm” function from the R 
package “stats” to fit a linear model where surface elevation 
change on each sampling date was the response variable and 
the interaction between time-period, which was coded as a 
categorical predictor, and time relative to the establishment of 
the SET-MH site in decimal years, which was coded as a con-
tinuous predictor, was the explanatory variable (Table 1). Note 
that this is equivalent to fitting a simple linear model where the 
breakpoints are parameterized as a series of indicator functions 
for each time interval.

GAM Models: Calculating Rates of Change

In the site-specific GAMs for each of the five sites, surface 
elevation on each sampling date was the response variable, 
and the explanatory variable was time relative to the estab-
lishment of the SET-MH site in decimal years represented 
by a penalized thin-plate regression spline (i.e., the smooth 
term) that was estimated by restricted maximum likelihood 
(REML) (Table 1). We used the “gam” function from the 
R package “mgcv” to fit a separate GAM model for each 
site (Wood 2020b), starting with a maximum basis size 
(K) of three to minimize over-fitting. In simple terms, the 
basis dimension is the maximum possible degrees of free-
dom allowed for the smooth term in the model. We used the 
“gam.check” function from the “mgcv” package to ensure 
that each fitted model conformed to the assumptions of the 
GAM approach, and to determine if the initial basis was 
adequate to represent any non-linear patterns in the data 
(Wood 2017, 2020b). If the K-index values for a model indi-
cated that the initial basis size of three was too low for the 

smooth term, we increased the basis size by increments of 
one until the model fit stabilized. A model was considered 
stabilized when subsequent increases to the basis size did 
not affect the effective degrees of freedom for the smooth 
term or improve the model’s smoothing parameter selection 
score (Wood 2020b). To make comparisons to sea-level rise, 
managers frequently require a single estimate for the rate of 
wetland surface elevation change, which has traditionally 
been derived from the slope coefficient generated in simple 
linear regression analyses. However, a comparable single 
rate is not a standard output of GAMs. Thus, to generate 
a single, overall estimate of the rate of surface elevation 
change for each site, we used the fitted GAM models to 
calculate the rate of surface elevation change as the mean of 
200 equally spaced first derivatives of the function repre-
senting the smooth term for time in each site-specific model 
via the “derivatives” function from the R package “gratia” 
(i.e., finite difference approximation) (Simpson 2021). 
Similarly, standard errors for the rates of surface elevation 
change estimated from the GAM models were calculated as 
the mean of the standard errors of the previously mentioned 
200 equally spaced first derivatives.

Model Comparisons

For the site-level comparisons for NE Florida Bay-7 and 
Shark River-3, we compared the rates of surface elevation 
change estimated from each of the different model types. 
For the region-wide comparisons between Shark River-1, 
-4, and -2, we compared the shapes of the GAM models 
for each site using the effective degrees of freedom (EDF), 
which describes the degree of non-linearity or wiggliness of 
the fitted GAM curve (Wood 2017). An EDF of 1 indicates 
a linear relationship, whereas an EDF greater than 1 but less 
than 2 represents a weakly non-linear relationship, and an 
EDF greater than 2 represents a highly non-linear relation-
ship (Zuur et al. 2009). Thus, we used the EDF of the GAM 
models to assess the degree of non-linearity or complexity 
of the fitted GAM curves. To facilitate model comparisons, 
rates of surface elevation change and model r2 values are 
presented in the following section and as well as in Table 2.

Table 1   Regression model 
forms for simple linear 
regression, segmented 
regression, and generalized 
additive models (GAM) with 
sample R code

Model type Simplified model form Sample R code

Linear elev = �
0
+ �

1
time lm (elev ~ time, data = df)

Segmented elev = �1
0
+ �1

1

(

time − t
1

)

+ �2
0

+ �2
1

(

time − t
2

)

+ �3
0
+ �3

1
(time − t

3
)

lm (elev ~ time* time_period, 
data = df) OR

lm (elev ~ date_change* 
(date_change > t1 and date_
change < t2) + date_change* 
(date_change > t2), data = df)

GAM elev = �
0
+ f

1

�

time
1

�

+ f
2

�

time
2

�

+⋯ + fj(timej)

where fj
�

timej
�

=
∑K

k=1
�jkbjk(timej)

gam (elev ~ s (time), data = df)
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Results

For NE Florida Bay-7, the rate of surface elevation change esti-
mated from the simple linear model was 4.13 ± 0.24 mm year−1 
(F1,21 = 295.6, p < 0.001, r2 = 0.93) (Fig. 2a), whereas the rate of 
surface elevation change estimated from the generalized additive 
model (GAM) was 4.11 ± 0.24 mm year−1 and the GAM model 
EDF was 1.0 (p < 0.001, r2 = 0.93) (Fig. 2b) (Table 2).

For Shark River-3, the rate of surface elevation change esti-
mated from the simple linear model was 4.07 ± 0.22 mm year−1 
(F1,64 = 353.3, p < 0.001, r2 = 0.84) (Fig. 3a). For the Shark 
River-3 segmented model, the breakpoint between the Post-
Wilma #1 and Post-Wilma #2 periods was estimated to occur on 
May 22, 2008. The rate of surface elevation change estimated 
from the segmented linear model was − 0.25 ± 0.57 mm year−1 
for the Pre-Wilma period, − 9.24 ± 2.78 mm year−1 for the 
Post-Wilma #1 period, and 4.00 ± 0.74 mm year−1 for the Post-
Wilma #2 period (F5,54 = 115.1, p < 0.001, r2 = 0.91) (Fig. 3b). 
The rate of surface elevation change estimated from the Shark 
River-3 GAM model was 3.67 ± 1.62 mm year−1 and the GAM 
model EDF was 6.6 (p < 0.001, r2 = 0.93) (Fig. 3c) (Table 2).

For Shark River-1, the rate of surface elevation change 
estimated from the GAM model was 3.95 ± 0.56 mm year−1 
and the model EDF was 1.0 (p < 0.001, r2 = 0.57) (Fig. 4a). 
The rate of surface elevation change at Shark River-4 esti-
mated from the GAM model was 2.67 ± 1.20 mm year−1 and 
the model EDF was 3.2 (p < 0.001, r2 = 0.87) (Fig. 4b). For 
Shark River-2, the rate of surface elevation change estimated 
from the GAM model was 2.76 ± 2.09 mm year−1 and the 
model EDF was 8.9 (p < 0.001, r2 = 0.89) (Fig. 4c) (Table 2).

Discussion

Here, we introduced the rationale and methodology for using 
generalized additive models to analyze patterns of surface ele-
vation change in coastal wetlands. In the subsequent sections, 
we discuss the advantages of GAMs over other commonly 
used approaches for analyzing surface elevation table data.

First, previous studies that utilized the SET-MH approach 
have typically used simple linear regression to quantify rates 
of surface elevation change (Callaway et al. 2013). However, 
our analyses illustrate how GAMs can be used to model lin-
ear or non-linear relationships in surface elevation change 
due to the data-driven nature of the GAM approach (Yee 
and Mitchell 1991). For example, the plots of the fitted val-
ues derived from both the simple linear regression and the 
GAM model for NE Florida Bay-7 are similar, indicating 
that there is a linear relationship between surface elevation 
change and time (Fig. 2). Additionally, the rates of surface 
elevation change for NE Florida Bay-7 obtained from the 
simple linear model and the GAM model were similar (4.13 
vs. 4.11 mm year−1, respectively) and the variation explained 

Table 2   Site-level rates of 
surface elevation change 
estimated from the three 
different model types and model 
r2 values

Site Model type Surface elevation change (± SE) (mm year−1) Model r2

NE Florida Bay-7 Linear 4.13 ± 0.24 0.93
NE Florida Bay-7 GAM 4.11 ± 0.24 0.93
Shark River-3 Linear 4.07 ± 0.22 0.84
Shark River-3 Segmented Pre-Wilma: − 0.25 ± 0.57, Post-Wilma 

#1: − 9.24 ± 2.78, and Post-Wilma #2: 4.00 ± 0.74
0.91

Shark River-3 GAM 3.67 ± 1.62 0.93
Shark River-1 GAM 3.95 ± 0.56 0.57
Shark River-4 GAM 2.67 ± 1.20 0.87
Shark River-2 GAM 2.76 ± 2.09 0.89

Fig. 2   Surface elevation change (SEC) at the SET-MH site NE Flor-
ida Bay-7 fit with (a) a simple linear model and (b) a generalized addi-
tive model (GAM)
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by each model was identical (r2 = 0.93) (Fig. 2). Finally, the 
GAM model for NE Florida Bay-7 had an EDF of 1.0, indi-
cating that a linear form was the best fit for the data at this 
site, despite the model being initially parameterized with 
a maximum basis dimension (i.e., K) of 3.0. Thus, GAM 
models fitted to data with linear trends are comparable to the 
simple linear regression models that have been traditionally 
used to analyze SET data (Russell et al. 2022), but with the 
added advantage that the relationship is not assumed to be 
linear prior to model fitting.

Second, several recent studies have shown that elevation 
change dynamics in coastal wetlands can include complex 
non-linear patterns resulting from random or irregular events 
such as hurricanes, shrink-swell cycles, or planned restora-
tion activities (Cahoon et al. 2019; Feher et al. 2020; Moon 
et al. 2022; Osland et al. 2020). Our analyses demonstrate 
the advantages of using GAM models, as opposed to simple 
linear regression analyses, to model trends in SET data with 
abrupt changes or disjunct patterns. For example, the plot 
of the fitted values derived from the simple linear regres-
sion for Shark River-3 suggests that the linear model may 

not be ideal for capturing the apparent non-linear trends in 
the SET data from this site (Fig. 3a). Because we knew that 
surface elevation at Shark River-3 had been impacted by 
two rapid sediment deposition events (Hurricanes Wilma 
and Irma in 2005 and 2017, respectively), we used a seg-
mented linear regression to estimate different linear rates of 
surface elevation change for the three distinct time intervals 
described in Feher et al. (2020): Pre-Wilma, Post-Wilma #1, 
and Post-Wilma #2 (Fig. 3b). Although the segmented model 
represents an improvement over the linear model in that it 
appears to better fit the data and allows for the calculation 
of different trends over time, there are several disadvantages 
to the segmented regression approach. First, performing a 
segmented linear regression requires either background 
knowledge of the number and location of the breakpoints 
prior to model fitting, or, if the breakpoints are not known 
beforehand, using a detection algorithm to estimate break-
points that may or may not be sensible for the data (Cahoon 
et al. 2019; Feher et al. 2020). Additionally, the use of a 
segmented regression makes it difficult to estimate a single, 

Fig. 3   Surface elevation change (SEC) at the SET-MH site Shark 
River-3 fit with (a) a simple linear model, (b) a segmented linear model, 
and (c) a generalized additive model (GAM)

Fig. 4   Surface elevation change (SEC) fit with GAMs at the SET-MH 
sites (a) Shark River-1, (b) Shark River-4, and (c) Shark River-2. Note 
that as the form of the fitted GAM increase in complexity from top to 
bottom, the effective degrees of freedom (i.e., EDF) for each site-level 
model also increases
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determinant long-term rate of surface elevation change 
that may be needed to determine if the site is keeping pace 
with sea-level rise (Cahoon et al. 2006; Lynch et al. 2015). 
Similarly, rates of surface elevation change derived from 
segmented regression are not easily compared to rates of 
surface elevation change from other sites that were estimated 
from either linear models or from different segmented linear 
models fitted with different site-specific parameters (Osland 
et al. 2020; Yeates et al. 2020). Given the shortcomings of 
the linear and segmented regression methods for estimating 
rates of surface elevation change from SET data with appar-
ent non-linear trends, we then applied the GAM approach to 
the surface elevation change data from Shark River-3. A pre-
liminary visual inspection of the predicted GAM values for 
Shark River-3 illustrates that the GAM model is likely better 
suited to capture the full suite of non-linear patterns in the 
surface elevation data from this site as compared to either 
the simple linear or segmented model (Fig. 3c). Addition-
ally, a comparison of the r2 values between the three models 
also suggests that the GAM model explains a higher propor-
tion of the variance in the data (linear r2 = 0.84; segmented 
r2 = 0.91; GAM r2 = 0.93). Most importantly, the GAM 
approach yields a single value for the long-term annual rate 
of surface elevation change at Shark River-3 that is straight-
forward in its interpretation and can be easily compared to 
rates of change from other SET sites in the region or to cur-
rent or future rates of sea-level rise (Feher et al. 2022a).

Third, our analyses illustrate how the GAM approach can 
be used to effectively quantify and compare rates of sur-
face elevation change across different coastal wetlands at a 
landscape-level scale. We fit site-specific GAM models to 
the SET data from three different sites (Shark River-1, -4, 
and -2) located along the Shark River in Everglades National 
Park. Since GAMs do not require prior knowledge of the 
potential form of the relationship before model fitting, we 
were able to fit a site-specific model to the SET data from 
each site with minimal subjectivity or preliminary consider-
ation of unspecified trends (Hastie and Tibshirani 1986). As 
implemented in the R package “mgcv,” the GAM approach 
allowed for relatively simple “tuning” of the parameters for 
each model as we used the “gam.check” function to iden-
tify an appropriate basis size (i.e., K) for each site-specific 
model (Table 3) (Wood 2020b). Additionally, the flexibil-
ity of GAMs allowed us to select site-specific models that 
incorporated both linear and non-linear patterns as needed 
since GAM models are additive in nature and do not require 
the selection of a single model form (Yee and Mitchell 
1991). Thus, despite the obvious differences in shape and 
effective degrees of freedom (EDF) among the three fitted 
site-specific models (Fig. 4), the GAM approach enabled the 
calculation of site-specific values for the annual rate of sur-
face elevation change that could be easily compared among 
the three sites.

Finally, we emphasize that our intention with this com-
munication is not to imply that GAMs are a perfect solu-
tion to all of the many issues that can arise in the analy-
ses of SET-MH data but rather to introduce the GAM 
method as another option or “tool in the toolbox” for 
dealing with some of these issues and to provide a dem-
onstration of its application to real-world data. In fact, 
with a few exceptions, we note that most of the previous 
studies that have used SETs to measure rates of surface 
elevation change have successfully utilized simple linear 
models since these authors were usually most interested 
in quantifying and comparing rates of change between 
only a few sites that were installed in a relatively small, 
uniform area as part of a single cohesive study where 
non-linear trends were not readily apparent. Therefore, we 
suggest that future research efforts that endeavor to use 
the GAM method carefully consider whether the use of 
the technique is both statistically and biologically justifi-
able for the specific situation or if simpler model forms 
(i.e., simple linear, polynomial, or segmented regression) 
could be sufficient. In this sense, researchers may wish to 
use the GAM method for initial, exploratory data analy-
ses to determine if non-linear trends are present and to 
examine how the presence of these trends could influ-
ence the estimation of surface elevation change. Addition-
ally, while we have limited our discussion of the GAM 
method to models where the single explanatory variable 
was time relative to the establishment of the SET-MH 
site, the process of model selection and refinement for 
manipulative studies that include multiple covariates 
would undoubtedly be more complex and study-specific 
than the process that we have detailed here (Pedersen 
et al. 2019; Simpson 2018). Thus, while few studies have 
used GAM models with SET data (with the exceptions 
of Feher et al. (2022a) and Moon et al. (2022)), we sug-
gest that the method described here is not dissimilar from 
other ecological publications that have utilized GAMs to 
detect significant rate changes (Fewster et al. 2000; Large 
et al. 2013; Mariën et al. 2022) or to predict responses at 
specific values within the original model domain (Drexler 
and Ainsworth 2013; Wood and Augustin 2002; Yee and 
Mitchell 1991).

Table 3   Site-level surface 
elevation GAM model 
parameters. “K” represents 
the basis dimension used 
in the model and “REML” 
(i.e., restricted maximum 
likelihood) represents the 
smoothing parameter selection 
score estimated by restricted 
maximum likelihood

Site K REML

NE Florida Bay-7 3 80.31
Shark River-3 10 234.64
Shark River-1 3 161.12
Shark River-4 6 103.17
Shark River-2 12 186.82
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Conclusion

Whereas past studies that utilized the SET-MH approach  
have most often quantified rates of surface elevation change 
using simple linear regression analyses, several recent stud-
ies have shown that elevation patterns often include a diverse 
combination of linear and non-linear relationships (Feher 
et al. 2022a; Moon et al. 2022). Our analyses show that GAMs  
provide a relatively simple and flexible approach to analyz-
ing non-linear patterns of surface elevation change in coastal 
wetlands. More specifically, GAMs minimize the potential 
for bias (i.e., underfitting) that can occur with linear models 
by allowing for additive combinations of complex, unknown 
non-linear terms (Wood 2017). Similarly, GAMs also mini-
mize the potential for overfitting (i.e., high variance) that can 
occur with polynomial or segmented models by imposing a 
penalty on the smooth term (Pedersen et al. 2019; Wood and 
Augustin 2002). By utilizing GAMs, we were able to effec-
tively quantify and compare rates of surface elevation change 
across landscape-level scales, while minimizing subjectivity 
and incorporating both linear and non-linear patterns. Note 
that although we have focused on using GAMs for analyzing 
SET data, the GAM approach documented here can also be 
applied to marker horizon (MH) data to quantify rates of ver-
tical accretion (Feher et al. 2022a; Moon et al. 2022). Finally, 
although we have attempted to illustrate some of the range 
and possibilities for applying GAMs to the analysis of surface 
elevation change in coastal wetlands, this paper should be 
viewed as an application of the technique to SET-MH data, 
and we refer the reader to the rich literature on GAMs for 
further information (Appendix).
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