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Abstract
This review evaluates the importance of plants and associated biological processes in determining the vulnerability of coastal wetlands to
sea-level rise. Coastal wetlands occur across a broad sedimentary continuum fromminerogenic to biogenic, providing an opportunity to
examine the relative importance of biological processes inwetland resilience to sea-level rise.We explore howplants influence sediment
accretion, elevation capital (vertical position in the tidal frame), and compaction or erosion of depositedmaterial.We focus on salt marsh
and mangrove wetlands, which occupy a similar physiographic niche and display similar physical and biological controls on resilience
to sea-level rise. In both habitats, plants stabilize emergent mudflats and help sustain the wetland position in the tidal frame relative to
ocean height through both surface and subsurface process controls on soil elevation. Plants influence soil elevations by modifying (1)
mineral sediment deposition and retention, (2) organicmatter contributions to soil volume, and (3) resistance to compaction and erosion.
Recognition of the importance of plants in coastal wetland resilience to sea-level rise is key to accurate predictions about the future fate
of salt marshes and mangrove forests and for development of effective management and restoration plans.
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Introduction

Sea-level rise, a known consequence of global warming, will
modify shorelines worldwide and cause major changes in coast-
al ecosystems and the human communities reliant on them
(IPCC 2014). Because of their low-lying position at the land-
sea interface, coastal wetlands are particularly vulnerable to sub-
mergence and lateral erosion caused by rising sea level, as well
as sea-level extremes and wave activity during storm surges
(Nicholls 2004; Lovelock et al. 2015; Roman 2017; Leonardi
et al. 2018). To persist in a particular location, these ecosystems
must maintain sufficient elevation capital (vertical position in
the tidal frame, see Fig. 1) by accreting at a rate equal to the

relative rise in sea level (Cahoon et al. 2019). Coastal wetlands
must also resist lateral erosion at the seaward edge, especially if
landward migration is blocked by natural or artificial barriers
(Mariotti and Fagherazzi 2013; Ganju et al. 2015). Further,
some wetlands mitigate storm surge impacts (van Coppenolle
et al. 2018; Armitage et al. 2019; van Coppenolle and
Temmerman 2020). Although some investigations have focused
exclusively on physical processes such asmineral sedimentation
and erosion (e.g., Fagherazzi et al. 2013; Ganju et al. 2015;
Ganju 2019), there is increasing evidence that plants play a
key role in vertical land development and capacity of coastal
wetlands to keep pace with sea-level rise (reviewed by Friess
et al. 2012; Krauss et al. 2014; Woodroffe et al. 2016). Plants
may contribute to soil accretion and upward expansion of the
soil surface in two general ways: (1) indirectly by slowing water
flow and turbulence (allowing sediment particles to settle) and
by trapping and binding mineral sediment (Bird 1986; Leonard
et al. 1995; Christiansen et al. 2000; Krauss et al. 2003; Li and
Yang 2009; Mudd et al. 2010; McKee 2011; Chen et al. 2018)
and (2) directly through production and accumulation of organic
matter, primarily plant roots, and rhizomes (McKee et al. 2007;
Cherry et al. 2009; Langley et al. 2009; McKee 2011; Baustian
et al. 2012; Morris et al. 2016; Morris and Callaway 2018;
Coldren et al. 2019; Rogers et al. 2019). Plant roots and rhi-
zomes also contribute to soil shear strength, which aids in
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resistance to compaction and erosion (Cahoon et al. 2003;
McKee and Vervaeke 2009; Graham and Mendelssohn 2014;
Sasser et al. 2018; Coleman and Kirwan 2019).

Acceleration in the rate of sea-level rise threatens the sus-
tainability of coastal wetlands if it exceeds the capacity of the
wetland to maintain optimum vertical position within the tidal
frame (Lovelock et al. 2015; Horton et al. 2018). Although
some global-scale assessments conclude that coastal wetlands
such as salt marshes will be overwhelmed by rising seas
(Crosby et al. 2016; Spencer et al. 2016), others project lower
losses of global wetlands (Kirwan et al. 2016) or even gains,
especially if adaptation measures take into account certain
drivers of resilience (Ganju 2019). Discrepancies among esti-
mates of coastal vulnerability may reflect differences in the
key mechanisms used to model persistence of coastal wet-
lands under sea-level rise. In particular, failure to incorporate

biological feedbacks in such models may lead to overesti-
mates of losses to sea-level rise (Kirwan et al. 2010; Ganju
2019). Further complicating the prediction of sea-level-rise
effects on wetland loss is the local and regional variation in
relative sea-level rise rates and local factors such as plant
species, geomorphology, sediment supplies, hydrology, shal-
low and deep subsidence, and human activities (Cazenave and
Le Cozannet 2014; Davidson 2014; Kelleway et al. 2017;
Rodriguez et al. 2017; Doughty et al. 2019). In addition, co-
occurring drivers of vegetation change such as elevated atmo-
spheric CO2 and climate warming may lead to interactive and
complex responses by species and ecosystems to sea-level rise
(McKee and Rooth 2008; McKee et al. 2012; Osland et al.
2016; Carey et al. 2017; Coldren et al. 2019; Lu et al. 2019).

This review focuses on two types of coastal wetlands that
develop in a similar physiographic setting: salt marshes and

Fig. 1 Conceptual diagram
showing how plants can improve
resilience of coastal wetlands to
sea-level rise by increasing
elevation capital (vertical position
in the tidal frame). a Profile view
of physical substrate dynamics
and net land movement in a
mudflat where accommodation
space for sediment accretion is
high and elevation capital is
negligible because the mudflat
surface elevation lies below the
growth range of emergent
vegetation. b Profile view of
macrophytes and associated
biophysical processes in a marsh
(lower accommodation space and
higher elevation capital)
environment (vis-à-vis an
unvegetated mudflat), which
modify the physical processes
shown in a, except for Deep Land
Movement. Plants such as salt
marsh grasses or mangrove trees
and shrubs enhance vertical
substrate development in
response to sea-level rise by
increasing (1) deposition and
retention of mineral sediment, (2)
soil volume and subsurface
expansion, and (3) soil shear
strength and resistance to
compaction
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mangroves. Salt marshes are typically dominated by herbaceous
plants (grasses, rushes, succulents, and forbs) dominating tem-
perate latitudes as far north as the Arctic, whereas mangroves
comprise mostly of tree and shrub species limited to tropical and
subtropical regions (Mendelssohn and McKee 2000). The two
vegetation types may co-exist in subtropical latitudes forming an
ecotone (Mendelssohn and McKee 2000). Despite floristic and
distributional differences, salt marshes and mangroves share
many features. Both vegetation types occupy the most seaward
zone along low-lying coastlines and develop most extensively in
areas protected fromwave action such as shallow bays, estuaries,
lagoons, and behind offshore islands (Mendelssohn and McKee
2000). The plant species found in salt marshes and mangrove
forests are tolerant of salinity and flooding, and many exhibit
similar morphological, anatomical, and physiological adapta-
tions to the intertidal habitat (e.g., foliar salt glands,
aerenchymatous tissues, anaerobic root respiration) (Ball 1988;
Colmer and Flowers 2008). Existing salt marshes and man-
groves began developing between 8000 and 4000 years before
present when sea-level rise slowed (Redfield and Rubin 1962;
Woodroffe et al. 1985; Gehrels 1999). Both maintain their rela-
tive positions in the intertidal zone through similar mechanisms
governing vertical land building (Cahoon et al. 2006; Krauss
et al. 2014; McKee and Vervaeke 2018) and both have similar
influences on stability of the system (Kakeh et al. 2016).

This synthesis evaluates the role plants and associated bio-
logical processes play in resilience of salt marshes and man-
grove forests to sea-level rise. The role and importance of phys-
ical factors such as hydrology, sediment supplies and transport,
and lateral erosion have been described in numerous studies
and reviews of mangrove (e.g., Woodroffe et al. 2016) and
marsh (e.g., Fitzgerald et al. 2008; Weston 2014; Morris et al.
2016) wetlands and, consequently, will not be emphasized in
this review except as they relate to plant processes. We explore
the linkages and feedbacks between physical and biological
processes in the resilience and long-term sustainability of coast-
al wetlands by reviewing the following:

& The active role of plants in land formation (vertical accre-
tion and lateral expansion)

& Plant influences on elevation adjustment to changes in
relative sea level

& Minerogenic versus biogenic coastal wetlands
& Importance of vegetation dynamics and biophysical feed-

backs to wetland management and restoration

The Active Role of Plants in Land Formation

The contribution by plants to land formation is readily evident
in the soils of coastal wetlands, which are often composed of
both inorganic sediment and organic matter derived from the

vegetation (Adam 1990; Woodroffe et al. 2016). Although
inorganic sediments predominate in some sedimentary set-
tings such as river deltas, many coastal wetland soils contain
substantial organic matter (Bricker-Urso et al. 1989; Bescansa
and Roquero 1990; Nyman et al. 1990; Nyman et al. 1993;
Osland et al. 2018). In sediment-deficient environments, peats
(≥ 40% organic content) composed of refractory plant matter
can accumulate in thick deposits, e.g., beneath Atlantic coast
marshes (Redfield and Rubin 1962; Redfield 1965; Niering
et al. 1977) and oceanic mangrove islands (Cameron and
Palmer 1995; McKee et al. 2007). Radiocarbon dating of such
peat deposits, typically composed of partially decayed plant
roots, rhizomes, and shoots (Niering et al. 1977; McKee and
Faulkner 2000a), has shown how organic matter accumulation
drove vertical land development as sea level rose over thou-
sands of years. For example, offshore mangrove islands in
Belize, which receive no terrigenous sediment, are underlain
by more than 10 m of peat that has accumulated over 7000 to
8000 years (Cameron and Palmer 1995; Macintyre et al. 1995;
McKee et al. 2007). In that setting, peat formation closely
tracked variation in sea-level rise rates (McKee et al. 2007),
in agreement with a recent study of Holocene sea-level change
in the wider Caribbean Region (Khan et al. 2017). In fact,
because coastal peats accrete in concert with changing sea
level, they are used to reconstruct historical rates of sea-level
rise (e.g., Redfield and Rubin 1962; Rampino 1979; Belknap
et al. 1989; Khan et al. 2017).

The direct role of plants in land formation can also be seen in
the process of mudflat conversion to vegetated marsh (Fig. 1).
Emergent mudflats develop from subaqueous (water bottom)
sediment surfaces through the physical processes of mineral
sediment accumulation (Cahoon et al. 2011). Change in the
elevation of the mudflat surface is influenced by the net flux
of sediment to the surface (i.e., sediment deposition is influ-
enced by water flow velocity, turbulence, and particle floccu-
lation versus remobilization of sediment particles into suspen-
sion by erosion from shear stress) and the compaction of the
mudflat substrate by the water and sediment overburden (Fig.
1a). Deep land movement from isostatic and tectonic processes
also influences the mudflat elevation. The space available for
sediment accumulation is termed “accommodation space” and
is delineated in the vertical dimension by the distance between
the soil surface and the uppermost tide level (Jervey 1988). As
sediment accretes, accommodation space decreases and eleva-
tion capital increases (Fig. 1a, b). When the height of the mud-
flat within the tidal frame reaches the height of the growth
range of emergent vegetation, then plants colonize the mudflat,
converting it to emergent marsh (Fig. 1b). Typically, the
growth range of the vegetation approximates the local tidal
range (e.g., Spartina alterniflora, McKee and Patrick 1988).
When the wetland first forms, the height of the soil surface is
at the lower end of the growth range, and therefore has low
elevation capital (Cahoon et al. 2019). As the wetland surface
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elevation continues to increase in relation to sea-level, the ele-
vation capital increases (Fig. 1b).

Once colonized by plants, elevation change of the newly
developed wetland surface is thereafter influenced by both
physical and biological processes, and these biophysical ef-
fects occur both above and below the soil surface (D’Alpaos
and Marani 2016; Gonneea et al. 2019). The plant canopy
slows water velocity, which enhances sediment particle settle-
ment; the plant root and rhizome mass anchors the mineral
sediment in place, enhancing particle retention; roots, rhi-
zomes, and shoot bases directly increase soil volume; and
the network of roots and rhizomes increases resistance to soil
compaction and surface erosion (Fig. 1b). The stability of the
wetland system (the relative heights of the marsh plain, mud-
flat, and marsh creek) is now controlled by the productivity
and health of the vegetated surface in addition to mineral
sediment supply and transport processes. Accretion and ele-
vation change across the marsh landscape from the creek-side
levee margin to the marsh interior henceforth reflects the in-
terplay among flooding; vegetation production (aboveground
and belowground); organic matter decomposition; and sedi-
ment supply, transport, and trapping (by vegetation) (Nyman
et al. 1993; Turner et al. 2000; Belliard et al. 2016; D’Alpaos
and Marani 2016; Roner et al. 2016). Further, the biologic-
geomorphic feedbacks influence spatial variation in organic
and inorganic deposition and retention. For example, a study
of southeastern Australian salt marshes found that Juncus as-
semblages in the upper marsh (less flooding) were character-
ized by autochthonous organic deposition, whereas lower
marsh (more flooding) with succulent (Sarcocornia) and grass
(Sporobolus) assemblages was dominated by minerogenic in-
puts (Kelleway et al. 2017). There was high retention of or-
ganic inputs in the Juncus assemblage, but substantial redis-
tribution of material deposited in the low marsh assemblages.
In another study of coastal wetlands in Queensland, Australia,
sediment retention was influenced by geomorphological set-
ting (seaward fringe mangroves, landward scrub mangroves,
and high intertidal salt marsh/cyanobacterial mat) (Adame
et al. 2010).

Plant Influences on Wetland Elevation
Adjustment

Coastal wetlands may resist, adapt, or succumb to sea-level
rise. We define resilience to sea-level rise as the capacity to
adjust to a change in sea level, e.g., through the accumulation
of inorganic sediments and plant organic matter such as roots
and rhizomes. Although inorganic sediment supply and
growth of plant roots and rhizomes affect resilience of wet-
lands to sea-level rise, the contribution of plants and attendant
processes to wetland resilience becomes increasingly impor-
tant if sediment supplies diminish. Plants enhance overall

resilience of coastal wetlands to sea-level rise by (1) improv-
ing mineral sediment trapping and retention, which is espe-
cially important when and where supplies are low; (2) contrib-
uting organic matter to soil volume, which allows continued
vertical expansion, within limits, even when mineral sediment
is deficient; and (3) aiding in resistance to compaction and
erosion of deposited sediment by increasing soil shear strength
(Fig. 1). Also, plant presence means that surface accretion and
subsurface expansion may be modified by co-occurring fac-
tors such as elevated CO2 that increases production of refrac-
tory organic matter (Cherry et al. 2009; Langley et al. 2009) or
temperature that drives a shift in dominant plant species
(Osland et al. 2016) and may increase the rate of organic
matter decomposition (Carey et al. 2017). Thus, plants influ-
ence wetland vertical position in the tidal frame relative to
ocean height through both surface and subsurface process
controls on elevation.

Plant Influences on Surface Sediment Deposition

Plants can influence vertical accretion and elevation change
by altering deposition of both inorganic and organic material
on the soil surface (Fig. 1). Aboveground biomass that subse-
quently senesces and accumulates on the soil surface plus
exogenous organic matter imported by the tides can be impor-
tant contributors to accretion in both marshes (DeLaune et al.
1983; Callaway et al. 1997; Turner et al. 2000; Kelleway et al.
2017) and mangrove forests (McKee 2011; Breithaupt et al.
2017). However, the relative amount of organic material that
accumulates varies, for example in mangrove forests, with
t ida l f lush ing , l i t t e r fa l l r a t es , consumpt ion by
macrodetritivores (crabs, snails), and microbial decay rates
(McKee and Faulkner 2000b; Middleton and McKee 2001).
In basin mangroves of southeastern Florida, which form in
depressions and are infrequently flushed by tides, leaf litter
accumulates in thick layers on the forest floor and accounts for
accretion rates of 1.1 to 3.4 mm year−1 (McKee 2011). In salt
marshes, however, aboveground biomass tends not to contrib-
ute substantially to accretion because it is often decomposed
in situ and/or is flushed out by tidal action (Teal 1962).
Instead, accretion in salt marshes has been attributed primarily
to mineral sediment and allochthonous sources of organic
matter or to root and rhizome inputs (discussed below)
(Howes et al. 1985; Morris et al. 2016).

In addition to being the source of organic matter that is
deposited on the soil surface, the standing vegetation can in-
fluence transport, deposition, and retention of inorganic sedi-
ment carried by tidal action in both mangrove (Bird 1986;
Kumara et al. 2010; Kamal et al. 2017; Phillips et al. 2017;
Sanchez-Nunez et al. 2019) and salt marsh (Leonard et al.
1995; Li and Yang 2009; Mudd et al. 2010) wetlands. The
height, density, and morphology of plant shoots (marsh) and
aerial roots (mangrove) can affect sediment deposition during
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a tidal cycle by reducing water flow velocity (Shi et al. 1996;
Mazda et al. 1997; Tempest et al. 2015), wave action (Möller
et al. 2014), and turbulence (Christiansen et al. 2000; Leonard
and Croft 2006), which allows particles to settle onto the soil
surface (Leonard and Luther 1995). However, some species
promote sediment deposition through this baffling effect more
than others (Krauss et al. 2003; Kelleway et al. 2017; Wang
et al. 2017; Chen et al. 2018) or may have no apparent effect
(Moskalski and Sommerfield 2012). Short, dense plant struc-
tures such as mangrove pneumatophores may even enhance
turbulence close to the sediment surface (Norris et al. 2019).
Sediment also can adhere to living plant surfaces (Li and Yang
2009), fallen plant litter (Rooth et al. 2003), or benthic algae
(McKee 2011) and later be incorporated into the soil. For
example, a study conducted in the Yangtze delta (China) es-
timated that vegetation-trapped sediment accounted for more
than 10% of the depositional rate in S. alternifloramarshes (Li
and Yang 2009). A study of mangroves in the Caribbean
Region (Belize and southwest Florida, USA) found that sur-
face growth of turf-forming algae and accumulation of leaf
litter and other organic detritus not only contributed directly
to vertical accretion, but promoted trapping and deposition of
mineral matter (McKee 2011). Also, in some subtropical re-
gions where mangrove and salt marsh vegetation co-exist
(e.g., Louisiana, USA), sediment accretion occurs at similar
rates in side-by-side stands of A. germinans and S. alterniflora
(Perry and Mendelssohn 2009; McKee and Vervaeke 2018).
These studies suggest that despite differences in aboveground
structure, both mangrove and salt marsh plants interact with
physical processes in similar ways to promote sedimentation.

Plant Influences on Soil Volume

A second way that plants can influence resilience to sea-level
rise is through belowground contribution of plant biomass to
soil volume, which drives upward expansion of the soil sur-
face in both biogenic and minerogenic settings (Fig. 1b). The
importance of biological processes in soil volume expansion
in mangrove and salt marsh wetlands is most clearly indicated
by the occurrence of thick peat deposits in both habitats
(Redfield 1972; Niering et al. 1977; Cameron and Palmer
1995; McKee et al. 2007) where conditions support peat for-
mation (Redfield 1965; Middleton and McKee 2001). Peat
generally accumulates in wetlands where organic matter pro-
duction exceeds decomposition, and input of mineral sedi-
ment is low or absent, such as conditions found on oceanic
mangrove islands in the Caribbean Region (McKee et al.
2007) and in some New England salt marshes, USA
(Redfield 1972). Production of roots and rhizomes are also
important in minerogenic salt marshes and mangrove forests
because they aid in sediment retention and make a substantial
contribution to soil volume (Fig. 1).

Subsurface Expansion

Field investigations of elevation change trends in a
minerogenic salt marsh soil on the Norfolk coast of England
(Cahoon et al. 2000) and biogenic mangrove soils on the
islands of Roatan, Honduras (Cahoon et al. 2003), and Twin
Cays, Belize (McKee et al. 2007), and in a mangrove forest in
Homebush Bay, Sydney, Australia, with limited mineral sed-
iment input (Rogers et al. 2005) revealed that elevation gain
was greater than surface accretion, indicating subsurface ex-
pansion from accumulation of root and rhizome biomass.
Root zone expansion in a salt marsh in Chesapeake Bay,
USA, was greater than shallow subsidence occurring below
the root zone, and thus contributed positively to surface ele-
vation change (Blum et al. 2020). Manipulative experiments
conducted in both the greenhouse and field have further con-
firmed that root and rhizome matter accumulation contributes
to the upward expansion of the soil surface in marsh- and
mangrove-dominated ecosystems (McKee et al. 2007;
Cherry et al. 2009; Langley et al. 2009; Davis et al. 2017;
Coldren et al. 2019). For example, phosphorus additions to
subsiding mangrove areas in Belize greatly stimulated root
production, which led to subsurface expansion and dramatic
gains in soil surface elevation (McKee et al. 2007). Similarly,
fertilization of microtidal salt marshes in North Carolina,
USA, caused increases in aboveground standing biomass
and rates of surface elevation gain (Davis et al. 2017).
Warming of plots in a subtropical wetland in Florida, USA,
increased soil elevation, which was driven by increases in
mangrove root production (Coldren et al. 2019).
Manipulative field and greenhouse experiments with brackish
marsh species have shown that elevated concentrations of at-
mospheric CO2 can increase belowground production and ac-
cumulation of organic matter, accompanied by upward expan-
sion of the soil surface (Cherry et al. 2009; Langley et al.
2009). The marsh response was mainly caused by growth
stimulation of the C3 species (Schoenoplectus americanus)
rather than the C4 grass (Spartina patens) and was modified
by salinity and flooding levels (Cherry et al. 2009). These
studies suggest that both mangrove and salt marsh plants can
produce sufficient refractory biomass belowground to influ-
ence soil volume and upward expansion of the soil surface.

Subsurface Collapse

Conversely, vegetated wetland surfaces are also vulnerable to
elevation loss through non-lethal declines in plant productiv-
ity. For example, vegetation grazing in marshes by mammals
can significantly reduce belowground production, soil eleva-
tion, and expansion of the root zone, thereby negatively af-
fecting soil building processes (Ford and Grace 1998).
Furthermore, death of the vegetation can lead to abrupt eleva-
tion loss through root/rhizome death and collapse of the root
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zone. (See the discussion of peat collapse in the section below
on soil compressibility.) Excess nitrate can also have a nega-
tive effect on peat stability, leading to marsh loss (Deegan
et al. 2012). In some cases, however, marsh response to nutri-
ents is dependent upon elevation, as reported for North
Carolina, USA, salt marshes fertilized with nitrogen and phos-
phorus (Davis et al. 2017) and a Long Island, New York,
USA, salt marsh exposed to wastewater (Krause et al. 2019).

Model Projections

Plant root and rhizome growth contributes directly to eleva-
tion gain through increases in soil volume, and a simple back-
of-the-envelope calculation demonstrates how important this
is. First, the volume occupied by a dry gram of pure soil
organic matter is almost 12 cm3; i.e., its self-packing density
is 0.085 g cm−3 (Morris et al. 2016). From this, the vertical
accretion that derives from organic production may be com-
puted. Assuming only belowground production contributes to
growth of soil volume, a hypothetical rate of belowground
production of 2000 g m−2 year−1 gives a vertical accretion
rate of 0.235 cm year−1. Note that some estimates of below-
ground productivity in salt marshes are considerably greater
(Valiela et al. 1976). This calculation further assumes that
only a fraction of that production is actually preserved and
creates new volume, apparently related to the lignin fraction
(Goñi and Thomas 2000). The lignin content of Spartina
roots and rhizomes was estimated conservatively to be
10% (Hodson et al. 1984; Wilson et al. 1986). Therefore,
the refractory organic matter contribution to soil should be
about 200 g m−2 year−1, or 0.02 g cm−2 year−1, and dividing
this by the density (0.085 g cm−3) gives the vertical rate.
This organic contribution is sufficient to allow a marsh to
keep pace with rates of sea-level rise that characterized most
of the twentieth century.

How does this compare with vertical accretion from min-
eral sediment? Another calculation shows that the difference
is significant. Assuming a marsh surface floods 704 times
annually (semidiurnal tide) with a suspended sediment con-
centration of 20mg l−1 to an average water depth of 10 cm, the
maximum mineral sediment load is 0.1408 g cm−2 year−1.
Dividing this by the density of dry mineral sediment, 1.99 g/
cm3 (Morris et al. 2016), gives a vertical accretion of
0.07 cm year−1, which is almost insignificant in comparison
to the organic contribution.

The result in the previous example depends, of course, on
the assumptions. Physical variables that differ among estuar-
ies and are important to vertical accretion are suspended sed-
iment concentration, tides, and depth of flooding. The impor-
tance of the latter two variables is illustrated (Fig. 2) using a
model that describes feedbacks that equilibrate the marsh sur-
face with mean sea level (Morris et al. 2002; Morris and
Callaway 2018). The mineral contribution to accretion is

proportional to the depth and frequency of flooding, and the
suspended sediment concentration (Krone 1987). The organic
contribution is a nonlinear function of flood depth (Fig. 3).
There is a vertical range between about mean sea level (MSL)
and mean high water (MHW) that will support vegetation
(McKee and Patrick 1988), with an optimal elevation in the
middle of this range that supports maximum growth (Morris
et al. 2002; Morris et al. 2013). Permutations of MHW in the
range of most micro- and meso-tidal estuaries (5–120 cm) and
flood depths spanning a range of tidal amplitudes (0–130 cm)
result in a response surface (Fig. 2a) with maximum vertical
accretion of 0.6 cm year−1 at the highest MHW (120 cm) and
flood depth of 86 cm. At this combination of depth andMHW,
the contributions of organic production to vertical accretion
(0.28 cm year−1) and mineral sedimentation (0.32 cm year−1)
are similar. However, for flood depths less than 80 cm, the
organic contribution dominates vertical accretion (Fig. 2b).

In these virtual marshes, as noted above, maximum growth
occurs in the mid-range (Fig. 2c), and it is in this mid-range
where maximum organic accretion occurs. At super-optimal
elevations (higher than the optimum), biogenic volume pro-
duction dominates, while at suboptimal elevations, mineral
sedimentation begins to dominate at depths that dampen or-
ganic production. Marsh restoration by a method known as
thin-layer sediment placement can move the elevation of a
marsh from a position that is suboptimal for the vegetation,
where vegetation has a diminishing role as sea level rises, to a
position higher in the tidal frame, where vegetation has a
dominant role, is flooded less often, and responds positively
to rising sea level (Ford et al. 1999; Cahoon et al. 2019).

Plant Influences on Soil Shear Strength and
Compressibility

A third way that plants can influence movement of the wet-
land surface is to alter soil shear strength and resistance to
compaction (Fig. 1). Precisely how plant-driven mechanisms
affect soil strength and compaction is not fully understood, but
such processes can potentially affect elevation dynamics in
coastal wetlands (Ameen et al. 2017; Jafari et al. 2019;
Zoccarato et al. 2019). At the soil surface, plant roots and
benthic algae bind soil particles, thereby creating a strong
matrix that resists shearing forces such as waves and tidal
currents (De Battisti et al. 2019) (Fig. 1b). Variation in soil
shear strength has been correlated with live root biomass or
productivity in both marsh- and mangrove-dominated wet-
lands (Cahoon et al. 2003; Graham and Mendelssohn 2014;
Sasser et al. 2018; Coleman and Kirwan 2019; Silliman et al.
2019) and with the presence of filamentous algal mats grow-
ing on the soil surface in mangrove forests (McKee 2011). In a
study of eleven coastal marsh types in Louisiana, live below-
ground biomass explained the most variation in soil shear
strength across sites with soils ranging from organic tomineral
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(Sasser et al. 2018). Shear strength also decreases with soil
depth and fewer live roots (Cahoon et al. 2003; Comeaux
2010; Turner 2011; Graham and Mendelssohn 2014), further
implicating the influence of plant roots on soil strength.
Studies of disturbance caused by hurricanes (Cahoon et al.
2003) or humans (McKee and Vervaeke 2009) have also
shown that soil shear strength in mangrove forests declines
significantly in high-mortality areas compared to reference

sites. In a greenhouse study comparing A. germinans and
S. alterniflora growth in different soil substrates (topsoil,
beach sand, and soil collected from a natural marsh and a
restored marsh), both species significantly increased soil shear
strength relative to unvegetated controls through ingrowth of
roots and rhizomes (Feher and Hester 2018). Tensile strength
of individual wetland plant roots, which was highly correlated
with root morphometrics (diameter, cross-sectional area,

Fig. 3 Conceptual diagram of the dominant processes controlling relative
marsh elevation or vertical accretion. Mineral deposition or sediment load
increases with the depth of water flooding the marsh/mangrove surface,
the frequency of flood events, and the suspended sediment concentration
(SSC). The accretion of organic matter (i.e., plant shoot and root/rhizome
material) is proportional to primary production, which is a parabolic
function of flood depth (Morris et al. 2002). There is a range of
flooding depth that supports a marsh/mangrove community. At one
extreme, too great a depth of flooding results in hypoxia and drowning,

and at the other extreme too little flooding results in osmotic stress. If the
depth is suboptimal, i.e., less than optimal flooding, then a rise in sea level
will increase production and organic accretion, raising the surface
elevation. An equilibrium with mean sea level will ensue, provided the
rate of sea-level rise does not exceed a tipping point. Beyond the tipping
point, the equilibrium elevation will fall to the super-optimal side of the
growth curve (toomuch flooding) where continued increases in the rate of
sea-level rise will decrease primary production and organic accretion,
with a drowning marsh being the end result.

Fig. 2 Response surfaces generated by the Marsh Equilibrium Model
(MEM) showing the total a and partial b vertical accretion rates and
standing biomass c resulting from permutations of mean high water
level (MHW) and average flood depth (Morris et al. 2016; Morris and
Callaway 2018). Standing biomass at optimum depth was set
conservatively at 1500 g m−2 across all simulations, the ratio of roots

and rhizomes to shoots at 2:1, the refractory fraction of belowground
production at 0.1, and suspended sediment concentration of 20 mg l−1.
Permutations of MHW and depth gave rise to the total vertical accretion
rates shown in a, the partials, or contributions from mineral and organic
accretion in b and standing biomass in c. The partials in b sum to give the
totals in a
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volume) (Hollis and Turner 2018), may be a key trait, along
with soil factors, influencing soil shear strength.

In addition to soil shear strength, live plant roots and rhi-
zomes can also alter resistance to subsurface compaction. The
evidence for the role of plants in soil compaction and elevation
change comes primarily from observations of peat collapse or
elevation loss following mortality of the vegetation in marshes
(Delaune et al. 1994; Cahoon et al. 2004; Day et al. 2011;
Baustian et al. 2012; Lane et al. 2016; Coleman and Kirwan
2019) and mangrove forests (Sherman et al. 2000; Cahoon
et al. 2003; Whelan 2005; Lang'at et al. 2014; Krauss et al.
2018). The term “peat collapse” implies a sudden loss in ele-
vation caused by a decrease in soil strength or structural in-
tegrity of a highly organic soil and is distinct from that of soil
erosion (although the two processes may occur together) (for
an in-depth review and discussion, see Chambers et al. 2019).
However, the cause of mortality and rate of elevation loss
varies among studies. For example, elevation of hummocks
in a coastal marsh decreased almost 15 cm in 2 years after
plant mortality caused by excessive flooding (Delaune et al.
1994). In another study, experimental girdling and cutting of
mangrove trees at Gazi Bay, Kenya, led to a subsidence rate of
3 cm year−1 (compared to an elevation gain of 0.4 cm year−1 in
control plots) (Lang'at et al. 2014). Such examples indicate
that while plants may improve soil shear strength, their pres-
ence also increases vulnerability of the wetland to sudden loss
of elevation upon disturbance of the vegetation. Such studies
also suggest that the mechanisms involved in elevation loss
are related, at least in part, to the death of roots and rhizomes
and consequent loss of soil volume and structural support.
Possible mechanisms leading to loss of elevation of an organic
soil include (1) loss of turgor upon death of roots and rhizomes
and collapse of gas-filled aerenchyma tissue; (2) compression
of gas-filled voids in the soil created, for example, by animal
burrows (Xiong et al. 2019); (3) loss of organic mass through
decomposition; and (4) dissolution and dispersion of unde-
composed material no longer held in place by a live root
matrix (modified from Chambers et al. 2019). Although the
relative contribution of these mechanisms to loss of wetland
elevation following plant mortality is not known, they sug-
gest, in general, that plant roots influence the overall com-
pressibility of the soil.

The role of live plant roots and rhizomes in altering resis-
tance to subsurface compaction has also been suggested from
comparisons of elevation dynamics on vegetated and
unvegetated wetland surfaces. In a study of a crevasse splay
in the Mississippi River delta, shallow subsidence rates varied
with elevation from 2 to 5 cm year−1 in the open water habitat
to 1.5 cm year−1 in the low marsh to 0.2–0.5 cm year−1 in the
forested wetland (Cahoon et al. 2011). This inverse relation-
ship between subsidence rate and elevation occurred despite
the additional overburden of mineral and organic material at
the low marsh and forested wetland sites (43, 79 cm,

respectively). Thus, these thicker, vegetated soils with exten-
sive root systems consolidated more slowly than the
unvegetated water bottom sediments. Further, in a comparison
of vegetated and unvegetated experimental pots placed along
an elevation gradient in a temperate salt marsh, the soil surface
in the vegetated pots subsided significantly less than that in the
unvegetated pots (Payne et al. 2019). The authors hypothe-
sized that the root network infilled the pore space of the potted
soils, thereby adding to the resistance of subsurface
compaction.

Functional Similarities of Mangrove and Salt Marsh
Influences on Elevation

Despite obvious differences in physiognomy and other plant
traits, mangrove and salt marsh plants appear to influence
sedimentation, soil volume expansion, and soil strength in
fundamentally similar ways (Friess et al. 2012; Kakeh et al.
2016). The reason for this correspondence likely reflects
broadly similar functional traits of growth (e.g., for the acqui-
sition of light and nutrients) and persistence (e.g., dispersal,
recruitment, and recovery from disturbance) (Mendelssohn
andMcKee 2000). Both vegetation types produce aerial struc-
tures (shoots or aerial roots) that act like baffles to modify
water velocity (Shi et al. 1996; Mazda et al. 1997) and hence
sediment deposition. Both produce belowground biomass
(roots and/or rhizomes) that periodically senesces and either
decomposes or accumulates, depending on environmental
conditions and tissue chemistry (van der Valk and Attiwill
1984; Hackney 1985; Middleton and McKee 2001; Huxham
et al. 2010). Both display a similar array of adaptation strate-
gies for avoidance or tolerance of flooding and salinity stress,
e.g., adventitious rooting, aerenchyma, lenticels, succulence,
and salt glands (Ball 1988; Colmer and Flowers 2008). Like
most plants, mangrove and salt marsh species also exhibit
plasticity, i.e., response to the environment through changes
in morphology or physiology (Waller 1991). For example,
canopy height, morphology, and productivity of both man-
grove and salt marsh species can vary substantially across
environmental gradients (Anderson and Treshow 1980;
Mendelssohn and Morris 2000; Lovelock et al. 2005;
Vovides et al. 2014). These universal plant features are the
reason that mangrove and salt marsh vegetation influence re-
silience to sea-level rise similarly (even though the magnitude
of their effects may differ within and between these two veg-
etation types).

Minerogenic Versus Biogenic Coastal
Wetlands

The conceptual sediment model of wetland resilience to sea-
level rise recently proposed by Ganju (2019) concludes, for
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wetlands in general, that mineral sediment supply and trans-
port control resilience, and vegetation contributions to resil-
ience are unimportant or even detrimental. However, this min-
eral sediment-based model, which is most suitably applicable
to mineral-rich estuarine systems, does not account for the fact
that coastal wetlands, on a global scale, occur along a mineral
sediment continuum from (1) sediment-rich estuaries and
deltas (Cahoon et al. 2011; Swales et al. 2015) to (2)
sediment-poor coasts (low-energy, back-barrier, lagoonal
marshes (e.g., Cedar Island, NC (Cahoon et al. 1995)) or
low-energy, karst, groundwater-dominated salt marshes
(e.g., St, Mark’s, FL (Cahoon et al. 1995)) and mangroves
(Whelan et al. 2005), to (3) wetlands with little or no mineral
sediment available such as oceanic mangrove island settings
(e.g., Twin Cays, Belize (McKee et al. 2007)). In these low-
sediment or sediment-lacking settings, the conceptual model
proposed by Ganju (2019) is less explanatory, or not relevant,
in describing coastal wetland resilience to sea-level rise. Plant
contributions to soil volume are an important component of
resilience for all wetlands along the entire continuum, but
especially for wetlands where there is little to no mineral sed-
iment or where wetland formation and vertical development
depend entirely on accumulation of plant organic matter. For
example, at biogenic soil settings (e.g., carbonate platform
mangroves in south Florida, USA), the role of soil organic
matter accumulation is vital to wetland survival relative to
sea-level rise and is a better indicator of vertical accretion than
mineral sediment accumulation (Breithaupt et al. 2017). At
oceanic reef mangroves (no terrigenous sediment), there are
no mudflats, and mangrove vertical development is driven
primarily by autochthonous accumulation of organic matter
that is highly sensitive to nutrient enrichment effects
(McKee et al. 2007). Examples of the role of vegetation in
surface elevation dynamics and contributions to wetland resil-
ience are presented for extreme end members of the continu-
um: a minerogenic deltaic marsh and a biogenic mangrove
setting.

Minerogenic Wetland: Mississippi River “Birdsfoot”
Delta

Active crevasse splays are riverine-dominated coastal envi-
ronments with a high sediment supply and efficient sediment
transport mechanisms (Coleman et al. 1998). A study of the
accrual of elevation capital and wetland formation dynamics
at the Brant Pass splay (Cahoon et al. 2011), located at the
mouth of the Mississippi River, reveals the changing roles of
mineral and organic matter accumulation as the splay un-
dergoes three stages of development: mineral sediment
infilling, vegetative colonization of emerging mudflats, and
development of a mature wetland community. The initial
stage of splay development is mineral sediment infilling of
the subaqueous water bottom of the receiving basin, as

conceptualized in Fig. 1 a. Mineral sedimentation and shallow
subsidence rates are highest during this stage. Eventually,
mineral sediment accumulation leads to development of an
emergent (subaerial) mudflat, which is rapidly colonized by
vegetation (Fig. 4). Plant root and rhizome development sta-
bilizes the loosely consolidated mineral sediment within the
first growing season (Cahoon et al. 2011), which leads to
increased soil shear strength (Ameen et al. 2017). In addition,
when sediment is transported onto the deltaic islands during
floods and storms, the emergent vegetation enhances sediment
retention (by approximately 10%) by actively trapping miner-
al sediment on the wetland surface (Olliver et al. 2020). From
this time forward, as the newly emergent wetland converts
from low marsh to high marsh and finally to forested wetland,
elevation capital and belowground biomass increase (com-
pared to the subaqueous habitat). Further, deltaic vegetation
structure (e.g., stem height and density) directly influences
mineral sedimentation, with intermediate values of relative
vegetation height and density being optimal for enhancing
both sand and mud deposition (Nardin and Edmonds 2014;
Nardin et al. 2016). Thus, in contrast to the unvegetated mud-
flat, vertical development and resilience to sea-level rise of the
wetland is controlled by both mineral and organic matter ac-
cumulation, which is also influenced by vegetation structure,
as conceptualized in Fig. 1 b.

Fig. 4 Accretion and aboveground and belowground plant biomass at the
shallow open water leading edge of a splay at Brant Pass at the mouth of
the Mississippi River (modified from Cahoon et al. 2011). The arrow on
the x-axis indicates the timing of high river discharge (spring) that led to a
rapid infilling phase and creation of a subaerial mudflat that was quickly
colonized by emergent vegetation during the subsequent year and
converted to low marsh habitat, at which time the sedimentation rate
decreased (i.e., maintenance phase). Initial high levels of belowground
biomass (> 2000 g m−2) stabilized the substrate, after which belowground
biomass decreased (~ 600 g m−2). As flooding and sediment delivery at
these higher elevation habitats (low marsh, high marsh, and forested
wetland) decreased relative to the mudflat and open water habitats, the
role of belowground biomass in maintaining soil volume and elevation
capital became critical (Cahoon et al. 2011)
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Biogenic Wetland: Twin Cays, Belize

The archipelago called Twin Cays, Belize, which is located in
the Meso-American Barrier Reef in the western Caribbean
Sea, is an example of a mangrove ecosystem that has kept
pace with rising sea level for millennia through accumulation
of organic matter. Deep cores (Fig. 5) collected from Twin
Cays and nearby mangrove islands show continuous peat de-
posits over 10 m thick, which document a depositional history
characterized by gradual accrual of organic matter (Cameron
and Palmer 1995; Macintyre et al. 2004). Wetland formation
began at Twin Cays when mangroves colonized a Pleistocene
limestone platform about 8000 years ago when sea level was 9
to 10 m lower than that at present (Macintyre et al. 2004).
Once mangroves were established, peat formation proceeded
as undecomposed leaves, wood, and roots accumulated in the
low-nutrient, waterlogged environment (Middleton and
McKee 2001). Although some calcareous sand has been de-
posited periodically at the island periphery (Macintyre et al.
1995), vertical land development at Twin Cays has occurred

primarily through continuous peat production in response to
relative sea-level rise. Subsequent experiments conducted at
Twin Cays showed that (1) surface elevation gain or loss was
directly correlated with subsurface change (subsidence or ex-
pansion) and (2) nutrient additions (nitrogen (N) and phospho-
rus (P)) caused significant changes in mangrove root accumu-
lation, which influenced both the rate and direction of eleva-
tion change (McKee et al. 2007). Stunted mangrove stands in
the island interior with low root accumulation were character-
ized by subsidence and elevation loss, but more productive
stands along the shorelines exhibited subsurface expansion
and elevation gains. Fertilization of stunted mangrove plots
with P stimulated root production and led to a dramatic gain in
elevation (Fig. 5a, b, 7 cm in 3 years). These results provided
evidence for the important role of plant roots in driving soil
volume expansion and elevation gain in sediment-deficient
settings.

Importance of Biophysical Feedbacks
to Wetland Management and Restoration

In both the minerogenic and biogenic settings described
above, vegetation plays a foundational role in the transforma-
tion of mudflat and shallow open water habitats into healthy
wetland ecosystems, with their associated ecosystem services
(Barbier 2019). In minerogenic wetlands, the feedback be-
tween mineral sedimentation and vegetation growth deter-
mines elevation capital and controls wetland development
and maintenance (Fig. 1b). In biogenic settings, such as oce-
anic carbonate platforms, vegetation growth determines ele-
vation capital and controls development and maintenance
(Krauss et al. 2017; Osland et al. 2020). Given the fundamen-
tal difference between the minerogenic and biogenic settings,
each setting requires a different management approach.
Successful management of a biogenic system like Twin
Cays can beneficially focus more on vegetation health than
on mineral sedimentation. In this type of setting, which is
dependent upon organic matter accrual, the removal (e.g.,
clearcutting (McKee and Vervaeke 2009)) or mortality (e.g.,
hurricanes (Cahoon et al. 2003)) of mangroves stops peat
formation while subsidence and sea-level rise continue.
Conversely, greater emphasis on sustaining or improvingmin-
eral sedimentation is required for minerogenic systems to
maintain habitat stability (e.g., sediment diversions, thin-
layer deposition of dredged material (Ford et al. 1999;
Allison and Meselhe 2010; Cahoon et al. 2019). However,
as discussed above, plant root systems are also important in
sediment-rich settings, which means that proper management
requires attention to both inorganic sediment delivery and
plant productivity.

Efforts to manage healthy wetlands for targeted ecosystem
services (Lee et al. 2014), restore degraded wetlands (Adam

Fig. 5 Oceanic mangrove islands in Belize have kept pace with sea-level
rise for 7000 to 8000 years through vertical accumulation of 10 to 12m of
peat. a Ground view of Twin Cays showing stunted red mangrove stands
in the island interior (foreground). Plots fertilized with phosphorus had
taller trees (arrow), higher root production, and faster rates of elevation
gain than unfertilized control plots (McKee et al. 2007). b Example of a
peat core (1.0- to 1.5-m depth) collected at Twin Cays showing refractory
remains of red mangrove roots and other organic matter
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2019), or create new wetlands (Broome et al. 2019) can ben-
eficially focus on maintaining the dominant vegetation within
its optimum growth range (McKee and Patrick 1988; Cahoon
et al. 2019). Managing wetlands for targeted ecosystem ser-
vices is often done through water level management using
structures (levees and water control gates), sometimes de-
scribed as structural marsh management (Cahoon 1994). In
this approach, water level management manipulates the tidal
frame and flooding of the wetland surface (i.e., artificially
maintained elevation capital) to favor growth of the target
plant species that supports target secondary producers, such
as birds (Cahoon and Groat 1990), while largely limiting sed-
iment transport to the wetland surface and soil organic matter
accumulation (Cahoon 1994). Restoration of degraded wet-
lands can be done by restoring natural tidal exchange. If this
is not possible, restoration is achieved by either implementing
reduced tidal exchange, a form of structural management
(Vandenbruwaene et al. 2011; Oosterlee et al. 2018), or min-
eral sediment is introduced and deposited in a thin layer to
restore optimum elevation capital (Cahoon et al. 2019), as
described above. When creating a new wetland, building the
correct elevation (i.e., elevation capital) that will support the
target dominant vegetation is crucial to creation success
(Broome et al. 2019).

Conclusions

Biogenic habitats such as coastal wetlands, seagrass beds,
oyster reefs, and coral reefs are vulnerable to changes in sea
level because of their intertidal or subtidal positions, but they
also have the capacity to keep pace through buildup of organic
and/or inorganic material (Dullo 2005; Baustian et al. 2012;
Krauss et al. 2014; Potouroglou et al. 2017; Ridge et al. 2017).
The participation of the biota in adjustment to sea-level rise is
most obvious in those habitats constructed by invertebrates
(e.g., coral reefs and oyster reefs) where vertical accretion of
the reef is directly attributable to growth of the reef-forming
organisms (Dullo 2005; Beetham et al. 2017; Ridge et al.
2017). However, in vegetated habitats receiving allochtho-
nous sediment (e.g., seagrasses, mangroves, and salt marshes)
(Baustian et al. 2012; Krauss et al. 2014; Potouroglou et al.
2017), biotic contributions to vertical adjustment may be less
apparent and more difficult to quantify. For example, root
contributions to soil volume are not as readily observed as is
mineral sedimentation on the soil surface and may require
long-term, manipulative experiments to demonstrate their ef-
fects on vertical land movement (e.g., McKee et al. 2007;
Langley et al. 2009). Even without such experiments, the con-
tribution of salt marsh and mangrove plants to land formation
processes is evidenced by the accumulation of organic matter
(e.g., roots and rhizomes) in the soil as well as plant coloni-
zation of and subsequent conversion of mudflat to vegetated

wetland. When a mudflat becomes an emergent, vegetated
wetland through plant colonization, the resilience of that wet-
land to sea-level rise is thereafter controlled by the biophysical
feedbacks between mineral sediment supply (and transport)
and vegetation growth dynamics (Fig. 1).

Plants enhance wetland resilience by improving mineral
sediment trapping and retention, contributing organic matter
to soil volume, and resisting compaction and erosion of wet-
land soils by increasing soil shear strength. In so doing, plants
help sustain wetland vertical position (i.e., elevation capital)
within the tidal frame. However, plant presence means that
surface accretion and subsurface contributions to elevation
may be modified positively or negatively by co-occurring fac-
tors (e.g., elevated CO2may increase refractory organic matter
in the soil leading to elevation gain (Langley et al. 2009),
whereas herbivory by mammals may reduce root production
leading to elevation loss (Ford and Grace 1998)).

The occurrence of salt marshes and mangroves along a
continuum from sediment-rich (i.e., minerogenic) to
sediment-poor (i.e., biogenic) settings means that the role of
plants may vary globally. In minerogenic settings, plants play
an important role in maintaining wetland elevation capital by
promoting mineral sediment trapping and retention, although
vegetation may have modest effects on elevation dynamics
(e.g., McKee and Vervaeke 2018). In settings with mixed
deposition of organic and inorganic material, the biotic con-
tribution to vertical accretion may not be fully appreciated
unless calculations are conducted to quantify it. In sediment-
deficient settings, soil organic matter accumulation is vital to
wetland survival, and changes in plant production can have
dramatic effects on vertical accretion and elevation gain (e.g.,
Morris et al. 2002; Cahoon et al. 2003; McKee et al. 2007).

Understanding the importance of plants in promoting wet-
land resilience to sea-level rise is essential to accurate predic-
tions about the future fate of salt marshes and mangrove for-
ests and the development of effective management and resto-
ration strategies. Future research can seek a better understand-
ing of (1) linkages and feedbacks between physical and bio-
logical processes driving vertical land movements, (2) mech-
anisms by which plants affect soil strength and compressibil-
ity, and (3) how co-occurring drivers of vegetation change
such as elevated atmospheric CO2 and climate warming may
interact with responses by species and ecosystems to sea-level
rise.
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