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Abstract
Twenty-three station-years of diel oxygen data for the James River Estuary were analyzed to characterize longitudinal, seasonal, and
interannual patterns of gross primary production (GPP) and ecosystem respiration (ER).We compared two commonly usedmethods
for deriving metabolism (bookkeeping and Bayesian) to determine whether the observed patterns were robust with respect to
computational methodology. The two methods revealed similar longitudinal patterns of increasing GPP and ER, and decreasing
net ecosystem metabolism (NEM), with increasing salinity. Seasonal patterns in GPP and ER tracked water temperature and solar
radiation, except during high discharge events when metabolism declined by 40%. The bookkeeping method yielded higher
estimates of GPP and ER in the higher end of the range, and smaller estimates in the low end of the range, thereby accentuating
seasonal and longitudinal differences. Inferences regarding net autotrophy and heterotrophy were robust, as both methods yielded
positive estimates of NEM at the chlorophyll maximum (tidal fresh segment) and negative values for the saline portion of the
estuary. Inferences regarding the relative importance of allochthonous inputs (based on inferred ER at GPP = 0) differed between the
two methods. Values derived by the bookkeeping method indicated that respiration was largely supported by autochthonous
production, whereas the Bayesian results indicated that autochthonous and allochthonous inputs were equally important. Overall,
our findings show that methodological differences were small in the context of longitudinal, seasonal, and interannual variation but
that the bookkeeping method yielded a wider range of values for GPP and ER relative to the Bayesian estimates.
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Introduction

Ecosystem ecologists have long been interested in primary
production because of the important role that primary pro-
ducers play in elemental cycles and food web energetics
(Lindeman 1942; Odum 1956). Recent interest in this topic
has sought to place gross primary production (GPP) in the
broader context of ecosystem metabolism, i.e., the balance
between organic matter (OM) production via photosynthesis
and OM consumption via autotrophic and heterotrophic res-
piration (ecosystem respiration; hereafter, ER). In aquatic sys-
tems, interest in net ecosystem metabolism (NEM=GPP −

ER) has reflected in part a desire to understand the role of
subsidies (allochthonous OM inputs) in supporting ecosystem
respiration and to characterize aquatic systems as being
sources or sinks in the context of the global carbon cycle
(i.e., net autotrophic (GPP > ER) or heterotrophic (ER >
GPP); Vannote et al. 1980; Borges 2005; Tranvik et al.
2009; Raymond et al. 2013; Herrmann et al. 2015; Houser
et al. 2015; Hall et al. 2016). Interest in aquatic ecosystem
metabolism has also been fueled by technological advances
in autonomous monitoring of dissolved oxygen (DO), which
allow for characterization of ecosystem metabolism over larg-
er spatial and temporal scales, and by computational advances
in the means by which these data are analyzed (Grace et al.
2015; Hall et al. 2016; Winslow et al. 2016; Bernhardt et al.
2018).

Computational methods vary in their complexity and in the
variety of parameters needed to derive ecosystem metabolism
estimates. A commonly used method is the Bbookkeeping^
approach, which tracks incremental changes in DO at night
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to estimate ER and during the day to estimate net ecosystem
production (NEP) and GPP (from daytime NEP plus daily
ER). Caffrey (2003, 2004) used this method to analyze diel
oxygen data from 42 estuaries that were part of the National
Estuarine Research Reserve System (NERRS). A key chal-
lenge to deriving open system estimates of metabolism is
properly accounting for non-biological oxygen fluxes, which
include atmospheric exchange (hereafter, AE) and advective
oxygen fluxes. AE is regulated by the concentration gradient
between air and water (i.e., dissolved oxygen saturation) and
by the gas transfer velocity. The former is easily measured,
whereas the latter is difficult to measure, and often modeled
based on wind speed and water velocity (Deacon 1981;
Wanninkhof 1992; Hopkinson and Smith 2005; Holtgrieve
et al. 2010; Raymond et al. 2012). Within estuaries, there is
a complex interaction of factors affecting non-biological oxy-
gen fluxes including tidal forces (which reflect tidal amplitude
and channel morphometry), fluvial forces (which vary longi-
tudinally and with discharge), and wind-driven mixing forces
(which are influenced by fetch and atmospheric conditions;
Raymond and Cole 2001; Ho et al. 2011; Crosswell et al.
2012). For the NERRS analysis, AE was calculated from the
air-water concentration gradient and a fixed exchange coeffi-
cient. An advantage of this approach is that it requires minimal
parameterization (e.g., in the absence of data on wind and
water velocity), and it has been applied to a large number of
estuaries, thereby facilitating cross-system comparisons.

Bayesian analyses are a useful alternative to the bookkeeping
approach as they offer uncertainty estimates for modeled param-
eters (GPP and ER) inclusive of observation uncertainty (mea-
surement precision and accuracy), process uncertainty
(stochasticity of model parameters), and model uncertainty.
This approach readily accommodates variable rates of atmo-
spheric exchange arising from differences in wind, fluvial, and
tidal forcing (Solomon et al. 2013; Hall et al. 2016; Winslow
et al. 2016). By this method, unmeasured parameters (i.e., GPP,
ER, AE) and associated parameter uncertainty are treated as ran-
dom variables with prior information (hereafter, priors) regarding
their distributions (Holtgrieve et al. 2010; Grace et al. 2015; Hall
et al. 2016; Winslow et al. 2016). Bayesian analyses are compu-
tationally intensive and require prior information about the sys-
tem as well as ancillary data to model atmospheric exchange
(Grace et al. 2015; Winslow et al. 2016). While both the book-
keeping and Bayesian methods use the same input data (diel
oxygenmeasurements), they differ in the computational methods
used to parameterize metabolic rates (arithmetic vs. conditional
probabilities). Ideally, inferences about spatial and seasonal pat-
terns in estuarinemetabolism should be robust with respect to the
methods used to derive GPP and ER, though we know of no
prior studies that have directly compared outcomes from these
computational approaches.

We analyzed diel oxygen data from the James River
Estuary using bookkeeping and Bayesian methods to

determine whether inferences about seasonal, interannual,
and longitudinal patterns in metabolism were sensitive to
computational methodology. Relationships between metabol-
ic estimates derived using both methods were used to test
relationships with pelagic metabolism, solar radiation, and
water temperature and to make inferences about sources of
OM supporting metabolism. Results from these analyses were
used to address two questions: (1) How does GPP, ER, and
NEM vary seasonally, interannually, longitudinally, and in
response to high discharge events? and (2) Is our assessment
of temporal and spatial patterns in GPP, ER, and NEM sensi-
tive to the computational methods used to derive these terms?

Methods and Materials

Study Site

The James River is the third largest and southern most of the
five major tributaries of Chesapeake Bay. It drains a moun-
tainous catchment (watershed area = 26,101 km2) comprised
of 67% forest, 20% agriculture, 12% urban, and 1% wetland
(Bricker et al. 2007). The James River has a total length of
545 km, of which the lower third is tidal extending from the
Fall Line in Richmond, VA to the confluence with
Chesapeake Bay (Fig. 1). The James River Estuary (JRE) is
divided into segments based on salinity: tidal fresh (TF, <
0.5 ppt), oligohaline (OH, 0.5–5 ppt), mesohaline (MH, 5–
18 ppt), and polyhaline (PH, > 18 ppt; USEPA Chesapeake
Bay Program Office 2005). The TF segment is further divided
into upper and lower segments which differ in their geomor-
phology. The upper TF segment, located between the Fall
Line and the confluence with the Appomattox River, has a
riverine morphometry with a deep (> 3 m), constricted chan-
nel and low ratio of photic depth to total depth (Bukaveckas
et al. 2011; Wood and Bukaveckas 2014). The lower TF sec-
tion extends to the Chickahominy River and is characterized
by a more estuarine morphometry, with shallow (< 3 m)
depths, a broader channel, and more favorable light conditions
(Bukaveckas et al. 2011; Wood and Bukaveckas 2014).

Ecosystem Metabolism

Daily rates of ecosystem GPP, ER, and AEwere derived using
the single-station open-water method.We analyzed 23 station-
years of continuous oxygen monitoring data to assess season-
al, interannual, and longitudinal patterns in estuarine metabo-
lism. The Virginia Estuarine and Coastal Observing System
(VECOS) dataset obtained from the Virginia Institute of
Marine Science included 15-min oxygen measurements re-
corded from March to November during 2006–2008 at sta-
tions located in each of the five salinity segments (Table 1).
An additional 8 years of data (2009–2016) were available
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from one of these stations (Virginia Commonwealth
University Rice Rivers Center Research Pier) and included
15-min oxygen measurements recorded year-round. All data
were collected with optical oxygen probes using YSI 6600
water quality sondes (2006–2014) or YSI EXO2 water quality
sondes (2015–2016). Sondes were calibrated every 3 weeks.
An important assumption when determining metabolic rates
using the single-station method is that local DO concentra-
tions are not influenced by advective oxygen fluxes (i.e.,
tidal stage; Cole et al. 2000; Caffrey 2003). To test for advec-
tive influences, we analyzed dissolved oxygen concentrations
from the longitudinal (VECOS) dataset using General
Additive Models (GAMs; Morton and Henderson 2008;
Richards et al. 2013). The GAM approach allowed us to quan-
tify segment-specific functional relationships between dis-
solved oxygen concentrations and water elevation (tidal stage)
along with time of day (solar effects) and water temperature
(seasonal effects).

Bookkeeping Method

Following Caffrey (2003, 2004), 15-min DO measurements
(g m−3) were smoothed to 30-min averages and multiplied by
water depth (m) to obtain areal rates of oxygen flux, which
were summed across 24-h periods (g O2 m

−2 day−1; Eq. 1).

O2 flux ¼ DOt2−DOt1ð Þ �Water depth−AE ð1Þ

For this analysis, a fixed segment-specific mean depth was
used (i.e., without consideration for seasonal and tidal
variation in water surface elevation; see Table 1).

AE was derived based on DO measurements (as % satura-
tion) and a fixed gas transfer coefficient (0.5 g O2 m

−2 h−1; Eq.
2). This assumes that AE is affected solely by the air-water
concentration gradient and thus varies between − 0.5 to 0.5 g
O2 m

−2 h−1 when water column saturation is between 0 and
200%. Though the bookkeeping method can be adapted to

Fig. 1 Salinity zones and locations of continuous monitoring sites (black triangles) within the James River Estuary
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accommodate the effects of variable wind and water speed on
atmospheric exchange (Staehr et al. 2012; Collins et al. 2013),
we chose the simpler formulation to compare against the
Bayesian results.

AE ¼ 1−
DOsat;t2 þ DOsat;t1

200

� �
� 0:5� Δt ð2Þ

DO fluxes during daylight hours were considered NEP,
while ER was derived by extrapolating nightly O2 fluxes to
a 24-h period. GPP was derived based on the sum of NEP +
ER during daylight hours, and NEM was derived by
subtracting daily ER from GPP.

Bayesian Method

The program BstreamMetabolizer^ (version 0.10.7; Appling
et al. 2017; R Core Team 2017) uses a Bayesian approach for
inverse modeling, which fits a numerical model describing
oxygen gains and losses to input data (e.g., DO measure-
ments). The Bayesian model derives unmeasured metabolic
parameters ( ; i.e., GPP and ER) using a known prior proba-
bility (P( )) distribution (mean and SD) of and a vector of
measured input parameters (D; i.e., DO concentration, DO
saturation, day length, and depth; Eq. 3; Hobbs and Hooten
2015, Hall et al. 2016). The likelihood (P(D| )) of the mea-
sured input data given prior estimates of is proportional to the
posterior distribution [P( |D)] of fromwhich estimates of our
unmeasured metabolic parameters are derived.

P θjDð Þ∝P Djθð Þ � P θð Þ ð3Þ

The Bayesian analysis was performed using estuarine-
specific priors for GPP and ER, site-specific priors for AE,
and locally measured tidal variation in depth. Tidal variation
in depth was determined from sonde measurements collected

in conjunction with DO data. Priors for GPP and ER are avail-
able via streamMetabolizer, but these are generic values (not
estuarine-specific) representing previous applications, many of
whichwere small stream studies.We derived estuarine-specific
priors using previously published data from six Mid-Atlantic
estuaries (Caffrey 2004). From this dataset, we selected years
for which at least 9 months of data were available and derived
the mean and standard deviation of GPP (μ = 6.6 g O2 m−2

day−1, σ = 9.8 g O2 m−2 day−1) and ER (μ = 8.1 g O2 m−2

day−1, σ = 10.2 g O2 m
−2 day−1). To obtain segment-specific

estimates of AE, we used output from the James River hydro-
dynamic model (Shen et al. 2016). This model uses an additive
combination of the effects of wind speed (Thomann and
Mueller 1987) and water velocity (O’Connor and Dobbins
1958) to derive the gas transfer velocity (kO2; m day−1).
Wind speed data were obtained from the Richmond and
Norfolk airports. AE was derived for each 15-min measure-
ment as kO2 multiplied by the difference between DO satura-
tion and modeled DO. Model derived kO2 values averaged
1.12, 1.48, 1.05, 1.67, and 1.33 m day−1 for the upper and
lower TF, OH, MH, and PH segments, respectively. Site-
specific k600 priors were derived by normalizing the
temperature-dependent Schmidt number (ScO2), which relates
gas solubility to water viscosity in flowing freshwater ecosys-
tems to 600 and to 660 in saline ecosystems (Wanninkhof
1992; Raymond et al. 2012). The normalized ScO2 is then
raised to the power of − 0.5 due to wind-induced surface water
turbulence (Jähne et al. 1987) and multiplied by the segment-
specific average kO2 (Eq. 4, Raymond et al. 2012).

k600 ¼ 600=ScO2ð Þ−0:5 � kO2 ð4Þ

Segment-specific k600 priors were 0.95 ± 0.14 (upper TF),
1.33 ± 0.23 (lower TF), 0.92 ± 0.13 (OH), 1.49 ± 0.22 (MH),
and 1.27 ± 0.23 m day−1 (PH).

Table 1 Site characteristics of continuous monitoring locations in the James River Estuary

Segment Salinity (ppt)
Mean ± SD

Area (km2) Mean depth (m) Site name Distance (rkm) Collection years

VECOS VCU

Upper tidal fresh 0.1 ± 0.1 21 2.7 Osborne Landing 159 2006–2008 –

Lower tidal fresh 0.1 ± 0.1 82a 2.5 Rice Rivers Center 119 2006–2008 2009–2016

Oligohaline 2.8 ± 2.5 156b 3.1 4H Camp 71 2006–2008 –

Mesohaline 15.3 ± 4.0 331c 3.1 James River Country Club 29 2006–2008 –

Polyhaline 20.1 ± 3.0 98d 5.6 Wythe Point 4 2006–2008 –

Based on Chesapeake Bay Program segmentation scheme. Link to segmentation salinity ArcMap GIS layers can be found using the following link:
https://usgs.maps.arcgis.com/home/item.html?id=d96647aad2894d2e874cb4a9189f4c4b. Segment areas are from the Chesapeake Bay Program, and
salinity data are from the VECOS dataset
a Lower TF segment included tidal fresh section of the Appomattox River
b Oligohaline segment included oligohaline segment of Chickahominy River
cMesohaline segment included mesohaline segments of the Lafayette River and the eastern, southern, and western branches of the Elizabeth River
d Polyhaline segment included the polyhaline segment of the Elizabeth River
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Pelagic Metabolism

Pelagic production and respiration were measured to deter-
mine their relative contributions to ecosystem production
and respiration. Light and dark bottle incubations were per-
formed over an annual cycle during 2015–2016 at a station
located in the lower tidal fresh segment (VCU Rice Pier).
Surface water samples were collected twice per month when
water temperatures were > 10 °C and once per month when
water temperatures were < 10 °C (total = 26). Light and dark
bottles were incubated for 2 and 24 h, respectively.
Preliminary experiments showed non-linear effects (reduced
hourly rates of metabolism) when incubation lengths in light
bottles exceeded 2 h. Triplicate light bottles (60 mL BOD)
were incubated at 0.5-m depth intervals within the photic zone
(0–2.0 m). DO concentrations were measured using the micro-
Winkler technique to obtain a precision ~ 0.01 mg O2 L−1

(Carignan et al. 1998; Bukaveckas et al. 2011). The change
in DO from the start to the end of the incubation was used to
determine net pelagic production (NPP; light bottles), R (dark
bottles), and GPP (as NPP + R). Hourly rates were extrapolat-
ed to daily values based on the proportion of incident solar
radiation occurring within the time span of the incubation.
Solar radiation data were obtained from the NERRS
Taskinas Creek station, located 45 km from the VCU Rice
Center pier. Daily rates of pelagic GPP and R were compared
to ecosystem values derived by bookkeeping and Bayesian
methods for corresponding dates. Annualized estimates of pe-
lagic GPP and R were also compared with annual ecosystem
values for the lower tidal fresh time series dataset.

Ancillary Data and Statistics

To characterize longitudinal gradients in the James River
Estuary, we used monthly monitoring data collected by the
Chesapeake Bay Program (salinity, chlorophyll-a, Secchi
depth, TSS, TN, and TP) for the period during which diel
oxygen data were available (March–November 2007–2009;
http://datahub.chesapeakebay.net/WaterQuality). We also
obtained estimates of areal coverage by submersed aquatic
vegetation (SAV) for corresponding years (http://web.vims.
edu/bio/sav/index.html). To assess the effects of high
discharge events on metabolism in the upper estuary (tidal
fresh segment), we used discharge data from USGS gauges
located at the Fall Line of the James and Appomattox Rivers.
We calculated the average discharge, GPP, and ER during
events (i.e., days when discharge > 90%-tile) and compared
these values to means derived for an equivalent number of
days before and after the event.

All Bayesian analyses, regressions, and ANOVAs were
performed using RStudio (R Core Team 2017). Days with
negative GPP values constituted < 6% of all daily estimates
and were not removed prior to derivation of monthly means

used for statistical analysis. ANOVA was used to partition
variation in monthly average GPP and ER. For the longitudi-
nal dataset, a three-way ANOVA was performed using seg-
ment, method, month, and their interaction terms. For the time
series dataset (VCURice Pier), the three-wayANOVA includ-
ed month, year, method, and their interaction terms. Linear
regressions were performed to assess relationships between
GPP and ER, between GPP and ER with water temperature,
and between ecosystem and pelagic metabolism. Paired t tests
were used to compare estuarine metabolism before, during,
and after high discharge events. The GAM analysis of dis-
solved oxygen data was conducted using the Bmgcv^ package
in R (Wood 2006; Beck and Murphy 2017). The package
default thin plate regression spline was used to depict effect
sizes of water level and temperature on DO; a cyclic cubic
regression spline was used to depict diel (time of day) effects
on DO (Wood 2006). Model results were scaled to center on
the mean DO to assess the effect of each predictor variable.

Results

Advective Influences on Dissolved Oxygen

The Generalized Additive Models accounted for 37–66% of
the variation in dissolved oxygen and revealed similar func-
tional relationships with the three predictor variables (tidal
stage, time of day, and water temperature) across all five sa-
linity segments (Fig. 2). The largest effects on dissolved oxy-
gen were associated with water temperature with a response
range of 4–8 mg O2 L

−1. These showed the expected negative
relationship of decreasing oxygen with increasing water tem-
perature, except at the high end of the temperature range (>
30 °C) where an increase in oxygen concentrations was de-
tected by the non-linear models. Functional relationships with
time of day (solar effects) exhibited the expected diel patterns
with minimum and maximum values occurring at ~ 6 am and
~ 4 pm, respectively. Largest diel amplitudes were observed in
the mesohaline (~ 3 mg L−1), with smallest amplitudes (~
1 mg L−1) occurring in the upper tidal fresh segment.
Advective influences were smaller in comparison to diel and
temperature effects, except in the oligohaline where dissolved
oxygen concentrations varied by ~ 4 mg L−1 as a function of
water elevation. The GAM analysis also detected small de-
clines in dissolved oxygen (~ 2 mg L−1) during unusually high
water level conditions in the lower tidal fresh and mesohaline
segments. To determine whether oxygen changes associated
with tidal stage influenced our estimates of metabolism, we fit
a linear regression to the functional relationship for the
oligohaline (R2 = 0.99) and used this relationship to generate
stage-corrected dissolved oxygen data for the full (3-y) time
series. Advection-corrected metabolism estimates derived
using the bookkeeping method were compared to similar
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values from the original (uncorrected) dataset. Based on
paired t tests, we found no statistically significant difference
in GPP, ER, or AE between the two datasets, and therefore, we

concluded that advective oxygen fluxes did not affect our
estimates of metabolism in this segment, or in other segments,
where advective effects were weaker.

Fig. 2 Results from a Generalized AdditiveModel depicting functional relationships between dissolved oxygen and tidal stage (water level), time of day,
and water temperature for five salinity segments of the James River Estuary

Estuaries and Coasts (2019) 42:1032–1051 1037



Longitudinal Comparisons

Data collected by the Chesapeake Bay Program were used to
characterize longitudinal gradients in salinity, TSS,
chlorophyll-a (CHLa), SAV, Secchi depth, and nutrient con-
centrations (TN, TP) during the time span for which metabo-
lism estimates were derived (March–November 2007–2009;

Fig. 3). Freshwater dominated the estuary as indicated by low
salinity (< 5) extending over the upper 110 km (stations at
river mile 42 to 110) and high salinity (> 20) being restricted
to the lower 10 km (stations 0–5). The estuarine turbidity
maximum (ETM) extended over 70 km (stations 75 to 32)
where median TSS concentrations were 15–25 mg L−1.
Median TSS was less than 10 mg L−1 at stations above and

Fig. 3 Longitudinal patterns in salinity, total suspended solids (TSS),
chlorophyll-a (CHLa), Secchi depth, TN, and TP in the James River
Estuary (inset: SAV coverage by segment). Data are based on monthly
Chesapeake Bay Program sampling for the time period corresponding to

measurements of estuarine metabolism (March–November 2007–2009).
Station numbers correspond to distance in river miles from the confluence
with Chesapeake Bay
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below the ETM, though occasional values exceeding
100 mg L−1 were observed in the upper tidal fresh segment
during high discharge events. There was a CHLamaximum in
the lower tidal fresh segment (stations 75 and 69) where me-
dian concentrations were 25 and 16 μg L−1 (respectively).
Median CHLa was less than 10 μg L−1 at all other stations.
Highest SAV coverage was observed in the lower tidal fresh
and polyhaline segments, which together comprised > 90% of
total coverage in the estuary. Water clarity as indicated by
Secchi depth was highest in the upper tidal fresh segment (>
1 m), lowest within the ETM (< 0.5 m), and intermediate (~
1 m) seaward of the ETM. TN and TP concentrations were
highest in the tidal fresh segments (median TN ~ 1 mg L−1,
TP = 0.08 mg L−1) and declined by 50% in the saline portion
of the estuary.

The two methods of computation revealed similar patterns
of increasing ER and GPP with salinity (Fig. 4 and Table 2).
GPP increased by three- to fivefold from the upper tidal fresh
segment to the polyhaline. ER tracked GPP and exhibited a
similar range of values. Seaward increases in GPP were more
than offset by increases in ER, resulting in increasingly

negative NEM along the longitudinal gradient. NEMwas neg-
ative in four of the five salinity segments, with the exception
of the lower tidal fresh. Positive NEM in the lower tidal fresh
segment corresponded to negative values for atmospheric ex-
change, whereas all other segments exhibited positive fluxes
(i.e., net gain from the atmosphere). Atmospheric exchange
values were reflective of differences in oxygen saturation,
which were typically super-saturated in the lower tidal fresh
segment and under-saturated in all other segments. Median
air-water fluxes for each segment were small (< 2 g O2 m

−2

day−1) in comparison to biologically driven oxygen fluxes
(GPP and ER = 4 to 20 g O2 m

−2 day−1).
Results from a three-way ANOVA showed that longitude

(salinity segments) accounted for the greatest proportion of
variation in both GPP and ER (45 and 58%, respectively;
Table 3). Month accounted for the second largest proportion
of variation in GPP and ER (23 and 17%, respectively).
Method was also a significant factor, but its effects on GPP
and ER varied by segment and month, as indicated by signif-
icant interaction effects. The proportion of variation explained
by method inclusive of the main effect and interaction terms

Fig. 4 Longitudinal patterns in atmospheric exchange, respiration, net ecosystemmetabolism (NEM), and gross primary production (GPP) derived from
diel oxygen data using bookkeeping (Bk) and Bayesian (Bay) methods (asterisks denote significant differences between methods)
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was 11% (GPP) and 12% (ER). The bookkeeping method
yielded significantly higher estimates of GPP and ER for the
lower tidal fresh, mesohaline, and polyhaline segments
(p < 0.02, paired t test). The largest differences between the
two methods were observed in the polyhaline, where GPP and
ER were highest (Fig. 5). Bookkeeping estimates of GPP and
ER for the polyhaline were ~ 8 g O2 m

−2 day−1 higher; corre-
sponding to a difference of 64% (GPP) and 51% (ER) over
Bayesian values. Among all other segments, bookkeeping
values were 9% (GPP) and 6% (ER) higher relative to
Bayesian values. Across all segments, there was a strong cor-
relation between values derived by the two methods (R2 =
0.85 and 0.73 for GPP and ER, respectively; p < 0.001). We
did not find consistent differences between the two methods
for estimates of NEM. The bookkeeping method yielded sig-
nificantly lower estimates of NEM in the lower tidal fresh (p =
0.001) and higher estimates in the mesohaline (p = 0.035). The
two methods yielded significantly different rates of atmo-
spheric exchange in all five segments. However, absolute dif-
ferences were small (mean difference = 0.18 ± 0.03 g O2 m

−2

day−1) and the paired estimates were highly correlated (R2 =
0.97, p < 0.001). The slope of their relationship was near unity

(1.06 ± 0.02) with an intercept near zero (− 0.22 ± 0.03) over a
range of observed values from − 3 to 5 g O2 m

−2 day−1.

Seasonal and Interannual Comparisons

For the 8-year time series from the lower tidal fresh segment,
the two methods revealed similar seasonal and interannual
patterns in metabolism. Highest monthly averages of GPP
and ER were observed in summer when solar radiation and
water temperature were highest (Fig. 6). Results from the
three-way ANOVA showed that month accounted for the
greatest proportion of variation in both GPP (73%) and ER
(43%; Table 4). The strong patterns of seasonal variability
were reflected in significant relationships between GPP and
water temperature (R2 = 0.84, p < 0.0001; both methods) and
between ER and water temperature (R2 = 0.80 and 0.29, book-
keeping and Bayesian, respectively; both p < 0.0001). Year
accounted for a significant but small (1%) proportion of the
variation in ER but not GPP. Method did not account for a
significant proportion of variation in GPP but accounted for
19% of variation in ER (inclusive of main and interactive
effects). On average, the bookkeeping method yielded 30%

Table 2 Areal estimates of atmospheric exchange (AE), ecosystem respiration (ER), net ecosystem metabolism (NEM), and gross primary production
(GPP) derived by bookkeeping (BK) and Bayesian (Bay) methods for salinity segments of the James River Estuary

AE (g O2 m
−2 day−1) ER (g O2 m

−2 day−1) NEM (g O2 m
−2 day−1) GPP (g O2 m

−2 day−1)

Segment BK Bay BK Bay BK Bay BK Bay

TFUpper 0.99 ± 0.10 0.62 ± 0.08 4.86 ± 0.62 6.83 ± 0.44 − 1.02 ± 0.11 − 2.59 ± 0.19 3.84 ± 0.66 4.25 ± 0.46

TFLower − 1.23 ± 0.24 − 1.61 ± 0.29 8.76 ± 0.49 6.63 ± 0.30 1.43 ± 0.25 2.84 ± 0.65 10.18 ± 0.65 9.47 ± 0.63

OH 0.23 ± 0.25 0.06 ± 0.19 9.56 ± 0.36 9.41 ± 0.43 − 0.24 ± 0.27 − 0.20 ± 0.51 9.32 ± 0.51 9.20 ± 0.51

MH 1.24 ± 0.16 1.34 ± 0.20 14.53 ± 1.14 12.95 ± 0.63 − 0.98 ± 0.18 − 1.87 ± 0.61 13.56 ± 1.20 11.08 ± 0.93

PH 1.71 ± 0.17 1.62 ± 0.17 22.07 ± 1.33 14.61 ± 0.50 − 1.35 ± 0.24 − 1.97 ± 0.73 20.71 ± 1.43 12.64 ± 0.89

Values are mean (± SE) for data collected during May–November 2006–2008

Table 3 Results from a three-way ANOVA testing the effect of salinity segment (Upper TF, Lower TF, OH, MH and PH), month, computational
method (bookkeeping vs. Bayesian), and their interactions on monthly average values of GPP and ER from the James River Estuary

GPP ER

Variable Df Sum Sq F R2 p Df Sum Sq F R2 p

Segment 4 4024 147.0 0.45 < 0.001 4 4895 278.3 0.58 < 0.001

Month 8 2079 38.0 0.23 < 0.001 8 1409 40.0 0.17 < 0.001

Method 1 352 51.5 0.04 < 0.001 1 265 60.3 0.03 < 0.001

Segment/method 4 603 22.0 0.07 < 0.001 4 603 34.3 0.07 < 0.001

Segment/month 26 695 3.9 0.08 < 0.001 26 308 2.7 0.04 < 0.001

Method/month 8 79 1.4 ns 0.18 8 193 5.5 0.02 < 0.001

Segment/method/month 26 60 0.3 ns 0.9 26 167 1.5 ns 0.08

Residuals 148 1013 148 651

Total 8905 0.87 8491 0.90
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higher estimates of ER (mean difference = 1.35 ± 0.35 g O2

m−2 day−1), whereas GPP differed by only 4% (mean differ-
ence = 0.26 ± 0.12 g O2 m

−2 day−1). We found strong correla-
tions between the bookkeeping and Bayesian estimates for
both GPP and atmospheric exchange (R2 = 0.93 and 0.94, re-
spectively; p < 0.001) with slopes near unity and intercepts
near zero. The relationship for ER was weaker (R2 = 0.25,
p < 0.001) and exhibited a slope less than 1 (0.40 ± 0.07).

The bookkeepingmethod yielded higher estimates of ER in
the upper portion of the range. As higher ER was observed in
summer, the bookkeeping results accentuated seasonal pat-
terns relative to the Bayesian method, which yielded more
similar values of ER over the annual cycle. This effect was

reflected in the significant method-by-month interaction term
for the ER analysis. The bookkeeping estimates of ER varied
by fivefold between summer (mean = 10.12 ± 0.40 g O2 m

−2

day−1) and winter (mean = 1.96 ± 0.21 g O2 m−2 day−1),
whereas Bayesian estimates differed by less than twofold be-
tween summer (mean = 5.94 ± 0.69 g O2 m

−2 day−1) and win-
ter (mean = 3.69 ± 0.34 g O2 m

−2 day−1). As the bookkeeping
method yielded higher values of ER, estimates of NEM were
68% lower (mean difference = − 0.92 ± 0.26 g O2 m

−2 day−1)
relative to Bayesian values.

The two methods revealed similar patterns of interannual
variation in GPP with highest annual means in 2010 and 2012
and lowest in 2009 (Fig. 7). The grandmean of GPP and range
of annual means was similar for the two methods (bookkeep-
ing = 6.29 g O2 m−2 day−1, interannual CV = 14%;
Bayesian = 6.03 g O2 m−2 day−1, interannual CV = 18%).
The Bayesian method yielded a lower estimate of mean ER
with greater interannual variability (4.51 g O2 m

−2 day−1, in-
terannual CV = 31%) relative to the bookkeeping method
(5.86 g O2 m

−2 day−1, interannual CV = 11%). Annual mean
ER derived by the two methods differed by as much as 2 g O2

m−2 day−1 in some years (2009, 2015, 2016). On average,
Bayesian estimates of annual NEM were 1.09 g O2 m−2

day−1 higher than bookkeeping values, though differences
were variable from year-to-year in magnitude and direction
(range = − 0.48 to 2.80 g O2 m−2 day−1). Despite this, the
two methods showed consistent agreement in annual net C
balance of the tidal fresh segment for 7 of 8 years. Both
methods indicated net autotrophy during 2010–2014 and net
heterotrophy in 2009 and 2015. We did not find coherent pat-
terns between interannual variation in GPP and ER with solar
radiation, water temperature, CHLa, SAV, discharge or inputs
of nutrients, and organic matter. For example, GPP was unusu-
ally low in 2009 (20 and 36% below 8-year average based on
bookkeeping and Bayesian estimates, respectively) despite fa-
vorable conditions as indicated by above average solar radiation
(+ 10%), below average discharge (− 54%), and above average
nutrient inputs (DIN = + 22%, PO4 = + 41%). In 2013, we ob-
served above average hydrologic (+ 88%) and organic matter
inputs (POC = + 92%, DOC = + 77%) and below average
CHLa (− 26%), whereas GPP and ER were within 15% of the
8-year average (both methods). Unusually low SAVabundance
in 2016 (80% below average) was accompanied by near-
normal GPP (within 10% of average).

Ecosystem and Pelagic Metabolism

Over an annual cycle, pelagic GPP and R averaged 4.77 ±
0.50 and 3.32 ± 0.41 g O2 m

−2 day−1 (respectively) in the tidal
fresh segment of the James. Highest rates were observed in
summer months (June–September: GPP = 5–9 g O2 m−2

day−1, R = 3–6 g O2 m−2 day−1), whereas in October–May,
GPP was < 4 g O2 m−2 day−1 and R was < 3 g O2 m−2

Fig. 5 Comparisons of bookkeeping and Bayesian estimates of GPP, ER,
and atmospheric exchange (AE) among salinity segments of the James
Estuary (all regressions p < 0.0001). Dotted lines represent 1:1
relationship

Estuaries and Coasts (2019) 42:1032–1051 1041



day−1. Ecosystem GPP and R were significantly correlated
with pelagic GPP and R (Fig. 8). Bookkeeping estimates
yielded stronger correlations with pelagic GPP (R2 = 0.74)
and ER (R2 = 0.62; both p < 0.0001) relative to Bayesian esti-
mates (GPP: R2 = 0.47, p < 0.0001; ER: R2 = 0.18, p = 0.03).
Pelagic GPP was equivalent to 66 ± 3% (bookkeeping) and
68 ± 6% (Bayesian) of annual ecosystem GPP during 2009–
2016. Pelagic R was equivalent to 47 ± 2% (bookkeeping) and
44 ± 2% (Bayesian) of annual ER during this period.

Relationships Between ER and GPP

We compared the relationships between ER and GPP for
values derived from the longitudinal and time series datasets
using both computational methods (Fig. 9). For the longitudi-
nal dataset (all segments), the bookkeeping estimates showed
a stronger correlation (R2 = 0.96) between ER and GPP than
the Bayesian estimates (R2 = 0.46; p < 0.001 for both). For the
time series dataset (VCU RRC pier), we also found a stronger

Fig. 6 Monthly averages of daily ecosystem respiration (ER), gross
primary production (GPP), atmospheric exchange (AE), and net
ecosystem metabolism (NEM) in the lower tidal fresh segment derived

by the bookkeeping (a) and Bayesian methods (b). Also shown (c) are
monthly mean solar radiation and water temperature for this station
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relationship for the bookkeeping estimates (R2 = 0.83) relative
to the Bayesian estimates (R2 = 0.19; p < 0.001 for both). The
intercept of this relationship was used to infer allochthonous
contributions to ecosystem respiration (i.e., ER at GPP = 0; del
Giorgio and Peters 1994). For the longitudinal dataset, the
Bayesian results yielded a significantly higher intercept
(4.52 ± 0.06 g O2 m−2 day−1) relative to the bookkeeping
method (0.58 ± 0.02 g O2 m−2 day−1). When compared to
corresponding average values of ER (bookkeeping = 12.49
± 0.71 g O2 m−2 day−1; Bayesian = 10.32 ± 0.38 g O2 m−2

day−1), the proportion of respiration attributed to allochtho-
nous inputs was 5% (bookkeeping) and 44% (Bayesian). For
the time series dataset, Bayesian results also yielded a signif-
icantly higher intercept (2.52 ± 0.50 g O2 m

−2 day−1) relative
to the bookkeeping method (1.01 ± 0.28 g O2 m−2 day−1).
When compared to the corresponding average values of ER
(bookkeeping = 5.86 ± 0.38 g O2 m

−2 day−1; Bayesian = 4.51
± 0.30 g O2m

−2 day−1), the proportion of respiration attributed
to allochthonous inputs was 17% (bookkeeping) and 56%
(Bayesian).

High Discharge Events

We examined the effect of high discharge events on estuarine
metabolism using bookkeeping estimates derived from the
time series (lower tidal fresh) dataset. For the period from
January 2009 to December 2014, there were 28 events during
which daily discharge exceeded 90%-tile values for at least
three consecutive days (average length = 5.6 day). The aver-
age discharge during events was 847 m3 s−1; corresponding
pre- and post-event values were 304 and 359 m3 s−1. When
water temperature exceeded 14 °C (14 events), GPP and ER
were significantly lower during events in comparison to pre-
event conditions (paired t test, p < 0.001 for both; Fig. 10).
Comparable declines were observed for both GPP (by 43%
from 7.81 ± 1.08 to 4.48 ± 0.89 g O2 m

−2 day−1) and ER (by
36% from 7.07 ± 0.99 to 4.51 ± 0.72 g O2 m

−2 day−1). Post-

event GPP and ER were not significantly different from pre-
event values (p = 0.28 and 0.29, respectively). For events oc-
curring during low water temperature (< 14 °C), there was no
significant change in GPP or ER prior to vs. during the event
(p = 0.19 and 0.14, respectively).

Discussion

Comparison of Computational Methods

Our analysis of diel oxygen data from the James River estuary
showed that differences in GPP, ER, and atmospheric ex-
change derived by two commonly used computational
methods were small in comparison to seasonal, longitudinal,
and interannual variability. Estimating atmospheric exchange
was of particular concern as prior empirical studies (e.g., using
propane injection in streams) have shown high variability
even under similar hydrologic conditions (Bott et al. 2006).
Recent work using eddy covariance techniques at riverine
sites showed that variability in oxygen exchange can arise
from small, transient temperature gradients at the air-water
interface (Berg and Pace 2017). In our study, we used two
approaches that differed in their level of parameterization
but yielded similar results. The simpler method used in the
bookkeeping analysis assumed that atmospheric exchange
was influenced only by oxygen gradients at the air-water
boundary (i.e., dissolved oxygen saturation), whereas the
more complex method used local wind data and estimates of
water velocity from a hydrodynamic model as priors for the
Bayesian analysis. The average difference between the two
methods was small (0.18 ± 0.03 g O2 m

−2 day−1) in relation
to the range of derived values (− 3 to 5 g O2 m−2 day−1).
Although the two methods yielded good precision, we
are unable to assess their accuracy in the absence of
empirical measurements of AE for the James. Raymond
and Cole (2001) compiled empirical and modeled

Table 4 Results from a three-way
ANOVA testing the effect of
month, year, computational
method (bookeeping vs.
Bayesian), and their interactions
on monthly average values of
GPP and ER for an 8-year times
series from the tidal fresh segment
of the James River Estuary

GPP ER

Variable Df Sum
Sq

F R2 p Df Sum
Sq

F R2 p

Month 11 2412 47.5 0.73 < 0.001 11 965 19.5 0.43 < 0.001

Year 1 0.3 0.1 ns 0.81 1 30 6.8 0.01 0.01

Method 1 3 0.7 ns 0.40 1 87 19.4 0.04 < 0.001

Year/method 1 2 0.3 ns 0.57 1 55 12.3 0.02 < 0.001

Year/month 11 173 3.4 0.05 < 0.001 11 109 2.2 0.05 0.017

Method/month 11 25 0.5 ns 0.91 11 294 5.9 0.13 < 0.001

Year/method/month 11 6 0.1 ns 1.00 11 40 0.8 ns 0.63

Residuals 144 665 144 647

Total 3284 0.79 2227 0.69
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estimates of gas transfer velocities for estuaries and concluded
that expected k600 values should be in the range of 3–7 cm h−1.
Our segment-specific values fell within this range (3.8 to
6.2 cm h−1). The low rates of atmospheric exchange relative to
biotic fluxes, and the small difference between methods, suggest
that for this system, estimation of GPP and ER should be rela-
tively robust with respect to uncertainty in AE. In estuaries, the

influence of atmospheric exchange on oxygen budgets may be
smaller (relative to streams and small rivers) due to their greater
depth (lower surface area to volume ratio) and higher rates of
biologically driven oxygen fluxes (Hoellein et al. 2013; Murrell
et al. 2018).

Our results also show that advective oxygen fluxes had
little effect on estimates of metabolism for this estuary.
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Fig. 7 Interannual variation in estuarine GPP and R (bookkeeping and
Bayesian estimates), solar radiation, water temperature, discharge, TOC
inputs, chlorophyll-a (CHLa), SAV, and nutrient inputs. Data shown are

deviations from the 8-year average as absolute (GPP and R) or relative
(%) values (all other). Inputs of water, TOC, and nutrients are for May to
September of each year
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Fig. 9 Relationships between monthly average ER and GPP for the longitudinal (left) and time series (right) datasets derived using bookkeeping and
Bayesian computational methods

Fig. 8 Relationships between pelagic GPP and R with ecosystem GPP and R (EGPP and ER, respectively) derived by bookkeeping and Bayesian
methods (m = slope, b = intercept). Data were collected over an annual cycle at stations located in the tidal freshwater segment of the James River Estuary
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Functional relationships between dissolved oxygen and tidal
stage (GAM results) showed generally flat responses across
the range of water elevations. The oligohaline segment was an
exception, where we observed higher oxygen concentrations
at low water level. We attribute this to the influence of the
lower tidal fresh segment where oxygen concentrations were
typically super-saturated. During an outgoing tide, oxygen-
rich water from the lower tidal fresh segment would raise
oxygen in the oligohaline, whereas during an incoming tide,
this oxygen-rich water would be replaced by lower oxygen
waters from lower estuary. Despite this influence, we found
no statistically detectable difference between monthly aver-
aged metabolism estimates derived with and without correc-
tion for advective effects.

We found generally good agreement for estimates of GPP and
ER derived by the two methods. Statistical analyses showed that
computational method accounted for a small proportion of the
variation in GPP and ER in comparison to that accounted for by
seasonal and longitudinal variables. For the tidal fresh time series,
bookkeeping estimates of GPP were on average 4% higher (by
0.26 ± 0.12 g O2 m

−2 day−1) relative to Bayesian values. For the
longitudinal dataset, bookkeeping estimates of GPP were 26%
higher (2.50 ± 0.36 g O2 m−2 day−1). These differences were
small in comparison to the range of variation observed in the
time series (1.4 to 10.6 g O2 m

−2 day−1) and longitudinal (3.5
to 22.6 gO2m

−2 day−1; 10th and 90th percentile values) datasets.

For ER, bookkeeping estimates were 30% higher (2.50 ± 0.36 g
O2 m

−2 day−1) for the tidal fresh time series and 21% higher
(2.17 ± 0.44 g O2 m

−2 day−1) for the longitudinal dataset over a
similar range of values. By contrast, Cloern et al. (2014) reported
a large range of variation (threefold) among estimates of phyto-
plankton production derived by various methods, though this
encompassed not only computational differences, but also meth-
odology (e.g., oxygen- vs. radiocarbon-based estimates). Aristegi
et al. (2009) reported that estimates of GPP and ER for Spanish
streams varied by fivefold depending on the computationalmeth-
od used.

Methodological influences on estimation of estuarine me-
tabolism varied by segment and season. This pattern arose
because the bookkeeping method yielded higher estimates of
GPP and ER in the upper end of the range, and smaller esti-
mates in the lower end of the range, thereby resulting in a
broader range of seasonal and longitudinal values. We do
not have a mechanistic explanation for why the Bayesian
method yielded a smaller range of values, but note that
Bayesian estimates were lower than bookkeeping estimates
in the range of values above the prior and higher in the range
of values below the prior. This suggests that the specification
of priors influenced the outcome of the Bayesian analysis. The
priors used in this study were from bookkeeping estimates of
metabolism for six mid-Atlantic estuaries (14 station-years of
data) encompassing a range of salinities from tidal fresh to

Fig. 10 Influence of high discharge events on estuarine metabolism (bookkeeping estimates) as indicated by median values of GPP and ER before,
during, and after events. Events occurring during high (> 14 °C) and low (< 14 °C) water temperature were analyzed separately
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polyhaline (Caffrey 2003, 2004). Given the proximity of these
sites, we consider that these priors were well-suited for use in
the Bayesian analysis of James River data. Our findings sug-
gest that inferences regarding spatial and temporal patterns in
metabolism were robust with respect to computational meth-
odology but that monthly average values may differ by as
much as 60% at the high end of the range (e.g., polyhaline
GPP and ER).

Seasonal, Longitudinal, and Interannual Patterns

Seasonal cycles in water temperature and solar radiation impact
estuarine metabolism, with greatest GPP and ER during summer
and lowest rates in winter (Cory 1974; Boynton et al. 1982; Cole
et al. 1992; D'Avanzo et al. 1996; Testa et al. 2012; Caffrey
et al. 2014). In the James, seasonal variation in estuarine GPP
and ER followed expected patterns related to water temperature
and solar radiation, with large (three- to fivefold) differences
between winter and summer months. Interannual differences
were small by comparison. Coefficients of variation among an-
nual mean GPP and ER were 14 and 11% (respectively) for the
8-year time series from the tidal fresh segment. Interannual var-
iation in estuarine productivity is often attributed to variation in
river discharge and nutrient loads (Jassby et al. 2002), but we did
not find that interannual differences in GPP and ER could be
explained by riverine discharge or loads. For example, unusually
high riverine discharge during May–September 2013 (+ 88%)
was associated with low CHLa (− 26%), whereas GPP was only
8% below average. Similarly, we did not find that interannual
differences in GPP or ER tracked variation in annual or summer
loads of nutrients or organic matter. Interannual variation in the
abundance of grazers is a potential driver of ecosystem GPP in
phytoplankton-dominated systems (Jassby et al. 2002; Strayer
et al. 2008). Our prior work has shown that rotifers,
planktivorous fishes, and wedge clams (Rangia) are the domi-
nant grazers in this system (Wood et al. 2016), but we lack long-
term data to assess their role in affecting interannual variation in
estuarine metabolism.

Prior studies have shown that longitudinal variation in sa-
linity and channel morphometry influences GPP and ER
(Boynton et al. 1982; Kemp et al. 1997; Sellers and
Bukaveckas 2003; Paerl et al. 2010; Roelke et al. 2017) and
the balance between heterotrophy and autotrophy (Smith and
Kemp 1995; Kemp et al. 1997; Raymond et al. 2000; Caffrey
2004). We observed increasing areal GPP and ER with
increasing salinity in the James. Increasing depth only
partially accounts for greater areal ER as depth increased by
twofold along the longitudinal gradient, whereas ER increased
by fourfold. Longitudinal patterns in GPP did not track SAV
coverage, which was highest in the Tidal Fresh and Polyhaline
segments. These findings suggest that SAV is not a major
driver of ecosystem production in this estuary. Moore et al.
(2000) estimated the biomass of Chesapeake Bay freshwater

and saline (Zostera-dominated) SAV communities to be 1.31
and 1.24 metric tons (dry mass) per hectare (respectively).
Assuming this to represent the annual net SAV production,
and a C content equivalent to 50% of dry mass, we estimate
SAVNPP as 1.53 and 0.81 g Cm−2 year−1 for the Lower Tidal
Fresh and Polyhaline segments (respectively) based on areal
SAV coverage for 2007–2009. Corresponding ecosystem es-
timates of NEP were 1340 and 2400 g C m−2 year−1 (respec-
tively). The small contribution from SAV reflects their limited
coverage (~ 1% of area for Tidal Fresh and Polyhaline seg-
ments) and the relatively low production within SAV beds (~
65 g C m−2 year−1) relative to water column production (see
below).

Prior studies have reported greater heterotrophy in the up-
per, freshwater portions of estuaries (Kemp et al. 1997;
Raymond et al. 2000; Caffrey 2004; Gazeau et al. 2005;
Tomaso and Najjar 2015). For the James, we found a corre-
spondence between the location of the CHLa maximum and
the occurrence of net autotrophy in the tidal fresh segment.
Favorable light conditions and longer water residence time
foster the accumulation of phytoplankton biomass in the lower
portion of the tidal fresh segment (Shen and Lin 2006;
Bukaveckas et al. 2011). Despite the limited photic depth (~
2 m), shallow areas lateral to the main channel provide favor-
able light conditions due to the low ratio of photic-to-total
depth. The partial release from light limitation enhances phy-
toplankton utilization of nutrient inputs from riverine and lo-
cal point sources (Wood and Bukaveckas 2014). Annualized
estimates of phytoplankton production for the Lower Tidal
Fresh segment (NPP = 750 g C m−2 year−1; GPP = 1170 g C
m−2 year−1) fall at the high end of the range (upper 10%-tile)
among data for 131 estuaries compiled by Cloern et al. (2014).
The excess of production over respiration within the water
column likely accounts for positive ecosystemNEM. Our data
show that pelagic production accounts for ~ 65% of ecosys-
tem production, indicating that benthic and epiphytic algae
may contribute a third of primary production in the tidal fresh
segment.

Riverine inputs affect estuarine metabolism through advec-
tive transport of phyto- and bacterio-plankton and indirectly
through loading of nutrients and organic matter (Paerl et al.
2010; Bruesewitz et al. 2013; Caffrey et al. 2014; Cloern et al.
2014).We found that during high discharge events, ecosystem
production and respiration declined by 43 and 36%
(respectively) but that recovery to baseline (pre-event) values
occurred within a time span of days. Our findings suggest that
estuaries dominated by pelagic production may be more resil-
ient in comparison to streams and rivers where scouring
events reduce the biomass of benthic autotrophs (Bernhardt
et al. 2018). The response of heterotrophs to high discharge
events may depend in part on the quality and quantity of OM
delivered to the estuary. Zwart et al. (2017) reported a positive
effect of storm-driven OM inputs on lake metabolism. We did
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not observe this response in the James, which is surprising
given that the tidal fresh segment retains a large proportion
of POC inputs (Bukaveckas et al. 2018). Stable isotope anal-
ysis showed that suspended and sedimented particulate matter
in the James was predominantly of allochthonous origin
(Wood et al. 2016), as would be expected for an estuary with
a large watershed area (Sakamaki et al. 2010). Stable isotopes
also indicate that the bulk of metazoan production in the tidal
fresh segment is supported by allochthonous inputs due to
detritivory by adult gizzard shad and benthic filter-feeders
(Rangia clams). For the upper James, we can conclude that
allochthonous inputs are important as a bulk flux of OM, and
for food web energetics, but we were unable to reliably esti-
mate the proportion of ER that was supported by internal vs.
external sources. The lack of response to variation in OM
inputs, and the positive OM balance (net autotrophy) for this
segment, suggests that allochthonous inputs may be largely
sequestered (buried). Our further work in this system seeks to
better understand the fate of C inputs.

Cross-System Comparisons

A meta-analysis of diel oxygen-based metabolism data by
Hoellein et al. (2013) showed that estuaries have twofold
higher metabolism (GPP ~ 10 g O2 m

−2 day−1; ER ~ 13 g O2

m−2 day−1) relative to streams, wetlands, and lakes. Our area-
weighted (by salinity segment) bookkeeping values for a cor-
responding time period (June–August) were above the estua-
rine average for both GPP (range of means for 2006–2008 =
14.6–17.4 g O2 m−2 day−1) and ER (15.4–17.9 g O2 m−2

day−1). High rates of production and respiration in estuaries
are attributed to external inputs of OM and nutrients from
riverine and, in some cases, marine sources (Vincent et al.
1996; Kemp et al. 1997; Muylaert et al. 2005; Hoellein et al.
2013). Nutrient inputs elevate primary production thereby
providing labile OM, which is supplemented by allochtho-
nous OM inputs. The James receives high loads of organic
matter inputs from its large and forested catchment, as well as
labile nutrients in wastewater from major metropolitan areas
located in the tidal fresh and polyhaline segments
(Bukaveckas and Isenberg 2013; Bukaveckas et al. 2018).
The combined effects of nutrient and organic matter inputs
may in part account for elevated rates of metabolism observed
in this system, relative to other estuaries.

Hoellein et al. (2013) reported stronger correlations be-
tween GPP and ER in estuaries relative to other aquatic sys-
tems. For the James, we observed strong correlations between
GPP and ER among bookkeeping-based estimates. The strong
coupling suggests that GPP provides labile sources of OM to
support ER, and re-mineralization of organic matter provides
nutrients to support GPP. The prevalence of net heterotrophic
conditions indicates that allochthonous inputs support respira-
tion in excess of OM supply via autochthonous production.

Among the 48 estuaries included in the meta-analysis, 11%
were net autotrophic and 89% were net heterotrophic
(Hoellein et al. 2013). In the James, area-weighted NEM
was negative over the 3-year period when data for all seg-
ments were available (range of annual means = − 0.43 to −
0.85 g O2 m

−2 day−1). Net autotrophy was observed only in
the lower tidal fresh segment, which accounted for a relative
small proportion (< 10%) of total area. Our efforts to assess
the importance of allochthonous contributions (based on ER at
GPP = 0) produced conflicting results as the bookkeeping
method yielded a small intercept relative to the mean (i.e.,
low allochthony), whereas the Bayesian method indicated
near-equal importance of autochthonous and allochthonous
OM sources. Bayesian estimates yielded weaker relationships
between GPP and ER and therefore greater uncertainty in
estimates of ER at GPP = 0. The weaker coupling among es-
timates derived by inverse modeling has also been observed
for lakes and attributed to the fact that bookkeeping estimates
of GPP are not determined independently from estimates of
ER (GPP = daytime NEP; Obrador et al. 2014).

Conclusions

Components of metabolism, particularly primary production,
are commonly measured in estuaries, but few studies provide
sufficiently comprehensive data that span gradients of salinity
and over multiple years (Cloern et al. 2014). We analyzed a
large number of dissolved oxygen measurements (~ 800,000)
from the James River Estuary to better understand seasonal,
interannual, and longitudinal patterns in metabolism. We
found that seasonal patterns closely tracked water temperature
and solar radiation, whereas longitudinal and interannual pat-
terns were less readily interpretable based on knowledge of
the distribution of primary producers and variation in riverine
inputs of nutrients and organic matter. With increasing ease of
collecting continuous monitoring data, large datasets will be-
come more widely available, thereby increasing the need to
standardize the processing of these data for cross-system com-
parisons (Oczkowski et al. 2016; Murrell et al. 2018). Our
study shows that the method used to derive metabolic esti-
mates can impact some aspects interpretation, such as sources
of OM supporting metabolism. A simplified version of the
bookkeeping approach that used fixed estimates of atmospher-
ic exchange yielded generally similar results to those derived
by a Bayesian inverse modeling approach with variable atmo-
spheric exchange. These findings suggest that in the absence
of ancillary data on wind and water velocity, estuarine metab-
olism can be reliably estimated using a fixed exchange coef-
ficient. The bookkeeping approach required minimal parame-
terization, was computationally easier, and provided generally
similar results, though with a broader range of values that
accentuated seasonal and longitudinal differences. We hope
these findings will shed light on how various computational
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approaches may influence estimation of estuarine metabolism
from diel oxygen data and the robustness of inferences drawn
from these results.
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