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Abstract
Numerical models are often used to simulate estuarine physics and water quality under scenarios of future climate
conditions. However, representing the wide range of uncertainty about future climate often requires an infeasible number of
computationally expensive model simulations. Here, we develop and test a computationally inexpensive statistical model,
or metamodel, as a surrogate for numerical model simulations. We show that a metamodel fit using only 12 numerical
model simulations of Chesapeake Bay can accurately predict the early summer mean salinity, stratification, and circulation
simulated by the numerical model given the input sea level, winter–spring streamflow, and tidal amplitude along the shelf.
We then use this metamodel to simulate summer salinity and circulation under sampled probability distributions of projected
future mean sea level, streamflow, and tidal amplitudes. The simulations from the metamodel show that future salinity,
stratification, and circulation are all likely to be higher than present-day averages. We also use the metamodel to quantify
how uncertainty about the model inputs transfers to uncertainty in the output and find that the model projections of salinity
and stratification are highly sensitive to uncertainty about future tidal amplitudes along the shelf. This study shows that
metamodels are a promising approach for robustly estimating the impacts of future climate change on estuaries.
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Introduction

Climate change is likely to produce changes in the
temperature, salinity, circulation, and water quality of
estuaries and other coastal environments, and it is important
to understand what effects these changes will have and
whether current practices to manage water quality and
the health of estuarine ecosystems are robust against
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future changes. Because future climate change is difficult
to predict, as a result of a myriad of uncertainties
including future emissions of greenhouse gases and climate
sensitivity, accounting for uncertainty when predicting the
impacts of climate change on estuaries and evaluating
management strategies is essential. However, most studies
on the effects of climate change on estuaries have not
accounted for the many sources of uncertainty present nor
have they robustly quantified the uncertainty and its greatest
sources in their assessments.

Many studies have used model simulations to predict
the effects of sea level rise (SLR), and most have used
multiple plausible values of SLR to attempt to account
for uncertainty. For example, Hong and Shen (2012) and
Rice et al. (2012) modeled changes in Chesapeake Bay
salinity, stratification, and circulation under three different
SLR scenarios and found that SLR caused increased salinity
and stratification. Chua and Xu (2014) obtained similar
results in their numerical model of San Francisco Bay.
Hilton et al. (2008) also predicted increased salinity in the
Chesapeake Bay as a result of SLR using both a statistical
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and a numerical model, Huang et al. (2015) found that sea
level rise increased salinity in their model of Apalachicola
Bay, and Mulamba et al. (2019) found that sea level rise
caused a nonlinear increase in salinity in their model of
the St. Johns River. Lee et al. (2017) and Ross et al.
(2017) found that sea level rise changed modeled tidal
amplitudes and phases in Chesapeake and Delaware Bays,
and similarly Ralston et al. (2018) and Ralston and Geyer
(2019) found that increased depth from dredging increased
tidal range, salinity, and stratification in the Hudson River
estuary. A few studies have also examined the effects of
changing river discharge: Gibson and Najjar (2000) and
Muhling et al. (2018) used statistical models to project
changes in mean salinity in the Chesapeake Bay under
different scenarios derived from climate model output.
They found that model uncertainty, i.e., differences in
projected regional changes of temperature and precipitation
between climate models, produced uncertainty in future
river discharge, which subsequently produced uncertainty
about future salinity.

The previously cited studies have not accounted for
many of the sources of uncertainty that are present in
the climate system and in the models used, and they also
did not quantify the uncertainty that they did include.
Some of the studies simulated conditions under only a
few climate scenarios, in part due to the computational
costs of running numerical model simulations (e.g., well
over 100 simulations would be required to replicate the
combined greenhouse gas and model uncertainty in the
CMIP5 climate model dataset). Others of the cited studies
have examined how the numerical or statistical model
output varies under different levels of only one factor, such
as mean sea level (which is simple to perturb). However,
this method ignores the large amount of uncertainty that
may be contributed by other factors, such as changing
streamflow, as well as possible interactions between factors.
Most studies using this one-factor method also did not
specifically quantify the uncertainty about the chosen input
and the resulting uncertainty in the output. Finally, most
studies have ignored structural and parametric uncertainty
in their estuary models; ignoring this uncertainty could be
particularly problematic for biogeochemical models that
contain large numbers of uncertain parameters (Hemmings
et al. 2015).

A sensitivity and uncertainty analysis is a useful tool
for understanding how uncertain the model output is
(uncertainty analysis), as well as how and which uncertain
model inputs are responsible for the uncertainty in the
model output (sensitivity analysis) (Saltelli et al. 2004).
Many practitioners consider a sensitivity and uncertainty
analysis to be an essential step in the model development
and application process (Jakeman et al. 2006; Sin et al.
2009). In this study, we conduct a variance-based sensitivity

analysis that determines the contributions of the diverse
model inputs to the variance in the model output. If a model
input parameter, which is variable in accordance with a
specified probability distribution that represents uncertainty
about the parameter, produces a large amount of variance
in the model output, the model is considered to be sensitive
to the parameter. Because sensitivity analysis identifies
the input parameters that have the strongest influence on
the model output, it has many potential uses including
simplifying the model and identifying important areas for
future research (Saltelli et al. 2008). However, we are
aware of only one study that conducted a quantitative
sensitivity analysis on a coastal or estuarine model (Mattern
et al. 2013). One reason may be that methods for
sensitivity analysis commonly require many numerical
model simulations and are infeasible for computationally
expensive ocean models.

In other fields of study, computationally inexpensive
statistical models have been applied as tools to analyze
the sensitivity and uncertainty of large, computationally
expensive numerical models. The statistical model, or
metamodel or emulator, is fit (or trained) using a limited
number of numerical model simulations, and predictions
from the statistical model are used to obtain the large
number of data points required for a proper sensitivity
and uncertainty analysis. Pioneering work in this field was
conducted by Sacks et al. (1989), and useful reviews of
metamodels and applications to sensitivity and uncertainty
analysis are available in Saltelli et al. (2008), Storlie
et al. (2009), and Iooss and Lemaı̂tre (2015). Climate
modeling is one particular field that has widely made
use of metamodels. For example, Holden et al. (2010)
used a metamodel to calibrate and analyze the sensitivity
of an intermediate complexity model, Schleussner et al.
(2011) developed a metamodel to analyze the uncertainty
surrounding projections of a decline in the Atlantic
Meridional Overturning Circulation, and Castruccio et al.
(2014) used a metamodel to emulate model temperature and
precipitation time series under different CO2 concentration
trajectories. Metamodels have also been used in several
studies of coastal and estuarine systems, although none of
these studies examined the effects of future climate change.
Chen et al. (2018) used artificial neural networks (ANNs)
as metamodels to predict salinity and hydrodynamics in
San Francisco Bay. van der Merwe et al. (2007) also used
an ANN to predict hydrodynamics in the Columbia River
estuary. Mattern et al. (2013) used a polynomial chaos
expansion, a metamodel method, to analyze the sensitivity
and uncertainty of model predictions of hypoxia in the
northern Gulf of Mexico. Parker et al. (2019) used Gaussian
process regression to predict water levels in an estuary.

There are a few drawbacks to some of the previous
methods used to emulate model simulations of estuarine
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hydrodynamics and biogeochemistry. Due to the large
number of parameters involved in an artificial neural
network, an ANN is commonly considered to be a “black
box” approach—it is difficult to glean an understanding
of the natural system from the ANN model fit. ANNs are
also particularly vulnerable to overfitting, which results in
deceptively high prediction skill when given the input values
used to train the model and exceedingly low skill and the
inability to generalize when given other values (Razavi
et al. 2012). A large number of training simulations may
be needed to fit a metamodel using the polynomial chaos
expansion approach—for example, Mattern et al. (2013)
noted that the number of required simulations scales as
an exponential function of the number of inputs, and as
a result, the authors fit a separate metamodel for each of
the input parameters. Although Mattern et al. (2013) did
conduct a sensitivity and uncertainty analysis using their
metamodel, because they fit a separate metamodel to each
input parameter, they were not able to include the effect
of interactions between the input parameters. Chen et al.
(2018), van der Merwe et al. (2007), and Parker et al.
(2019) did not use their metamodels to conduct a sensitivity
and uncertainty analysis and instead focused primarily on
evaluating the accuracy of the metamodel predictions and
on the computational time saved.

In this study, we examine the use of the Gaussian process
(GP) regression as a computationally inexpensive way to
emulate climate change simulations from a computationally
expensive numerical estuary model and to conduct a
sensitivity and uncertainty analysis. Compared to other
metamodel approaches that have been applied to coastal
and estuarine systems, a Gaussian process metamodel has
fewer parameters and the meanings of these parameters
are more straightforward, which makes the GP metamodel
more interpretable and requires fewer expensive training
simulations. Furthermore, oceanographers may find GP
metamodels to be especially intuitive as they are analogous
to the kriging routines commonly used to interpolate
oceanographic observations. To test this approach, we
analyze the sensitivity and uncertainty of future salinity and
circulation in the Chesapeake Bay. We present a simple test
case that focuses on salinity and circulation in the summer,
when hypoxia is prevalent in the bay, and that considers
only three exogenous variables that are known to affect
salinity and circulation and that may change in the future:
mean sea level, average streamflow between January and
May, and the amplitude of tides along the ocean boundary.
The objective is to determine how sensitive circulation
and salinity projections are to these three variables and
how uncertain future salinity and circulation values are.
Although we begin with a relatively simple case, these
results may be relevant for future studies that may account
for a larger number of uncertain factors and consider more

complex model outcomes, such as the size and duration of
hypoxic conditions.

Methods

Numerical Model

Numerical model simulations were performed using the
Finite Volume Coastal Ocean Model (FVCOM) (Chen et al.
2003, 2006). Most aspects of the model configuration,
including the horizontal mesh, vertical discretization,
bathymetry, and physics options are identical to those
described in more detail by Ross et al. (2017). Briefly, the
model domain covers both Chesapeake and Delaware Bays
and the adjacent Mid-Atlantic Bight, although this paper
focuses only on results from Chesapeake Bay (Fig. 1). The
numerical model uses the vertical wall assumption: sea level
rise does not inundate low-lying land. The model uses ocean
boundary conditions from the Hybrid Coordinate Ocean
Model (HYCOM) reanalysis (Chassignet et al. 2003, 2007)
along with tidal boundary conditions from the Oregon State

Fig. 1 Chesapeake and Delaware Bay portion of the numerical model
domain. Colors show the bathymetry of the numerical model. Dots
and text show the locations of the 11 selected observation sites in the
mesohaline region of Chesapeake Bay
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University TOPEX/Poseidon Global Inverse Solution tide
model (TPXO8) (Egbert et al. 1994; Egbert and Erofeeva
2002). Atmospheric wind, radiation, and heat flux forcing
are obtained from the North American Regional Reanalysis
(NARR) (Mesinger et al. 2006). Freshwater inflows and
associated temperatures are determined from US Geological
Survey observations for ten rivers, eight of which discharge
to the Chesapeake Bay.

The modeling strategy in this study is to configure
the numerical model to approximately simulate “typical”
conditions, then see how these conditions change as factors
for mean sea level, tidal amplitude, and river discharge
are changed. To simulate typical conditions, freshwater
discharge for each river was input using a smoothed
monthly mean climatology derived from observations
during the years 1991 to 2000, which was identified by U.S.
Environmental Protection Agency (2010) to be a period of
typical hydrological conditions. For atmospheric forcing,
the relationship between circulation and wind speed in the
Chesapeake Bay is nonmonotonic with varying directional
and time dependence (Section 3), so winds cannot be
averaged like river discharge. Instead, to obtain a simulation
representative of typical conditions, the year 2009 was
selected as the source of time-varying atmospheric forcing.
2009 appears to be a typical year from a meteorological
perspective; for example, it is the most recent year in which
May–June average NARR wind speed and air temperature
over the bay were both within 0.5 standard deviations from
the 20-year (1999 to 2018) mean. All other aspects of the
model configuration are identical to the model used in Ross
et al. (2017).

The model was first used to simulate the years 2008
(to spinup) and 2009 (to evaluate the reproduction of
climatological conditions). Then, we ran a series of 13
strategically chosen simulations that represent potential
realizations of future conditions.

Uncertainty and Projected Changes in Streamflow,
Sea Level, and Tidal Range

To simulate the effects of uncertain future conditions,
numerical model experiments were performed by repeating
the year 2009 simulation with perturbations applied to three
model forcing variables that affect salinity and circulation
and that may change in the future: mean sea level, tidal
boundary conditions, and streamflow. For this simple test
case, we neglect changes in wind and other factors that
may also change salinity and circulation in the future
(Section 3). Our results will thus underestimate uncertainty,
but will still capture the effects and associated uncertainty
of three major drivers of salinity and circulation and provide
a framework for including additional factors in future
work. All perturbations were uniformly spread across the

range of values that could plausibly be experienced in
the year 2050. Perturbations to sea level and streamflow
assume that the high Representative Concentration Pathway
(RCP) 8.5 greenhouse gas emissions scenario (Riahi et al.
2011) is realized, although conditions under other emissions
scenarios are similar in this region in 2050. In all
parts of this study, we neglect any correlation between
the three exogenous parameters. Although the parameters
are likely correlated to some extent, for example, sea
level and streamflow change will have some correlation
due to temperature dependence, uncertainty for each
parameter is also driven by different factors, such as
regional oceanographic variability and Antarctic ice sheet
contributions for SLR (Kopp et al. 2014) and precipitation
parameterizations and internal variability for streamflow
change. Similarly, as discussed later in this section,
boundary tidal amplitude may also have some correlation
with SLR, but we are assuming that uncertainty about
the magnitude and direction of the changes represented
by the boundary amplitude is significantly greater than
the uncertainty due to correlation with uncertain SLR.
Accounting for correlations between parameters is also
beyond the scope of this study.

Plausible ranges of sea level rise were obtained from the
supplementary material of Kopp et al. (2014). We designed
the model experiments to cover the plausible ranges for
all locations within the model domain, which range from
−8 cm to +101 cm. We note that we have neglected deep
uncertainty about future sea level; i.e., we consider that the
(Kopp et al. 2014) probability density is the actual, correct
PDF of future sea level. Kopp et al. (2014) also neglected
some uncertainty surrounding the response of the Antarctic
ice sheet to climate change (DeConto and Pollard 2016),
but we avoided most of this uncertainty by focusing on sea
level in 2050 rather than in later periods when uncertainty
is larger (Bakker et al. 2017; Kopp et al. 2017). We are also
assuming that SLR is uniform over the model domain, as in
Ross et al. (2017).

Uncertainty about future freshwater inflow into the
bay was represented by perturbing the mean streamflow
between January and May, because January to May flow
has a strong correlation with summertime stratification
and hypoxia (Murphy et al. 2011). A rough estimate of
plausible values was obtained by examining the range of 29
climate and hydrological model simulations of streamflow
from the Susquehanna River produced by the US Bureau
of Reclamation (Brekke et al. 2013, 2014). From these
results, we estimated that plausible future values could
range from 8% lower to 38% higher. Additional information
is provided in the supporting information (Section S2). This
−8 to +38% range also generally encompasses ranges for
January–May streamflow change for the Susquehanna River
simulated by other models (Irby et al. 2018; Johnson et al.
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2012; Seong et al. 2018). The same perturbation was applied
to all ten of the rivers in the model; this is a reasonable
assumption since projected changes are fairly similar in all
of the Chesapeake Bay tributaries, and applying a separate
change to each tributary would greatly increase the number
of model runs necessary and introduce highly correlated
inputs.

Most of the climate and hydrological models project
that the largest percent changes in streamflow will occur in
January and February with a gradual decrease in the change
towards May. This result is consistent with projections of
large precipitation increases in winter and the increasing
importance of evapotranspiration in warmer months (Najjar
et al. 2009). To represent the time dependence of change,
each perturbation was applied by multiplying the daily river
discharge in the control experiment by a time series of
scaling factors. The scaling factors were created by setting
a factor of one at the end of May 31, assuming a linear trend
in the scaling factor from January through May, and finding
the appropriate starting value such that the desired overall
perturbation to the January–May average was applied.

The final uncertain parameter we considered was
boundary tidal amplitude. It is important to note that some
changes in tides due to sea level rise are simulated by
the numerical model, and the effects of these changes on
salinity and circulation would be accounted for as part of
the sensitivity to sea level. However, other changes in tides,
such as those caused by basin-scale trends or estuary-shelf-
ocean feedbacks, are not included in the model and need
to be accounted for as uncertainty in the tidal boundary
condition forcing. We also used the tidal boundary condition
uncertainty to account for uncertainty about the actual
impact of future SLR on changing tides in the bay.

The amplitudes of tidal harmonic constituents in an
estuary may vary for several reasons, including sea level
rise and feedbacks between the estuary, continental shelf,
and open ocean; changes in stratification and internal
tides; and changes in the radiational component of solar
tides. Woodworth (2010), Müller (2012), Devlin et al.
(2018), and Talke and Jay (2020), and Haigh et al.
(2020) provide more detailed discussions and additional
references. Observations of tidal amplitudes in the study
region do in fact contain a variety of trends, and Ross
et al. (2017) found that many of the trends were caused by
rising sea levels and could be simulated by the numerical
model used in this study. However, Ross et al. (2017)
also found trends in the observations that are apparently
unrelated to sea level rise and are not simulated by the
model; they found an average background trend (the trend
after subtracting the modeled effect of sea level rise)
of −7.88% century−1 in the amplitude of the principal
lunar semidiurnal component of the tides (M2) and a
background trend of −10.05% century−1 in the amplitude

of the principal solar semidiurnal component (S2). Although
Ross et al. (2017) projected that SLR would increase tidal
amplitude in many parts of Chesapeake Bay, global tide
model simulations by Schindelegger et al. (2018) predicted
that SLR would decrease M2 amplitude along the majority
of the US East Coast. Without accounting for the effect of
SLR, Ray (2009) and Müller et al. (2011) found similar
negative S2 amplitude trends at nearly all of the Atlantic
Coast sites in their studies. However, Ray (2009) and
Müller et al. (2011) found mainly positive M2 amplitude
trends, and Devlin et al. (2018) found an overall positive
correlation between increased sea level and observed tidal
amplitudes at many stations in the Chesapeake Bay and
surrounding region, although increased sea level lowered
tidal amplitudes at some stations in the region and along the
US East Coast.

In addition to uncertainty about observed tidal trends
and whether they have been caused by SLR, there is also
uncertainty about whether numerical models can properly
simulate the effects of future SLR on tides. The numerical
model configuration in this study does not include wetting
and drying and inundation of shorelines as sea level rises.
Although the model is capable of reproducing historical
tides and changes without these features (Ross et al. 2017),
the potential for inundation becomes substantial with higher
sea level rise amounts, and with these effects included the
numerical model predicts a nearly opposite effect of sea
level rise on tidal amplitudes in the Chesapeake Bay (Lee
et al. 2017). Additionally, because tides are specified along
the boundary, the model does not capture potential basin-
scale changes or feedbacks between tides in the estuary,
shelf, and open ocean. As a result, sea level rise produces
negligible changes in tides along the shelf and open ocean
in the numerical model used in this study (Ross et al.
2017). However, global model simulations do predict shelf-
and basin-scale changes in tides in response to SLR that
could propagate to the coastal region and Chesapeake Bay
(Pickering et al. 2017; Schindelegger et al. 2018).

To account for uncertainty about historical tidal trends
and whether these trends will continue into the future, and
whether rising sea levels will produce changes in tides
that are not simulated by the numerical model, model
simulations were conducted with the amplitudes of all
constituents used to generate the tidal boundary conditions
perturbed within a range of ±10%.

Experimental Design, Model Output, and Evaluation

After choosing plausible ranges for the three numerical
model input parameters, the model was evaluated at
a total of 12 points within the parameter space. The
numerical model simulations consisted of an initial set of
9 experiments chosen using a stratified Latin hypercube
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sample optimized to cover the parameter space uniformly
(Pleming and Manteufel 2005; Damblin et al. 2013)
followed by 4 additional simulations to take advantage
of the remaining computational resources (Fig. 2). One
of these 13 model runs using large values for both
tidal amplitude scale and SLR encountered a numerical
instability and was removed from the remainder of the study,
leaving a total of 12 model runs, or 4 times the number of
uncertain input parameters.

We calculated four metrics from the numerical model
output: mean salinity, vertical and horizontal salinity
differences, and the estuarine exchange velocity. Mean
salinity is simply vertically averaged salinity. The vertical
salinity difference, or stratification, is the difference
between the topmost and bottommost model layers. The
horizontal salinity difference is the difference in column-
mean salinity between the two stations bounding the
mesohaline region of the bay (stations 3.2 and 5.5 in Fig. 1).
The horizontal difference is a strong proxy for the mean
horizontal salinity gradient in the central bay region (the
correlation coefficient between the summer mean difference
and the gradient determined using linear regression is 0.99
over the 12 model runs), but the difference is simpler to
compute and more intuitive than the gradient. The exchange
velocity was defined following Chant et al. (2018) as half of
the shear of the low-passed longitudinal velocity. We chose

these metrics because they provide overall measures of
estuarine hydrodynamics and have been examined in other
theoretical and modeling studies (Section 3), and because
they are also related to the health of the estuarine ecosystem.
For example, mean salinity controls the ranges of oyster
habitat and diseases (Kimmel et al. 2014), and high salinity
stratification produces hypoxia by reducing the downward
mixing of oxygenated water (Officer et al. 1984).

All four metrics were calculated at the model output
resolution (hourly) for the model points closest to the
chosen Chesapeake Bay Program (CBP) water quality
database observation stations located in the mesohaline
region where stratification and hypoxia often occur (Fig. 1).
The metrics were averaged over the 11 stations and over
the 59-day period (two lunar months) from May 1 to June
28, a period when stratification is common and hypoxic
conditions typically develop.

Finally, the year 2009 control simulation from the
numerical model was evaluated by calculating the same four
metrics for all observations in the water quality database
at the 11 stations. For vertical salinity difference, the
measurements closest to the surface and bottom from each
vertical profile were used; measurements typically began
1 m below the surface and were taken at 1-m intervals.
Metrics were calculated and averaged separately for each
59-day period (May 1 through June 28) from 1984 to 2017

Fig. 2 Points in streamflow
scale, tidal amplitude scale, and
sea level rise space where
numerical model simulations
were run. The unfilled circle
indicates a simulation that failed
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to obtain rough estimates of the climatological probability
distribution of each metric. The water quality database
does not include observations of velocity, so the exchange
velocity metric could not be evaluated.

Metamodel

After running the numerical model at the chosen design
points, Gaussian process (GP) metamodels were fit to
the model output metrics and used to create the large
number of model simulations required for the sensitivity and
uncertainty analysis. GP metamodels are analogous to the
kriging methods commonly used to interpolate irregularly
spaced oceanographic observations; the idea is to use
kriging to interpolate the model output from the design
points to any number of other points.

The Gaussian process metamodel assumes that the
numerical model output Y evaluated at points x in model
parameter space can be represented as a Gaussian process,
a finite set of random variables with a joint Gaussian
distribution (Rasmussen and Williams 2006), that is defined
by a mean function m and a covariance function c:

Y(x) ∼ GP
(
m(x), c(xi , xj )

)
. (1)

After using a small set of numerical model simulations to
learn the parameters for the mean and covariance functions,
the Gaussian process can be used to predict values of the
numerical model output at new points in the numerical
model parameter space by combining the mean function
at the new points with the covariance between the output
at the new points and the output at the training points. A
short summary of the mathematical details of the Gaussian
process metamodel is provided in Appendix A, and we refer
the reader to Rasmussen and Williams (2006) and Roustant
et al. (2012) for further details.

A separate GP model was fit for each of the four output
variables of interest (Section 3). All models were fit using
the DiceKriging package for R (Roustant et al. 2012). The
mean function for the models for vertical salinity difference
and exchange velocity was a constant value. We included a
constant value plus linear trend terms in the mean function
for the other two models: the model for mean salinity,
which we justify based on previous studies finding roughly
linear sensitivity to mean sea level (Hilton et al. 2008;
Hong and Shen 2012) and on our interest in estimating
the linear sensitivity, and the model for the horizontal
salinity difference, which we justify based on expected
sensitivity to all of the model inputs (Section 3). For nearly
all models, using a linear trend or only a constant value
produced similar skill in the cross-validation evaluation
(discussed next). The only exception was the model for the
horizontal salinity difference, which obtained a poor fit to
the numerical model without a linear trend term. All models

used a squared exponential as the covariance function,
which parameterizes the covariance as a combination of an
overall process variance and a separate length scale for each
input parameter (Appendix A).

Overall, the metamodels for the vertical salinity differ-
ence and exchange velocity had a total of five parameters
that needed to be estimated: the constant mean, the process
variance, and the three covariance length scales (one for
each of the predictor variables—SLR, tidal amplitude scale,
and streamflow scale). The metamodels for mean salin-
ity and horizontal salinity difference also included a linear
trend term for each of three predictor variables, bringing the
total to eight estimated parameters.

Compared to the amount of data used to fit the
metamodel (12 simulations), the number of estimated
parameters in the metamodels is large. Larger simulation
sizes, on the order of 10 times the number of inputs, are
typically considered optimal for fitting metamodels with
more inputs than the three used in this study (Loeppky
et al. 2009). To verify that predictive skill was obtained
with a smaller experimental design, as well as to ensure
that the metamodels were not overfit to the data (i.e., that
the metamodels have not merely “memorized” the data but
have actually learned the relationship between the inputs
and output), we evaluated the predictive capability of the
metamodels by applying cross-validation. Cross-validation
methods are commonly used in statistical modeling and
machine learning studies to estimate the error of a model
when predicting new data (versus the residual error of a
model, which is the error of the model when predicting
using the same data that was used to fit the model). These
methods work by repeatedly (1) splitting a dataset into
“training” and “testing” partitions, (2) fitting a model using
the training dataset, (3) generating new predictions using
the fitted model and the testing dataset, and (4) calculating
an error measure from the difference between the predicted
and actual values in the testing dataset. The average of the
error measure over a number of cross-validation iterations
provides an estimate of the predictive error, and large
predictive errors indicate a model that is poor and may be
overfitting. For GP models, cross-validation is particularly
useful for assessing the predictive ability because the GP
predictions perfectly interpolate the training data and the
residual error is zero (Marrel et al. 2008).

In this study, we used leave-one-out cross-validation,
where only one data point at a time is used in the test
dataset and the model is fit to all of the remaining data.
The coefficients for the trend term(s) in each metamodel
were reestimated during each cross-validation iteration,
which improves the error estimates for small sample sizes
(Roustant et al. 2012). The covariance parameters were also
reestimated. The cross-validation results were evaluated
graphically and by computing the Nash-Sutcliffe efficiency
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(Nash and Sutcliffe 1970):

Q2 = 1 −
∑n

i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Y − Yi

)2
(2)

where Yi is the value simulated by the numerical model,
Y is the mean numerical model value, and Ŷi is the
metamodel prediction. We also calculated the mean absolute
error:

MAE = 1

n

n∑

i=1

∥∥
∥Ŷi − Yi

∥∥
∥ . (3)

Sensitivity and Uncertainty Analysis

The metamodels were used to analyze the sensitivity of
the numerical model to the three uncertain parameters. We
calculated Sobol’ indices for the first-order and total effects
using the methods described in Jansen (1999), Saltelli et al.
(2010), and Le Gratiet et al. (2014). Sobol’ indices are based
on a decomposition of the variance of the model output into
additive functions of the model input. The first-order Sobol’
index is defined as

Si = VXi

(
EX−i

(Y |Xi)
)

V (Y )
(4)

and the total effect index as

ST i = EX−i

(
VXi

(Y |X−i )
)

V (Y )
. (5)

Y |Xi denotes the model output with factor i fixed,
and the function EX−i

gives the expected value over all
values of the factors that are not fixed. Finally, the function
V gives the variance. Therefore, for a given factor, the
first-order index gives the expected fraction by which the
output variance would be reduced if the factor i was
exactly known, while the total index gives the fraction of
variance that would remain if all factors except factor i were
known (Saltelli et al. 2010). The presence of interactions
with other factors is indicated by total indices that are
greater than first-order indices (or a sum of first-order
indices that is less than 1). Given the small number of
parameters in the model used in this study, it would also
be feasible to compute all of the intermediate-order indices
to precisely determine interactions. However, the results
will show that all interactions are negligible. Following Le
Gratiet et al. (2014), the Sobol’ indices were calculated
from the metamodel output and bootstrapping was used
to determine uncertainty. The Sobol’ index calculation
used a Monte Carlo approach with metamodel predictions
at 216 points in predictor (SLR–tidal amplitude scale–
streamflow scale) space along with 100 random samples of
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Fig. 3 Probability density (left panels) and cumulative distribution (right panels) functions used in the sensitivity and uncertainty analysis
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the metamodel uncertainty at each point and 100 bootstrap
samples to determine the uncertainty due to numerical
integration. Justification for using 216 points is provided in
the Supporting Information (Section S4).

The sensitivity and uncertainty analysis requires speci-
fying the probability distributions for each of the factors
being analyzed. We based these probability distributions
(Fig. 3) on the same information used to assess the plausible
ranges of future values. The PDF for future sea level rise,
which was derived from the Kopp et al. (2014) values for
the Sewells Point location, was a truncated Gaussian distri-
bution with a mean of 43.90 cm, variance of 10.862 cm2,
and truncations at 3 and 101 cm. The PDF for streamflow
change was specified using a triangular distribution over the
−8% to +38% plausible range. This distribution is a sim-
ple approximation that captures our expectation that future
streamflow change is more likely to be near the center of the
plausible range than near either tail. For the same reason, we
also used a triangular distribution to represent uncertainty
about future tidal amplitudes. Although the distribution for
tidal amplitude spans the ±10% plausible range, 75% of the
probability is contained within ±5%.

Results

Numerical Model Control Simulation and Evaluation

The control run of the numerical model successfully
reproduces historical mean salinities (Fig. 4); both the mean
and mode of the observations are close to the numerical
model value. The vertical salinity difference is not simulated
as well, with the model value being slightly lower than
the range of observed values. This under-prediction of

stratification is a common problem in numerical models of
Chesapeake Bay (Li et al. 2005; Irby et al. 2016). Some
of the errors in the vertical salinity difference may also be
a result of errors in the model bathymetry. The numerical
model horizontal salinity difference of 12.1 is larger than
the largest historical value of 11.5, a bias that is also found
in other models Xu et al. (2012), cf. their Table 5). Overall,
despite some biases, we consider the model simulations to
be sufficiently realistic for the sensitivity and uncertainty
analysis. Furthermore, as we are primarily interested in
projecting future changes rather than exact future values,
some errors in the model historical simulation should not
affect the results.

Metamodel Results

Cross-validation shows that the metamodels are capable
of predicting the numerical model results with reasonable
skill (Fig. 5). For mean salinity and the vertical salinity
difference, the efficiency coefficients Q2 are above 0.9,
and the mean absolute errors (MAEs) are two orders of
magnitude smaller than average values. The metamodel for
salinity also accurately predicted a salinity value that was
more than 1 unit below all other numerical model salinity
values. Prediction skill is slightly lower but still reasonable
for the exchange velocity: the MAE remains two orders
of magnitude less than the mean value, but the Q2 metric
is closer to 0.8. The skill metric is even lower for the
horizontal salinity difference (0.586), although the positive
skill and low MAE indicate that this model still has some
predictive skill. The horizontal salinity difference may be
more challenging to predict as it is determined by salinity
at only two stations at opposite ends of the mesohaline
region. Overall, the low errors for all variables indicate that

Fig. 4 Mean salinity and
vertical and horizontal salinity
differences averaged over the 11
selected Chesapeake Bay
Program sites in the central
Chesapeake Bay (Fig. 1) for the
period between May 1 and June
28. Bars show histograms of the
observations between 1984 and
2017, and dotted lines show the
numerical model simulations
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Fig. 5 Results from
leave-one-out cross-validation
of the metamodel. x-axis gives
the values simulated by the
numerical model. y-axis gives
the metamodel prediction when
the metamodel was fit to all
other points. Solid lines
correspond to a perfect match
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despite being fit to only 12 numerical model simulations, the
metamodel is a reliable surrogate for the numerical model
and can be used for the sensitivity and uncertainty analysis.

Figure 6 shows how the metamodel predictions change
when only one factor is varied and the other factors are
fixed at their present-day values. Table S2 in the supporting
information also provides the coefficients of the trend terms
in the metamodels. These results show that increased tidal
amplitude produces lower mean salinity and stratification.
Higher streamflow lowers the mean salinity and increases
the horizontal salinity difference. The vertical salinity
difference and estuarine circulation may also increase with
streamflow. Sea level rise produces a large increase in mean
salinity and also increases the stratification and estuarine
circulation.

Tidal amplitude at the boundary is the largest source of
uncertainty for mean salinity, vertical salinity difference,
and exchange velocity (Fig. 7), while streamflow dominates
the sensitivity and uncertainty of the horizontal salinity
difference. Projections for all four variables are at most
weakly sensitive to mean sea level. It is important to note
that this does not necessarily mean that changes in sea
level have a small effect on the metamodel predictions
or numerical model output; sea level actually has a fairly

large effect on the metamodel predictions in Fig. 6, but
our uncertainty about future sea level is smaller than our
uncertainty about future streamflow and tidal amplitudes
(Fig. 3), so the overall contribution of sea level to the
uncertainty is relatively small. Figure 7 shows only the total-
effect indices since the first-order effects are essentially the
same (Supporting Information Figure S1). This indicates
that the interactions between tidal amplitude, mean sea
level, and streamflow are negligible.

Given the probabilities for changes in tidal amplitude,
streamflow, and sea level considered in this study, the
salinity and circulation in the Chesapeake Bay are likely
to be different in 2050 (Fig. 8). Increases in mean salinity,
vertical salinity difference, and exchange circulation are
all very likely, with more than 90% of metamodel
predictions exceeding the present-day values. This certainty
is consistent with our assumptions that mean sea level and
streamflow are likely to increase in the future (Fig. 3)
and the metamodel-predicted effects of increases in mean
sea level and streamflow (Fig. 6). On the other hand, the
horizontal salinity difference is about as likely to increase
as it is to decrease, which results from a balance between
a larger difference caused by increased streamflow and a
smaller difference caused by higher mean sea level.
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Fig. 6 Results from varying one
factor with the other factors
fixed at their present-day values.
Solid lines denote the
metamodel mean prediction, and
shaded regions indicate the 95%
confidence intervals
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Figure 8 also highlights the challenges of representing
uncertainty about future conditions with a limited number
of numerical model simulations. For example, even though
the 12 training model simulations we used were chosen to
cover a wide range of uncertainty, 8.0% of the metamodel
predictions of vertical salinity difference are below the
lowest numerical model prediction (although some of this
uncertainty also comes from the metamodel uncertainty).

Discussion

Consistency with Previous Studies and Theory

The results of our numerical model simulations and
metamodel fit with varying values of mean sea level,
streamflow, and tidal amplitude are broadly in agreement
with expectations from analytical solutions for idealized

Fig. 7 Total effect Sobol’
indices for tidal amplitude, sea
level, and January-May
streamflow. The total effect
index indicates the fraction of
the variance (or the uncertainty)
in the model output that would
remain if all factors except the
given factor were known
(Section 3). Error bars indicate
95% confidence intervals
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Fig. 8 Projections of future
salinity and circulation in 2050.
Gray bars are histograms
derived from 10,000 metamodel
predictions that sample both
input and metamodel
uncertainty. Dotted and dashed
lines indicate metamodel-
derived best estimates of the
current and future values,
respectively (the best estimate of
the future is predicted using the
mean of each input PDF). Red
dots indicate the 12 numerical
model simulations. Percentages
in the left and right sides of each
panel show the percent of
metamodel simulations below
and above the current best
estimate, respectively
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estuaries and with results from observational and modeling
studies of both the Chesapeake Bay and other estuaries.
Although a complete investigation of the causes of the
sensitivities revealed by the metamodels is beyond the
scope of this study, in this section, we compare our results
with previous studies to verify that the metamodels have
produced physically reasonable results. We compare our
results with the classical analytical solutions for the central
portion of an estuary at steady state derived by Hansen and
Rattray (1965) and expanded and discussed by MacCready
(1999), Monismith et al. (2002), MacCready and Geyer
(2010), Geyer and MacCready (2014), and others. We
also compare our results with the observational study of
Newark Bay by Chant et al. (2018) and the observational
and modeling study of the lower Hudson River Estuary by
Ralston and Geyer (2019).

In some idealized solutions, increasing depth has no
effect on the exchange circulation, but it does decrease
the horizontal salinity gradient (MacCready and Geyer
2010; Chant et al. 2018). This theory is consistent with
the modeling and observational results from Ralston and
Geyer (2019), who found that SLR decreased the horizontal
salinity gradient and caused a negligible increase in the
exchange circulation. On the other hand, in observations
of a different estuary, Chant et al. (2018) found that
SLR significantly increased the exchange circulation. They
proposed that this effect is due to the short length of the
estuary that they studied, which prevents the salinity field
from completely adjusting to SLR and results in a salinity
gradient that is constant or slightly increasing with SLR.

Our results are broadly more consistent with those of
Ralston and Geyer (2019): the metamodel fits indicate that
SLR likely causes a decrease in the horizontal salinity
gradient, but SLR also causes a small increase in the
exchange circulation (Fig. 6). It should be noted that

metamodel uncertainty is higher for the effect of SLR on
the exchange circulation for SLR values above 0.75 m, and
the uncertainty for the slope of the effect of SLR on the
horizontal salinity gradient is also large. Ralston and Geyer
(2019) note that the exchange circulation is theoretically
proportional to salinity at the mouth S0 and river discharge
Qr :

ue ≈ 2

3

(
βgS0Qr

W

)1/3

, (6)

with β the saline contraction coefficient, g the gravita-
tional acceleration, and W the width, but they obtained a
better fit to their idealized model simulations by replac-
ing the leading coefficient with 1

3 and replacing S0 with
the local salinity S(x). This scaling also provides a good
fit to our model results. Using the January–May average
streamflow for Qr and a width of 15 km, linear regression
estimates the leading coefficient in Eq. 6 to be 0.43, between
1/3 and 2/3. This fit has an R2 value of 0.84. When using a
more general nonlinear least squares regression to also esti-
mate the exponent in Eq. 6, we obtain an estimated exponent
of 0.63, closer to 2/3 rather than 1/3, and a leading coeffi-
cient of 0.78 with similarly small residual error. It should be
noted that the width of the Chesapeake Bay varies signifi-
cantly, and using other reasonable values for width changes
the leading coefficient but not the overall goodness of the fit.
The residuals from the first fit have a moderate correlation
with mean sea level (R = 0.46), and including an additive
sea level term in the linear regression model for Eq. 6 results
in a better fit (R2 = 0.89; R2 adjusted for degrees of freedom
also increases) and reduces the leading coefficient to 0.36.

We found that the vertical salinity difference increased
slightly with higher mean sea level, a result contrary to
classical theory but consistent with that of Ralston and
Geyer (2019). However, similar to the case for exchange
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circulation, the metamodel uncertainty is higher for SLR
above 0.75 m. Increased stratification in response to SLR
has also been found in model simulations of Chesapeake
Bay by Hong and Shen (2012) and San Francisco Bay by
Chua and Xu (2014).

Other aspects of our results are consistent with both
idealized solutions and other modeling studies. In our
metamodel simulations, SLR causes higher mean salinity at
a rate of 2.31 m−1 (Fig. 6; Table S2). Hilton et al. (2008)
simulated summer salinity in the Chesapeake Bay using
ROMS and found that the relationship between salinity and
mean sea level in the central bay was about 2.5 m−1. Also
using a different model, Hong and Shen (2012) found a
slightly weaker relationship between bay-average salinity
and mean sea level of between 1.2 and 2.0 m−1. Our model
shows a linear scaling between mean salinity and sea level,
whereas idealized solutions predict that the salt intrusion
length and mean salinity are nonlinear functions of depth
(MacCready 1999; Hilton et al. 2008). However, we may
not have explored a large enough sea level range to detect a
nonlinear scaling.

In our results, higher streamflow lowers the mean
salinity and increases the horizontal and vertical salinity
differences and the exchange circulation. This result is
consistent with both classical solutions and Chant et al.
(2018) and Ralston and Geyer (2019). Li et al. (2016)
also obtained similar results in their numerical model
simulations of Chesapeake Bay. Idealized solutions suggest
that the salt intrusion length and the horizontal salinity
gradient are proportional to Q−1/3 or Q−1/7 (Monismith
et al. 2002; Ralston et al. 2008), whereas our results show
mean salinity and the horizontal salinity difference varying
essentially linearly with streamflow. However, we simulated
conditions following the spring freshet, and the majority of
our simulations of projected climate change included even
higher streamflow, so our results are primarily in the region
where a nonlinear Q−1/3 or Q−1/7 dependence would
appear to be nearly linear. In addition to being proportional
to Q−1/3, the length of salt intrusion is also proportional to
the inverse of the average tidal velocity U−1

t in idealized
solutions (Monismith et al. 2002; Ralston and Geyer 2019).
Our finding of a stronger sensitivity of mean salinity to tidal
amplitude than to streamflow is consistent with this theory.

Higher tidal amplitude is expected to produce greater
mixing, but in classical approximations, both the exchange
circulation and stratification are not affected by mixing.
This insensitivity occurs because although an increase in
mixing does initially reduce the exchange circulation and
stratification, the resulting weaker circulation increases
the horizontal salinity gradient, and eventually balance
is restored as the circulation and stratification return to
their steady-state values (MacCready and Geyer 2010).
Our results are nearly consistent with this theory: we

found that higher amplitude reduced the mean salinity, may
have increased the horizontal salinity difference (although
metamodel uncertainty is high), and caused negligible
changes in the exchange circulation. However, in our model,
increasing the tidal amplitude significantly reduced the
vertical salinity difference.

Neglected Climate Factors and Other Uncertainties

One limitation of the current study is that we have neglected
the potential for future changes in typical wind speeds
and directions. Wind speed and direction are increasingly
being recognized as major factors controlling vertical
stratification, circulation, and hypoxia in Chesapeake Bay
(Scully 2010a; 2010b; Lee et al. 2013; Du and Shen
2015; Li et al. 2016; Scully 2016). However, changes in
wind speed and direction and their impacts are difficult
to model. Winds can change rapidly in the study region,
and the responses of stratification and hypoxia to changes
in wind speed and direction in the Chesapeake Bay are
nonmonotonic and have varying time dependence (Li and
Li 2011; Xie and Li 2018). As a result, it is necessary to
force the numerical model with realistic time series of wind
speed and direction; winds cannot be simply averaged like
river discharge. Statistical methods could be used to produce
stochastic wind speed time series with controllable mean
speeds and directions; however, this could also significantly
increase the number of ocean model simulations required
due to the number of additional parameters introduced and
the added random variability.

Observations show that water temperatures in the
Chesapeake Bay region have increased during the last
century (Preston 2004; Najjar et al. 2010; Ding and Elmore
2015; Rice and Jastram 2015), and this warming trend
is likely to continue in the future as greenhouse gas
concentrations and atmospheric temperatures also continue
to increase. In the present study, we have neglected
the impacts of rising temperatures on stratification under
the assumption that any temperature changes would be
fairly evenly distributed in the relatively shallow bay.
However, observations by Preston (2004) do suggest that the
Chesapeake Bay bottom water may be warming faster than
surface water, so future work may benefit from including
temperature changes. Warmer water is also likely to have a
significant impact on the bay ecosystem (Najjar et al. 2010;
Muhling et al. 2018) and should be included in future work
to model these impacts.

The present study has also neglected model structural
uncertainty, which could be a large source of uncertainty,
particularly in cases of high sea level rise. Lee et al. (2017)
showed that modeled changes in tides in Chesapeake and
Delaware Bays depend significantly on whether or not the
numerical model allows low-lying land to be inundated
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as sea level rises. Vertical stratification may also depend
on the parameterization used to model turbulent mixing,
although Li et al. (2005) found that parameterization choice
had only a minor impact on simulation of Chesapeake Bay
stratification.

Finally, uncertainty about parameters in the numerical
ocean model is also ignored in the present study. Parameters
that may be worth considering in future studies include the
background vertical mixing coefficient (studied by Li et al.
(2005)) and the bottom roughness length.

Possible Improvements to Metamodel Methods

It is worth noting that our metamodeling approach, despite
being advanced relative to many previous studies in
estuarine and coastal regions, is relatively simple compared
to methods developed and applied in other fields including
climate modeling and statistics. To model the multiple
outputs of our estuarine model, we employed what has
been termed the “many single-output emulators” method
(Conti and O’Hagan 2010). In this method, each output
variable is predicted by a completely separate, independent
metamodel. However, what Conti and O’Hagan (2010)
termed “multi-output” emulators have been developed,
which would allow the prediction of the multiple outputs
of the estuarine model with a single metamodel (e.g.,
Conti and O’Hagan (2010), Fricker et al. (2013)). Similarly,
we developed metamodels to predict numerical model
output that was averaged over both time and space;
however, methods for emulating model outputs that vary
over time and space have been developed. Methods to
emulate model output that varies over space have tended to
apply dimensionality reduction methods (i.e., singular value
decomposition/principal component analysis) to reduce the
large number of grid/mesh points in the numerical model
output into a smaller number of orthogonal values that can
be easily emulated (e.g., van der Merwe et al. (2007)).
However, our approach of averaging the results over time
and space makes the metamodels more interpretable and is
sufficient for our intent to assess the overall sensitivity of the
bay physics to climate change. Finally, the Gaussian process
metamodels used in this study fit nearly linear relationships
between all of the inputs and outputs (Section 3; Fig. 6).
In this case, using simpler multiple linear regression
metamodels would be adequate to emulate the numerical
model output. We did not choose linear regression models
for this study because the relative linearity of the results was
not expected a priori.

We expect that our study could also be improved by
increasing the number of numerical model simulations used
to fit the metamodels. Although the metamodels performed
well in cross-validation (Fig. 5), confidence intervals for
some of the Sobol’ indices remained large relative to the

values of the indices (Fig. 7; Supporting information Section
S4). We expect that increasing the numerical model sample
size would increase the certainty regarding the metamodel
predictions. Increasing the sample size would also help
identify areas where the model response is nonlinear or
where interactions between terms are present.

A final enhancement to the approach used in this study
would be to more robustly quantify the uncertainty about
the streamflow and tidal amplitude scales. For both scales,
we assumed a triangular PDF with the mode and limits
set to rough estimates based on the range of a set of
numerical model simulations (for streamflow) and the range
of different results reported in the literature (for tidal
amplitude). In contrast, the PDF for sea level was obtained
from Kopp et al. (2014), who combined a multitude of
studies and model experiments that quantified uncertainty
about different processes that affect mean sea level to
create a final PDF. Although our simple approximations for
streamflow and tidal amplitude uncertainty were sufficient
to test the value of the metamodeling approach, more
robustly quantifying the uncertainty about these parameters
would yield more accurate estimates of projected changes
and their uncertainties.

Conclusions

Given the assumed probability distributions for future
streamflow, mean sea level, and tidal amplitude, future
stratification, salinity, and estuarine circulation in the
Chesapeake Bay are all likely to be higher than present-
day averages in 2050. However, uncertainty about all
of the input factors contributes to significant uncertainty
in the modeled future conditions. Mean salinity and
vertical stratification, which are highly important for
biogeochemistry and ecology in the bay, are strongly
sensitive to tidal amplitude; however, the effects of
uncertainty about tidal amplitude have been examined
by only one other study (Lee et al. 2017). Therefore,
these results highlight the benefits of conducting a
sensitivity and uncertainty analysis and the success of
the metamodel approach. Future work should expand
the analysis to examine more factors beyond the three
used here, including factors related to model structural
and parametric uncertainty, and include biogeochemical
components. The results also showed that the system was
simpler than we initially expected: interactions between the
three factors examined were negligible, and the responses of
the four variables studied were relatively linear. As a result,
future sensitivity and uncertainty analyses may consider
simpler methods that do not require the relatively time-
consuming building of the metamodels and calculation of
the Sobol’ indices.
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Appendix A: Details of Gaussian Process
Metamodel

We initially treat the model output as the sum of one or more
trend terms and a zero-mean Gaussian process:

Y(x) = f (x)ᵀβ + GP
(
0, c(xi , xj )

)
(7)

where, for an x consisting of n points in d-dimensional
space, f (x)ᵀ is a n × p design matrix for the trend term(s)
and β is a p × 1 vector of trend parameters. For a simple
intercept only (constant mean, or flat trend), p = 1 and
f (x)ᵀ would be a vector of n ones and β the intercept.
For a linear trend, these terms are analogous to multiple
linear regression, with p = 1 + d , f (x)ᵀ a matrix with
rows consisting of a 1 followed by the d coordinates of one
point, and β representing the intercept and a slope for each
dimension.

The covariance function gives the covariance between the
GP at two points xi and xj . Under the assumption that the
model output is a relatively smooth function of its inputs
(Roustant et al. 2012), we modeled the covariance with a
squared exponential function:

c(xi , xj ) = σ 2
d∏

k=1

exp

(

−
(
xi,k − xj,k

)2

2θ2
k

)

(8)

Here, θk functions as a length scale that adjusts the
distance of the decay of the covariance between model
results at different values of factor k, and σ 2 is a constant
known as the process variance.

The separate terms in Eq. 7 can be combined into a
single Gaussian process with non-zero mean, and, following
Roustant et al. (2012), prediction of the numerical model
output Ŷ at a new point x∗ can be obtained from the
expected value of the GP conditional on the n known values
of the numerical model simulations Y at points x used to
train the metamodel:

E
[
Ŷ (x∗)

]
= f (x∗)ᵀβ̂ + Cᵀ

x∗C
−1
x (Y − Fβ̂) (9)

where f (x∗)ᵀβ̂ is the sum of the trend function(s) given
estimated values of the coefficients β̂, Cᵀ

x∗ is a 1×n vector of
the covariance between the output at the new point and the

n training points, C−1
x is the inverse of the n × n covariance

matrix of the training simulations, Y is a vector of the
values of the numerical simulations used for training, and
Fβ̂ is a vector of the values of the trend(s) at the training
points. Eq. 9 shows that when numerical simulations are
near the prediction point in parameter space, and therefore
have high covariance, the deviation of the prediction from
the trend will be influenced by the deviation of the nearby
simulations from the trend. Far away from any numerical
simulations used to fit the metamodel, the metamodel
prediction will tend to revert towards the value from the
trend functions only. Uncertainty about the outcome of the
Gaussian process is also typically included when making
predictions. See Roustant et al. (2012) for the formulation of
the variance of the predicted values. Intuitively, variance is
low near points where the numerical model has been run and
is large at points far away from known model simulations.
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