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Abstract
Phytoplankton community species composition, diversity, biomass, and distribution experience constant changes because of
seasonal and temporal variations. This study was done with the aim of describing the response to environmental and seasonal
changes of the phytoplankton communities of a tropical estuary in the south of the Colombian Caribbean Sea (Gulf of Urabá)
with an emphasis on potential producers of toxin genera. To do these, 15 sites along the Gulf were studied during two cruises in
the rainy season and one during the dry season. In each site, water samples from above and below the halocline were collected.
Environmental factors such salinity, pH, dissolved oxygen, and nutrient concentration were correlated with diatoms, dinoflagel-
late, cyanobacteria, and biotoxin producer abundance. The results showed that the number of diatoms was at a maximum of
11,166 cell/L in the fluvial zone. Dinoflagellates were at a maximum of 4250 cell/L in the same zone during the dry season and
cyanobacteria blooms during the rainy season. Four genera of potential biotoxin producers were found: Dolichospermum,
Prorocentrum, Dinophysis, and Pseudo-nitzschia; this last genus represents 44% of the total diatom abundance during the rainy
season with a detectable domoic acid production in a range between 25.54 and 1580.7 pg/mL; this substance can affect different
trophic levels in the Gulf, especially mammals due to its non-reversible amnesic effect. Overall, this study shows that the
phytoplankton community structure in this tropical stratified estuary presents environment conditions during the rainy season
that increase the abundance of phytoplankton that may thrive into blooms.
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Introduction

Phytoplankton represent more than 45% of the net primary
production of the planet and the first trophic level in marine
food webs (Hernández 2014; Martínez et al. 2013; Vajravelu
et al. 2018). Phytoplankton are the largest producers of oxy-
gen on the planet and comprise approximately 5000 species in
marine and estuarine waters, including chlorophytes, dinofla-
gellates, cyanobacteria, and diatoms (Cloern 1996;
Hallegraeff 1993; Hernández 2014). Due to their importance,

small variations in the phytoplankton community structure
produce large impacts on ecosystems (Dogliotti 2007).

The taxonomic composition of microalgal communities
and their biomass usually change when the concentrations of
essential nutrients (N, C, P, O, Fe, Si) increase (i.e., eutrophi-
cation); phytoplankton communities will increase their grow-
ing rates, which leads to blooms that can affect ecosystems
(Anderson et al. 2002; Hallegraeff 1993; McCabe et al. 2016;
Smayda 1997; Vajravelu et al. 2018; Wells et al. 2015). When
blooms occur, the required quantity of oxygen becomes
higher than the production rate because of decomposition of
organic matter, and this can promote anoxia events and the
death of organism of commercial interest (Carstensen et al.
2015; Zilius et al. 2014). During blooms, some biotoxin pro-
ducer species can thrive, producing harmful algae blooms
(HABs) that cause ecological and anthropogenic negative im-
pacts (Hallegraeff 1993; Sar et al. 2002).

Knowledge on the variation of phytoplankton communities
and on the presence of potential biotoxin producer genera
such as Pseudo-nitzschia, Dinophysis, Dolichospermum, and
Prorocentrum is a useful tool for establishing appropriate
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management strategies (Barton et al. 2016) in order to prevent
the consequences of harmful blooms. The relative abundance
of phytoplankton also responds to environmental changes—
for example, variation in the thickness of the mixed layer,
runoff, water surface temperature, salinity, and resuspension
induced by waves and winds (Carstensen et al. 2015; Gobler
et al. 2012; Jakobsen et al. 2015; Muylaert and Sabbe 1999;
Muylaert et al. 2009; Smayda 1990; Vajravelu et al. 2018;
Wells et al. 2015).

In tropical ecosystems, particularly in estuaries, rainfall and
mostly salinity are fundamental modulators of the abundance
dynamics and distribution of the phytoplankton community
species (de Affe et al. 2018; Flöder et al. 2010; Masmoudi
et al. 2015; Oliver et al. 2010; Pednekar et al. 2018). Thus,
salinity is a key variable to understand distribution of this
community. Tropical estuaries are usually rich in nutrients
due to river discharges, becoming mesotrophic to eutrophic
systems (Huang et al. 2012; Mahoney and Bishop 2017),
which influence phytoplankton growth rates and biomass pro-
duction (Glibert 2016; Reynolds 2006), although they repre-
sent a small percentage of the Earth’s surface (Cloern et al.
2014). The northern region of Colombia has two estuaries
with high nutrient loads and high productivity in which algal
blooms can occur (Blanco et al. 2006; Cloern et al. 2014;
INVEMAR 2017a, b). However, the Gulf of Urabá, the largest
estuary, has been poorly studied. Considering tropical estuary
dynamics, we hypothesized that phytoplankton community
genus composition, diversity, abundance, and distribution
present changes linked to the nutrients and environmental
conditions of each season.

Methods

Study Site

The Gulf of Urabá is a semi-closed estuarine area located in
the southwestern Colombian Caribbean between 7° 55′–8° 40′
N and 76° 53′–77° 23′ W, with a length and width of ca.
80 km and ca. 25 km, respectively (Fig. 1). The Gulf has high
sedimentation rates from the second largest river in Colombia
(the Atrato River, rate close to 11 ton/year), and these fresh-
water flows are mixed with waters of the Caribbean Sea
(Montoya 2010). Also, the gulf is recognized as a stratified
estuary with salinity differences ranging from 7 to 35 psu
(Montoya et al. 2017).

Additionally, the estuary has depths between 2 and 80 m,
with an average depth of 34 m (François et al. 2007), and a
regional precipitation around 2500 mm/year. The intertropical
convergence zone (ITCZ) is the main physical mechanism
that modulates the hydro-climatology of the region. As result,
there are two main climatic seasons defined by the precipita-
tion and circulation patterns during the year (Chevillot et al.

1993). The dry season occurs between December and April
and is generally characterized by low precipitation levels in-
fluenced by high-intensity trade winds. In contrast, the rainy
season is experienced between May and November, and is
characterized by higher values of precipitation and weak
winds from the southeast (Chevillot et al. 1993). Briefly, the
Gulf is governed by three current systems: the Caribbean, the
deep Caribbean, and the Panamá-Colombia countercurrents
(Andrade et al. 2003). The Panamá-Colombia countercurrent
is the system of currents that modulates the hydrodynamics of
the Gulf in both seasons of the year. During the dry season,
this current extends from the Gulf of Darien to the mouth of
the Magdalena River, while in the rainy season, the pattern of
this current extends to the peninsula of La Guajira (Bernal
et al. 2006; Lozano-Duque et al. 2010; Pujos et al. 1986).

Field Sampling and Methodology

The regional climatology exhibited climatic seasons; there-
fore, to assess changes in phytoplankton communities in the
estuary, three cruises were done, two during the rainy season
(May 5 and October 20, 2018) and one in the dry season
(March 25, 2019). The values of the two samplings during
the rainy season were averaged. During these cruises, 11 sites
were sampled in order to measure the biological parameters at
15 sites for physicochemical characteristics. Data of continu-
ous vertical profiles were obtained through a CastAway CTD
V 1.60 model updated and calibrated by the manufacturer.
The data set of annual precipitation for the period 2000–
2016 at the closer IDEAM meteorological stations was taken
from the National Meteorological Information Center of
Colombia (http://www.ideam.gov.co/). The locations of the
meteorological stations and their measurements are given in
Figs. 1 and 2.

Water samples (12 L using Niskin bottles) were collected
above and below the halocline points and were used to deter-
mine the concentrations of macronutrients (PO4

−3, SiO2,
NO3

−), chlorophyll a, and phytoplankton abundance. To mea-
sure chlorophyll a, water samples of 1 L above and below the
halocline were collected in duplicate, refrigerated, and ana-
lyzed 24 h after collection using the analytical colorimetric
method SM-10200-H with 90% acetone for seawater, follow-
ing the protocols proposed by Aguirre Gómez and Salmerón
García (2015). Phosphate (PO4

−3) levels were determined
using the ascorbic acid method (SM-4500-P), opal levels were
determined via atomic absorption (SM-3111-D, iCE 3300
Thermo scientific), and for nitrate levels, the cadmium reduc-
tion method (SM 4500-NO3-) was used. Measurements were
done following the methodology proposed by the Standard
Methods for Examination of Water and Wastewater (APHA
2012). A 100 mL sample of surface water was taken in order
to measure domoic acid, and the samples were preserved at
4 °C in amber plastic bottles. An ELISA kit from Bioscience
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was used to quantify total domoic acid, and the samples were
sonicated and filtered (0.2 μm) following manufacturer’s in-
structions. This method has a detection limit between 0.16 pg/
mL and 10,000 pg/mL of domoic acid (Trainer et al. 2002).
Dissolved oxygen and pH were measured using a HANNA

HI-98194 multi-parameter, while transparency (m) was mea-
sured using a Secchi disk.

To quantify phytoplankton cell abundance (cells/L), three
samples of 100 mL were taken from the surface of water
below the halocline and preserved with 1% Lugol at 4 °C,

Fig. 1 Location of sampling sites, defined in the study in the Gulf of Urabá, Colombian Caribbean Sea

Fig. 2 Annual variability of
precipitation in the Urabá region,
Caribbean Colombian. Lines
represent average precipitation
values for San Juan de Urabá
( ), Acandí ( ), Tanela
( ), Titumate ( ), and
Arboletes ( ) IDEAM
meteorological sites
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considering the experience of preliminary sampling done in
the Gulf by the authors. In addition, three aliquots of 1 mL of
each sample were quantified using Sedgewick Rafter counting
chambers in an inverted microscope (Optika IM-3 fluores-
cence). The whole chamber was examined to obtain the con-
centration in 1 mL, and the results were reported in cell per
liter. To determine the genus phytoplankton and its quantity in
the community in each site (richness), samples were taken by
horizontal and vertical trawls for 3 min with phytoplankton
nets with pore sizes of 25 μm and 60 μm. The samples were
preserved with Lugol (1%) at 4 °C, three aliquots of 1 mL for
each sample were evaluated in a Sedgewick Rafter, and the
whole chamber was examined. The observation and
identification of the phytoplankton genera was carried out
following the guides proposed by Tomas (1997) and Vidal
Velásquez (2010) and confirmed using the AlgaeBase data-
base resource (https://www.algaebase.org/). An additional
sample of 500 mL of water from sampling sites located
close to the Atrato River was sent to Dra. Vera Trainer, at
the laboratories of the NOAA’s Northwest Fisheries Science
Center, in order to identify Pseudo-nitzschia species via
scanning electron microscopy.

Data Processing and Statistical Analysis

To analyze the data, three zones were defined, considering the
surface salinity of each site with the Ward’s method using qua-
dratic Euclidean distance as a groupingmethodwith IBMSPSS
Statistics v. 25 software. The values of the nutrients (except
opal), physicochemical parameters, and phytoplankton counts
obtained at each site were used to obtain an average measure-
ment of the variables for describing each zone, and this average
was the statistic mean of the data. Furthermore, standard devi-
ation and the statistic differences of the variables at the sites per
zone were calculated. Phytoplanktonic counts were also ana-
lyzed per site, due to the high deviation observed between sites
inside the defined zones.

A descriptive analysis of the data was made in order to
evaluate the main statistics. Additionally, we used the
Kolmogorov-Smirnov test, the Levene’s tests, and residual
plots for verification of normality, homogeneity of variance,
and independence, respectively, in order to determine if the
variables were parametric and to define the statistical method
to compare them. An ANOVA was carried out in order to
verify the significant differences in the parametric variables.
When non-compliance with assumptions of normality, homo-
geneity, or independence was found, a Kruskal-Wallis (KW)
test was used to evaluate the possible statistically significant
differences in the physicochemical properties, nutrients, and
biological variables for the hydro-climatological zones. KW is
shown as a sub-table in the ANOVA results. Abundance data
were transformed with natural logarithm. Finally, a Spearman
correlation test was done in order to evaluate and correlate the

structure of the community with the concentration of nutrients
and other physicochemical variables. The correlations were
considered significant when they showed a rho (ρ) value
higher than |0.7| and a p value for the spearman correlation
lower than 0.05.

Results

Environmental Conditions

Differences in the salinity measured above the halocline were
found between the sites in both seasons, with a range between
0.15 and 36.25 psu (p < 0.001, n = 42, KW). Taking as refer-
ence, the obtained salinity values, three zones were
established per season. For the rainy season: (1) The fluvial
zone from sites 1 to 10 (4.45 ± 3.00 psu), (2) the estuarine
zone from sites 11 to 13 (11.19 ± 1.26 psu), and (3) the oce-
anic zone, with sites 14 and 15 (31.05 ± 0.89 psu). In the dry
season, the fluvial zone was composed of sites 1 to 7 (6.51 ±
1.49 psu), the estuarine zone was composed of sites 8 to 12
(17.83 ± 4.04 psu), and the oceanic zone of sites 13 to 15
(31.50 ± 0.89 psu). Salinity measurements above the halocline
increased with proximity to the Caribbean Sea and showed
higher average values during the rainy season (p = 0.01, n =
42, KW) (Tables 1 and 2). Estuary stratification was noted
with density and Brunt-Väisälä analyses (Figs. 3 and 4).

The defined zones exhibited similar salinity in themeasure-
ments done below the halocline during the rainy season
(Tables 3 and 4, Fig. 5a), with an average of 34.58 ±
1.40 psu (p = 0.41, n = 42, KW). During the dry season, the
values of salinity below the halocline were similar between
the fluvial and estuarine zones, with an average of 25.33 ±
1.44 psu (p = 0.33, KW), but were different from the oceanic
zone, with a salinity value below the halocline of 31.97 ±
1.25 psu (p = 0.01, KW) (Tables 3 and 4, Fig. 5b). The tem-
perature had higher values during the rainy season, ranging
between 28.56 ± 0.24 °C and 28.77 ± 0.30 °C compared with
the dry season, with values ranging between 27.69 ± 0.02 and
27.95 ± 0.07 °C (p < 0.001, n = 42, KW). Temperature values
were similar in all the zones for both seasons (p = 0.829, KW)
(Table 1, Fig. 5c, d), with small variations observed as the
depth increased. During the dry season in the oceanic and
estuarine zone, two currents with water cooler than the surface
water where detected in the water column (Fig. 5d).

Transparency was lower in the rainy season, with values
between 1.08 ± 0.27 m and 7.35 ± 2.05 m compared with the
dry season, with values between 1.80 ± 0.44 m and 8.56 ±
1.57 m (p < 0.001, n = 27, AN, Table 1), with higher values
in the oceanic zone and lower values in the fluvial zone for
both seasons (p < 0.001, n = 42, AN, Table 1). The pH pre-
sented a minimum value of 7.83 ± 0.32, corresponding to the
measurement made below the halocline in the fluvial zone
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during the dry season, and a maximum of 8.19 m in the estu-
arine zone above the halocline during the rainy season. The
pH did not show significant variations between the zones or
seasons in the measurements taken above the halocline (p =
0.13, p = 0,17, n = 17, AN), but it was more alkaline during
the rainy season compared with the dry season in measure-
ments below the halocline (p = 0.02, n = 17, KW), with a max-
imum pH range between seasons of 0.24 in the fluvial zone,
with a maximum of 8.07 ± 0.04 during the rainy season in
measures below the halocline (Table 1).

Dissolved oxygen measurements above the halocline
showed higher values during the rainy season, with a maxi-
mum of 8.4 ± 0.47 mg/L compared with the concentration
obtained during the dry season of 6.56 mg/L in the fluvial
zone (p < 0.001, n = 26, KW). Measurements of dissolved ox-
ygen below the halocline showed the same seasonal pattern as
those done above the halocline (p < 0.001, n = 26, KW), with
a maximum in the oceanic zone of 8.15 ± 0.55 mg/L in the
rainy season and a minimum of 4.74 ± 1.18 mg/L during the
dry season in the fluvial zone. Oxygen values were similar

between the zones, showing a range during the rainy season
of 0.99 mg/L above and 1.09 mg/L below the halocline, and
0.37 mg/L above and 0.67 mg/L below the halocline during
dry season (p = 0.133, above and p = 0.51 below halocline,
n = 26, KW) values for each zone are shown in Table 1.

Nitrate exhibited a higher concentration in the rainy season,
with a maximum concentration in the oceanic zone of 0.45 ±
0.29 mg/L above the halocline, and in the fluvial zone, a
minimum value in the fluvial zone of 0.18 mg/L compared
with the dry season, with detectable levels only in the fluvial
zone of 0.04 ± 0.07mg/L (p < 0.001, n = 27KW). Nitrate con-
centration below the halocline also exhibited a minimum in
the dry season. Nitrate was only detectable in the fluvial zone,
with a value of 0.04 ± 0.06, compared with the rainy season,
when the nitrate concentration reached 0.21 ± 0.22 mg/L on
average, with a high deviation due to the higher values present
at site 5 of 1.12 mg/L. Measurements of phosphate concentra-
tion above the halocline showed higher values during the
rainy season, with an estimated maximum of 3.11 ±
0.26mg/L at the estuarine zone compared with the dry season,

Fig. 4 Vertical stratification (or Brunt-Väisälä frequency) in the Gulf of Urabá, Colombian Caribbean Sea. High values indicate strong stratification. a
Rainy season. b Dry season

Fig. 3 Vertical profile of estuary density. a Rainy season. b Dry season

2111Estuaries and Coasts  (2020) 43:2106–2127



Table 4 One-way ANOVA to
check the differences in
abundance of some
phytoplankton groups between
zones. A and B refer to values
measured above and below the
halocline water respectively, F, E,
and O to fluvial, estuarine, and
oceanic zones. p values < 0.05
indicate significant differences
between variables. Ho = the
distribution of variable is the
same across the zones

Abundance (ln transformed) Sum of squares Df Mean square F p value

Diatom A Between groups 1.018 2 0.509 0.257 0.776

Within groups 39.600 20 1.980

Total 40.618 22

Diatom B Between groups 0.023 2 0.012 0.311 0.737

Within groups 0.751 20 0.038

Total 0.774 22

Dino A Between groups 2.555 2 1.277 0.760 0.489

Within groups 20.169 12 1.681

Total 22.724 14

Genus richness Sum of squares Df Mean square F p value

Diatom Between groups 1188.487 2 594.244 9.570 0.001

Within groups 1241.948 20 62.097

Total 2430.435 22

Dinoflagellates Between groups 29.704 2 14.852 5.542 0.012

Within groups 53.600 20 2.680

Total 83.304 22

Kruskal-Wallis for non-parametric variables

Variable p value

Abundance of dinoflagellate B 0.522

Abundance of cyanobacteria A 0.178

Abundance of cyanobacteria B 0.552

Diatom richness 0.002

Cyanobacteria richness 0.993

Table 3 One-way ANOVA to
check the differences in
abundance of some
phytoplankton groups between
the seasons. A and B refer to
values measured above and below
the halocline water respectively,
and R and D to rainy and dry
season. p values < 0.05 indicate
significant differences between
variables. Ho = the distribution of
variable is the same across the
seasons

Abundance (ln transformed) Sum of squares Df Mean square F p value

Diatoms A Between groups 24.619 2 12.309 15.387 0.000

Within groups 16.000 20 0.800

Total 40.618 22

Diatoms B Between
Groups

0.484 9 0.242 16.656 0.000

Within groups 0.290 2 0.015

Total 0.774 20

Dinoflagellates A Between groups 7.430 2 3.715 2.915 0.093

Within groups 15.294 12 1.274

Total 22.724 14

Cyanobacteria A Between groups 36.356 2 18.178 16.009 0.000

Within groups 15.896 14 1.135

Total 52.252 16

Genus richness Sum of squares Df Mean square F p value

Dinoflagellates Between groups 39.138 2 19.569 8.861 0.002

Within groups 44.167 20 2.208

Total 83.304 22

Kruskal-Wallis for non-parametric variables

Variable p value

Ln abundance of dinoflagellates B 0.552

Ln abundance of cyanobacteria B 0.319

Diatom richness 0.002

Cyanobacteria richness 0.085
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during which the maximum concentration was 0.23 mg/L,
also in the fluvial zone (p < 0.001, n = 22, KW). The zones
exhibited a similar phosphate concentration of 2.8 ± 0.02 mg/
L and 0.08 ± 0.03 mg/L during the rainy and the dry seasons,
respectively, in measurements done below the halocline
(Table 1). The highest concentration of opal was 43.0 mg/L
in the fluvial zone during the rainy season, and the lowest in
the same season in the estuarine zone, with a value below the
detection limit of the method (10.7 mg/L) at measurements
above the halocline (Table 1).

Chlorophyll a concentrations were higher during rainy sea-
son, with a maximum of 3.14 ± 1.44 μg/L in the fluvial zone,
compared with the dry season, with a minimum of 0.04 ±
0.04 μg/L in the oceanic zone (p < 0.001, n = 53, KW). It
was equally possible to observe that chlorophyll a had higher
values in the fluvial zone, with differences between the con-
centrations of 1.27 μg/L and 2.86 μg/L during the rainy sea-
son, and 0.22 μg/L and 0.20 μg/L during the dry season at
above the halocline for measurements of the estuarine and
oceanic zones, respectively (p = 0.03, n = 53, KW). During
the first cruise, a bloomwas found in the fluvial zone, showing
a rise in the chlorophyll a concentration that reached 4.1 μg/L.

Phytoplankton Community Structure and Spatial
Toxin Distribution

Phytoplankton abundance in the Gulf of Urabá showed differ-
ences between seasons, with diatoms as the most abundant
genus, followed by dinoflagellates, and cyanobacteria
(Figs. 6, 7, 8, 9, and 10). Diatoms exhibited higher abundance
values during the dry season of 11,166 cell/L, 3422 cell/L, and
3813 cell/L in the fluvial, estuarine, and oceanic zones,

respectively, compared with the values of 4360 cell/L, 667
cell/L, and 3889 ± 105 cell/L for the same zones during the
rainy season (p < 0.001, n = 52, AN) (Table 2, Fig. 8) with
Coscinodiscus, Chaetoceros, Nitzschia, and Pseudo-nitzschia
as dominant groups. Dinoflagellate maximum abundance oc-
curred during the dry seasonwith a value of 4250 ± 745 cell/L.
Nonetheless, their abundance was similar between the zones
or seasons with a range between 0 and 333 ± 471.4 cell/L
during rainy season, and 222 ± 384.52 to 4250 ± 2885.24
cell/L (p = 0.093, n = 52, AN) during the dry season (Fig. 9)
and it was not detectable in samples below the halocline.
Dominant genera of dinoflagellates were Tripos, Dinophysis,
and Protoperidinium. Cyanobacteria had high values above
the halocline during the rainy season with a maximum of
2334 ± 472 cell/L during the rainy season at the oceanic zone
in general and a maximum of 102,444 ± 1025 cell/L in the
fluvial zone during a bloom found in the first cruise
(Table 2, Fig. 10). Dominant genus of cyanobacteria included
Dolichospermum and Oscillatoria.

Overall, a total of 39 orders of phytoplankton were found in
this study (Table 3, Figs. 5 and 6). Diatoms were the most
genus-rich group, with a maximum number of genera of 37 ±
8 in the oceanic zone during the dry season, but with more
genera during the rainy season in the fluvial and estuarine
zones, with 19 ± 2 and 25 (n = 1) (Table 3), differentiating it
from the dry season, with genus richness values of 15 ± 2 and
18 ± 3, respectively (p = 0.001, n = 78, AN). Dinoflagellates
exhibited a richness of 3 ± 2 genera during rainy season in
the fluvial zone, 6 ± 1 genus in the estuarine zone, and 5 ± 1
genus in the oceanic zone. These values were surpassed dur-
ing the dry season, with values of 5 ± 1, 4 ± 1, and 7 ± 1 genus
in the fluvial, estuarine, and oceanic zones (p = 0.001, n = 78,

Fig. 5 Salinity (psu) values during a rainy season and b dry season. Temperature (°C) during c rainy season and d dry season
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AN) respectively. Cyanobacteria exhibited a maximum of 6 ±
3 genera during the dry season in the fluvial zone, but in the
other zones, regardless of the season, they showed a richness
of 2 ± 1 genus (p > 0.05) (Tables 2 and 5).

The potential biotoxin producer genera found in this
work were Pseudo-nitzschia, Prorocentrum, Dinophysis,
and Dolichospermum (Fig. 7). During the first cruise, we
found a Dolichospermum (Fig. 10c) bloom at all fluvial

and estuarine sites, with abundances higher than 100,000
cells/L, representing more than 97% of the total population
of phytoplankton and affecting its richness (Figs. 8c and
9c). Our analyses of the conditions during the rainy sea-
son did not consider this phenomenon, as these values
were out of range. During the second cruise, we found a
high presence of the species Pseudo-ni tzschia
pseudodelicatissima around all the stations, representing

Fig. 6 Optical microscopy photos of some genera present in the Gulf of
Urabá. a Gyrosigma, b Thalassionema, c Proboscia, d Dithylum, e
Asterolampra, f Leptocylindrus, g Biddulphia, h Coscinodiscus, i

Rhabdonema, j Odontella, k Navicula, l Oscillatoria, m Triceratium, n
Chaetoceros, o Tripos, p Ornithocercus
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Fig. 7 Photos of the toxic genus
and species found in the Gulf of
Urabá. a Dinophysis acuminata,
b D. caudata, c Prorocentrum
sp., d Dolichospermum sp., e
Pseudo-nitzschia
pseudodelicatissima
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44% of the average abundance of diatoms found in the
fluvial zone during rainy season.

The high quantity of Pseudo-nitzschia motivated the per-
formance of domoic acid (DA) biotoxin measurements. DA
concentration during the rainy season exhibited values be-
tween non-detectable levels and 1589.7 pg/L, and during the
dry season between 25.5 and 164.9 pg/L (p = 0.017, KW).
Maximum DA concentration of 1580.7 pg/L was reached at
site 3 (fluvial zone) (Fig. 11a). The lowest values for concen-
tration of DA were found during the dry season (Fig. 11b) in

agreement with the low Pseudo-nitzschia abundance values
found (< 100 cell/L). By contrast, there were no substantial
changes in the DA concentration in the Gulf of Urabá (p =
0.212, KW).

Correlation Analyses

Spearman tests showed correlations of up to 70% with nitrate
measurements above the halocline (ρ = − 0.829, p = 0.042) in
terms of diatom abundance above the halocline. Diatom
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richness was correlated with nitrate levels above the halocline
(ρ = 0.841, p = 0.036). Abundance of dinoflagellates above
the halocline exhibited a correlation with salinity below the
halocline (ρ = − 0.711, p = 0.021). Domoic acid concentra-
tions exhibited significant correlations with pH above the hal-
ocline (ρ = 0.011), but it was low (ρ = 0.635). Finally, chloro-
phyll a levels were correlated with salinity above the halocline
(ρ = − 0.945, p = 0.000), average salinity (ρ = − 0.723, p =
0.003), transparency (ρ = − 0.925, p = 0,000), and nitrate be-
low the halocline (ρ = 0.900, p = 0.037). Other abundances

and richness did not show significant correlations with the
variables.

Discussion

The Gulf of Urabá as an Estuarine Ecosystem

Coastal systems are important zones in which water and land
interact, connecting continents with the ocean, due to the
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physical, chemical, biological, and geological processes
around them (Bauer et al. 2013; Dalrymple et al. 1992).
Estuaries are major receptors of the terrigenous material and
nutrients from rivers, making them an important environment
for understanding global carbon flux and oceanic primary
production (Mallin et al. 1993; Statham 2012; Twilley et al.
1992). Due to their nature as nutrient receptors and the spa-
tiotemporal physiochemical characteristics of the water col-
umn, estuaries exhibit higher levels of primary production
than other ecosystems (Costa et al. 2009; Lara-Rodríguez

et al. 2015; Lucas et al. 1999a; Montoya et al. 2017;
Pednekar et al. 2018).

In the Gulf of Urabá, as an estuarine ecosystem (Figs. 1 and
12), physicochemical parameters varied between the rainy and
dry seasons. There was stratification during both seasons, as
reported in other studies (Montoya and Toro 2006; Montoya
2010; Montoya et al. 2017), with a halocline closer to the
surface during the rainy season. These results are similar to
those obtained by Chevillot et al. (1993), in which changes in
salinity were observed in response to seasonal wind speed and
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Table 5 Main phytoplankton groups and species in the Urabá Gulf, the letters F, E, and O refer to fluvial, estuarine, and oceanic zones respectively. X
means the presence of the genera/specie in the zone. Data of early rainy season refers to the richness found during a Dolichospermum bloom

Taxa Rainy season Dry season

Early Late

F E O F E O F E O

Phylum: Bacillariophyta X X X X X X X X X

Order: Asterolamprales X X X X X

Asterolampra sp. X X X X X

Asteromphalus sp. X X X X X

Order: Aulacoseirales X X X

Aulacoseira cf. sp. X X X

Order: Bacillariales X X X X X X X X X

Bacillaria sp. X X

Cylindrotheca closterium X X X X X X X X

Nitzschia sp. X X X X X X X X X

Pseudo-nitzschia sp. X X X X X X X X X

Order: Biddulphiales X X X X

Biddulphia spp. X X X

Eucampia sp. X X X

Lamprisccus shadboltianum X X X

Order: Chaetocerotales X X X X X X X X X

Bacteriastrum spp. X X X X X X X X X

Chaetoceros affinis X X X X X X X X X

Chaetoceros borgei X X X X X X

Chaetoceros coarctatus X X X X X

Chaetoceros curvisetus X X X X X X

Chaetoceros danicus X X X X X X X X X

Chaetoceros decipiens X X

Chaetoceros didymus X X X X

Chaetoceros distans X X X X X

Chaetoceros diversus X X X X X X X X X

Chaetoceros lorenzianus X X X X X X X

Chaetoceros muelleri X X

Chaetoceros peruvianus X X X X X X X X X

Chaetoceros pseudocurvisetus X X X X X X X X X

Chaetoceros subtilis X X X X X X

Leptocylindrus danicus X X X X X X X X X

Leptocylindrus minimus X X

Order: Coscinodiscales X X X X X X X X X

Coscinodiscus spp. X X X X X X X X X

Order: Cymbellales X X X

Gomphonema sp. X X X

Order: Eupodiscales X X X X X X X

Odontella spp. X X X X X X X

Amphitetras cf. sp. X X X

Order: Fragilariales X X X X

Fragilaria sp. X X X

Podocystis adriática X

Synedra sp. X X

Order: Hemiaulales X X X X X X X
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Table 5 (continued)

Taxa Rainy season Dry season

Early Late

F E O F E O F E O

Cerataulina pelágica X

Hemiaulus sp. X X X X X X X

Isthmia enervis X

Order: Licmophoraceae X X X X

Licmophora sp. X X X X

Order: Lithodesmiales X X X X X X X

Ditylum sp. X X X X X X X

Lithodesmium undulatum X X X

Order: Lyrellales X X

Lyrella sp. X X

Order: Mastogloiales X X

Achnanthes sp. X X

Order: Melosirales X X X

Melosia spp. X X X

Order: Naviculales X X X X X X X X X

Diploneis sp. X X X X

Gyrosigma sp. X X X X X X

Navicula sp. X X X X X X X X X

Pinnularia sp. X

Pleurosigma sp. X X X X

Order: Plagiogrammales X X X

Plagiogramma sp. X X X

Order: Rhabdonematales X X X X X X

Grammatophora marina X X

Rhabdonema adriaticum X X

Asterionellopsis sp. X X X X X X

Delphineis sp. X X

Order: Rhizosoleniales X X X X X X X X X

Dactyliosolen sp. X

Proboscia sp. X X X X X X X X X

Rhizosolenia sp. X X X X X X

Guinardia fláccida X X X X X X

Guinardia striata X X X X X X X X X

Neocalyptrella robusta X X X X X

Pseudosolenia sp. X X

Order: Surirellales X X X X

Entomoneis sp. X X X X

Surirella sp. X X X X

Order: Tabellariales X X X

Asterionella formosa X X X

Order: Thalassionematales X X X X X X X X X

Thalassionema spp. X X X X X X X X X

Order: Thalassiophysales X X X X

Amphora sp. X X X X

Order: Thalassiosirales X X X X X X X X X
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Table 5 (continued)

Taxa Rainy season Dry season

Early Late

F E O F E O F E O

Detonula pumila X X X X

Lauderia annulate X X X

Skeletonema sp. X X X X X X X X

Order: Toxariales X X X

Climacosphenia monoligera X X X

Order: Triceratiales X X

Triceratium pentacrinus X X

Phylum: Cercozoa X X X X X X X

Order: Ebriida X X X X X X X

Hermesinum sp. X X X X X X X

Phylum: Charophyta X X

Order: Desmidiales X X

Staurastrum subgen eustaurastrum X X

Phylum: Chlorophyta X X X

Order: Sphaeropleales X X X

Desmodesmus spp. X X

Coelastrum sp. X X X X

Pediastrum simplex X X

Pediastrum duplex X X

Order: Synechococcales X X X

Cyanothrix cf. sp. X X X

Synechocystis cf. sp. X

Phylum: Cyanobacteria X X X

Order: Chroococcales X X X

Microcystis sp. X X X

Johannesbaptistia sp. X X

Order: Nostocales X X X X X X X X X

Dolichospermum sp. X X X X X X X X

Order: Oscillatoriales X X X X X X X X

Planktothrix cf. sp. X X X X X X X X

Phylum: Myozoa X X X X X X X X X

Order: Dinophysiales X X X X X X X X X

Dinophysis acuminate X X X X X

Dinophysis caudata X X X X X X X X X

Ornithocercus magnificus X X X

Phalacroma mitra X X

Phalacroma rotundatum cf. X X

Order: Gonyaucales X X X X X X X

Gambierdiscus sp. X X

Tripos hircus X X X X X X

Tripos furca X X X X

Tripos fusus X X X X X X X

Tripos kofoidii X X X X X

Tripos mollis X X X

Tripos macroceros X X X X X X
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its direct effect on circulation. Since winds are stronger in the
dry season, the fresh water from the riverine inputs was con-
fined to the interior of the Gulf. Conversely, during the rainy
season, winds blow from the south, forming a surface current
that allows the river to evacuate the Gulf and increase the
influence of the river to the north (Escobar 2011), extending
the estuarine zone.

In both seasons, riverine water is drained through the east-
ern side of the Gulf (Chevillot et al. 1993; Escobar 2011). This
explains why it is possible to find water with a surface salinity
higher than 28 psu on the northwest side of the Gulf (sites 13,

14, and 15). Therefore, Atrato River and wind forcing can lead
to the variability of circulation observed in the estuary. As
expected, density and salinity values in the oceanic zone are
non-estuarine, but they were lower than the values found in
the surface waters of the Caribbean Sea, especially during the
rainy season. This can be explained by the high precipitation
levels on the western side of the gulf (Figs. 2 and 3). For
example, the Acandí meteorological station is close to the
oceanic zone, and its historical data show an average precip-
itation of 278 mm per month (Fig. 2). In addition, density and
Brunt-Väisälä frequency analyses show that the estuary is
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Fig. 11 Domoic acid levels in a rainy season and b dry season

Table 5 (continued)

Taxa Rainy season Dry season

Early Late

F E O F E O F E O

Tripos trichoceros X X X X

Order: Peridiniales X X X X X X X X

Corythodinium sp. X

Protoperidinium sp. X X X X X X X X

Order: Porocentrales X X X X

Prorocenctrum sp. X X X X

Phylum: Ochrophyta X X X

Order: Dictyochales X X X X

Dyctiocha sp. X X X X

Order: Mischococcales X

Centritractus sp. X
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stratified due to large volumes of fresh water (from the Atrato
River), where there are horizontal layers of low surface den-
sity with high density in the deep layers (Figs. 3 and 4).

Phosphate and nitrate are also related to the river and
to precipitation: the concentrations of phosphate present-
ed a tendency to increase towards the estuarine zone
during the rainy season; this is similar to various
REDCAM reports (INVEMAR 2017a, b), where it was
shown that the Gulf has the highest concentrations of
nutrients in the rainy season.

Results from the present study also showed an inverse
correlation between the oceanic influence (or salinity) and
nutrient availability. For example, during the dry season,
the phosphate and opal concentrations were higher in the
fluvial zone, probably because of the decrease of the riv-
erine inputs. Nitrate at the surface during the rainy season
was higher in the oceanic zone, perhaps because the pri-
mary production (linked to chlorophyll a levels) is lower
in this zone than in other zones. The differences between
phosphate, opal, and nitrate concentrations lead us to be-
lieve that nitrate is the limiting nutrient for phytoplankton
communities. Nitrate levels also showed an inverse corre-
lation with the abundance of diatoms and a positive cor-
relation with the richness of phytoplankton. Also, an oxy-
gen concentration of 4.74 ± 1.18 mg/L was found in the
fluvial zone during the dry season under halocline; we
hypothesize that oxygen will show low concentration
values in a great part of the estuary, and that eventually
the concentration will decrease to hypoxic values
(Table 1).

Phytoplankton Communities

The results of this study show that changes in the structure of
the phytoplankton communities are modulated over both time
and space in this estuary. However, the richness of
cyanobacteria only exhibits differences over space. High phy-
toplankton abundance and richness were found during the dry
season at the surface (e.g., Ciénaga Grande de Santa Marta)
(De LaHoz Aristizábal 1996).With diatoms, this difference in
the abundances of phytoplankton was related to riverine in-
puts (sites located at the mouths of the Atrato River), but there
was no seasonal difference between the other zones. These
phenomena are related to the low transparency value: trans-
parency affects the availability of light radiation required for
photosynthesis, but riverine inputs can also promote the phy-
toplankton communities (Cloern et al. 2014; Glibert 2016;
Reynolds 2006). Of course, light and temperature play a key
role in community development. Nevertheless, other authors
have suggested that adaptations to turbidity, currents, and the
mixing between superficial water layers strongly influence
phytoplankton communities (Glibert 2016; Reynolds 2006).
Therefore, runoff can be considered a crucial factor in the area
of this study, since agricultural activities nearby utilize fertil-
izers rich in nitrogen, which alters the structure of the phyto-
plankton communities.

Although the seasons exert strong effects on the abun-
dance, differences between zones in the different seasons were
not observed. However, richness exhibited differences among
the zones, with a greater number of genera during the rainy
season in sites less influenced by the river (oceanic zone). The

Fig. 12 Conceptual diagram the physical-chemical-biological factors that modulate the communities in estuary
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inverse correlation between abundance and richness of dia-
toms supports the hypothesis that the diversity and the rate
of renovation of phytoplankton communities are inversely
correlated (Glibert 2016; Margalef 1972, 1978).

For the fact that river mouths are sites with lower transpar-
ency, Chaetocerales, Coscinodiscales, Thalassiosirales or-
ders, and some cyanobacteria can better adapt to river mouth
conditions. Dinoflagellates have less capacity to adapt to high
transparency conditions (Cullen and MacIntyre 1998; Glibert
2016; Margalef 1972, 1978; Reynolds 2006). This ecological
phenomenon is evidenced in the composition of the commu-
nity during the various seasons: in the rainy season, dinofla-
gellates were present in the estuarine and oceanic zones, with
lower abundances in river discharge areas, possibly due to low
transparency in the fluvial zone, linked with high turbidity in
this area (Blanco-Libreros 2009). However, during the dry
season, dinoflagellates exhibited a higher abundance in the
fluvial zone, perhaps because of a water discharge reduction
linked to the decrease in precipitation.

Concentration of chlorophyll a found in both seasons in
this study seems to respond to the changes in the abundance
of the phytoplankton organisms in these estuary variations.
Although the rainy season exhibited higher values of chloro-
phyll a in the estuarine and fluvial zones (Table 2), in the
oceanic zone, there were no seasonal differences compared
with the dry season (p = 0.698, KW, Table 2), in opposition
with the phytoplankton abundance that was high during dry
season. This could be a consequence of adaptations that phy-
toplankton species develop in order to improve their capacity
to use the light when the turbidity increases. Adaptations to
low light availability can include producing more chlorophyll.
The high concentrations of chlorophyll a during the rainy
season could also be a consequence of the blooms found dur-
ing the sample collection (Reynolds 2006).

By contrast, dry season chlorophyll a concentration values
could be related to the ones found during rainy season because
of the increased light availability during this season. This con-
dition can change the requirements of chlorophyll a of the
diatoms and result in a decrease of the pigment inside the cells,
so the abundance could be higher during the season, but the
chlorophyll a content per cell was lower.

It is important to point out that during the rainy season, the
levels of nitrate and phosphate were higher than in the dry
season (opal showed high values during all the year, so it is
not a limiting resource). However, Lucas et al. (1999a, b)
argued that local conditions for phytoplankton growth rates
in an estuary may vary significantly over space and time, but
also hydrodynamic forcing, such as wind or freshwater flow
(in this case the Atrato River), could be important (Jennerjahn
2012; Lucas et al. 1999a, b). During the first and second
cruise, we found Dolichospermum and high concentrations
of Pseudo-nitzschia pseudodelicatissima, respectively. This
may be related to agricultural runoff prevailing in the study

area (Blanco-Libreros 2009). Some studies have demonstrated
that these coastal ecosystems are vulnerable to exhibiting
harmful blooms due to agricultural runoff (Gruber and
Sarmiento 1997; Beman et al. 2005). By contrast, during the
dry season, the community contained a higher quantity of
dinoflagellates (ca. 20%). These changes could be related to
the increase of transparency during the dry season.

The higher abundance of toxic species during the rainy
season, specifically the DA producer Pseudo-nitzschia
pseudodelicatissima, could be a possible warning sign, indi-
cating that the toxin could build up in the estuary. High levels
of DA can produce intoxications that can affect not only all
marine trophic levels but also humans due to its non-reversible
amnesic effect (McCabe et al. 2016; Scholin et al. 2000;
Trainer et al. 2007, 2012). In general, major levels of DAwere
measured in bivalves, with values higher than 610 mg DA/g
(Trainer et al. 2012). Also, total DA concentrations found in
other studies showed concentrations between 2 and 220 pg/
mL, with a toxicity risk at values higher than 10,000 pg/mL
(Silver et al. 2010; Trainer et al. 2012). These values are
higher than the maximum of 1580 pg/mL found in the gulf.
Our measurements showed the presence of the biotoxin
around all the zones in the Gulf during all seasons.
However, sites at the front of the river exhibited higher con-
centrations, because conditions of high levels of nitrogen and
low levels of salinity increase the population of Pseudo-
nitzschia (Mckibben et al. 2017; Pednekar et al. 2018;
Trainer et al. 2009). Moreover, some studies have shown the
influence of factors such as salinity on the growth of Pseudo-
nitzschia, taking place over a salinity range of 1 to > 35 psu
(Rachman and Thoha 2015; Thessen et al. 2005).

Further studies are required to determine if the domoic acid
production per cell is also influenced by riverine inputs in the
Gulf of Urabá, but it is important to note that the rainy season
exhibits higher temperatures than the dry season, and this can
modulate the production of DA by increasing it (Mckibben
et al. 2017), also to take more replications of the samples per
site will be very helpful to use tests such Permanova, for a
better understanding of each zone characteristics and changes
that can be related with the domoic acid production and phy-
toplankton community dynamics.

There are reports of the presence of Pseudo-nitzschia in the
Caribbean Sea (Franco-Herrera et al. 2006; Mancera-Pineda
et al. 2009) and in the Colombian Pacific basin (Chavarría and
Sogamoso 2010). However, there is no clear information
about the abundance of Pseudo-nitzschia pseudodelicatissima
and domoic acid production in the Colombian Caribbean Sea.
In order to confirm the occurrence of blooms of Pseudo-
nitzschia pseudodelicatissima in the zone, a review of water
samples from 2016 in the fluvial zone preserved by Florez-
Leiva (unpublished data, 2019) showed abundances of dia-
toms higher than 108 cells/L during the rainy season of that
year. The evidence found in 2016 samples and the high
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abundance of Pseudo-nitzschia during rainy season suggest a
potential risk of blooms. In conclusion, the estuary exhibits
changes in the phytoplankton community structure related to
seasonal changes and nitrate concentration, especially during
the rainy season, the phytoplankton communities will show a
higher abundance and environment conditions that may thrive
into blooms. In addition, we found potentially toxic algae that
also are producing biotoxins such domoic acid, which can
impact public health. Therefore, it is important to continue
monitoring the estuary to prevent and predict the local effects
associated with toxic algae.
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