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Abstract Depth of colonization (Zc) is a useful seagrass
growth metric that describes seagrass response to light avail-
ability. Similarly, percent surface irradiance at Zc (% SI) is an
indicator of seagrass light requirements with applications in
seagrass ecology and management. Methods for estimating Zc
and % SI are highly variable making meaningful comparisons
difficult. A new algorithm is presented to compute maps of
median and maximum Zc, Zc,med, and Zc,max, respectively, for
four Florida coastal areas (Big Bend, Tampa Bay,
Choctawhatchee Bay, Indian River Lagoon). Maps of light
attenuation (Kd) based on MODIS satellite imagery, PAR pro-
files, and Secchi depth measurements were combined with
seagrass growth estimates to produce maps of % SI at Zc,med

and Zc,max. Among estuary segments, mean Zc,med varied from

(±SE) 0.80 ± 0.13 m for Old Tampa Bay to 2.33 ± 0.26 m for
Western Choctawhatchee Bay. Standard errors for Zc,med were
1–10% of the segment means. Percent SI at Zc,med averaged
18% for Indian River Lagoon (range = 9–24%), 42% for
Tampa Bay (37–48%), and 58% for Choctawhatchee Bay
(51–75%). Estimates of % SI were significantly lower in
Indian River Lagoon than in the other estuaries, while esti-
mates for Tampa Bay and Choctawhatchee Bay were higher
than the often cited estimate of 20%. Spatial gradients in depth
of colonization and % SI were apparent in all estuaries. The
analytical approach could be applied easily to new data from
these estuaries or to other estuaries and could be incorporated
routinely in assessments of seagrass status and condition.

Keywords Seagrass . Depth of colonization . Light
requirements . Remote sensing

Introduction

Seagrasses are ecologically valuable components of aquatic
ecosystems and have a critical role in shaping aquatic habitat.
These Becosystem engineers^ influence multiple characteris-
tics of aquatic systems through interactions with many biolog-
ical and abiotic components (Jones et al. 1994; Koch 2001).
For example, seagrasses reduce wave action, stabilize sedi-
ments, and provide habitat and refuge for invertebrates and
juvenile fish (Williams and Heck 2001; Hughes et al. 2009).
Seagrasses also respond to changes in light attenuation.
Seagrass coverage declines with water depth due to light at-
tenuation and declines more rapidly in productive aquatic eco-
systems where light attenuation is relatively high (Duarte
1995). The light-limited maximum depth to which seagrass
grows is variously called Bdepth limits^ or Bdepth of
colonization.^ Empirical relationships between nutrient
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loading, light attenuation, and depth of colonization have been
identified (Duarte 1991; Kenworthy and Fonseca 1996;
Choice et al. 2014) and have been used to characterize light
regimes and other water quality requirements to maintain
seagrass habitat (Janicki and Wade 1996; Steward et al.
2005). Seagrasses may be particularly useful in this respect
because they respond to water quality over relatively long
time scales, Bintegrating^ over time their exposure to stress.
Thus, time scales of seagrass response better match time
scales for monitoring and assessment of responses to nutrient
management (Duarte 1995; Burkholder et al. 2007).

A variety of approaches have been used to estimate
seagrass depth of colonization. A common in situ approach
is to sample seagrass along depth transects until the maximum
depth is adequately characterized (e.g., Spears et al. 2009;
Choice et al. 2014). Alternative techniques include underwa-
ter photos or videos, aquascope identification, or
hydroacoustic assessments (Zhu et al. 2007; Søndergaard
et al. 2013). These are especially useful for site-specific eval-
uations where the analysis needs are driven by local questions
(e.g., Iverson and Bittaker 1986; Hale et al. 2004). Availability
of estuary-scale geospatial data for seagrass coverage, based
on photo-interpretation of aerial imagery, suggests that stan-
dardized techniques can be applied at different spatial scales
and would be valuable for a variety of scientific and policy
applications. For large-scale evaluation, it is often useful to
subdivide water bodies into segments for the purpose of anal-
ysis and policy development (e.g., Steward et al. 2005;
Schaeffer et al. 2012; US EPA 2012). One challenge in doing
so is that estuaries are often characterized by gradients in
water quality, such that any segmentation scheme is likely to
include within-segment gradients in water quality and associ-
ated seagrass depth of colonization. Local conditions may
require adaptive assessment approaches that can address inter-
active effects of environmental variables at different spatial
scales.

An example from the Big Bend region of Florida illustrates
the issue of scale in analyzing seagrass depth of colonization
(Fig. 1a). In a segment from this region, the highest depth of
colonization largely occurs around the outer perimeter of the
mapped seagrass coverage (red line in Fig. 1a). However,
depth-dependent seagrass growth patterns are also evident at
smaller spatial scales within the segment, wherein the segment-
scale depth of colonization overestimates the depth distribution
near the outflow of the Steinhatchee River, where high concen-
trations of colored dissolved organic matter reduce water clarity
locally (personal communication, N. Wellendorf, Florida
Department of Environmental Protection). An improved meth-
od for estimating depth of colonization should have sufficient
flexibility to characterize seagrass responses at a large scale,
such as the segment average, while still resolving important
patterns at smaller scales, such as the local impact of a river
outflow. The method should also have the potential to be

applied widely using available data sets to support seagrass
conservation. Developing and demonstrating this capability
was one objective of this study.

Another objective of this study was to combine spatially
resolved estimates of depth of colonization with light attenu-
ation measures at the same spatial scales to characterize the
pattern and range of seagrass light requirements in estuaries.
In this paper, we operationally define Blight requirements^ as
the average percentage of incident light present at the depth of
colonization, which is similar to PLWmin defined by Kemp
et al. (2004) and also the definition suggested by Dennison
et al. (1993). This approach is practical and relates well to the
data most often available for policy and conservation applica-
tions, but comes with assumptions and caveats which we ap-
propriately address. Regardless of such complexity, the spatial
distribution of submerged aquatic plants is often associated
with changes in water depth and light availability (Barko
et al. 1982; Hall et al. 1999; Dennison et al. 1993), wherein
depth of colonization is controlled by light requirements and
average light attenuation. Published estimates of seagrass light
requirements are species specific and quite variable. Duarte
(1991) reported that seagrasses can extend to depths receiving
an average of 11% of surface irradiance, while estimates of
light requirements for seagrass in Chesapeake Bay were about
20% (Batiuk et al. 1992). Dennison et al. (1993) reported
minimum light requirements, which they defined similarly
as the percent light at the maximum depth limit, ranging from
less than 5% to greater than 30% depending on site conditions.
Estimates of ~20% are common in the literature, approximat-
ing a value in the middle of published estimates (see also
Kemp et al. 2004). An estimate of ~20% for seagrass in
Florida estuaries has been applied for management purposes
in Tampa Bay, Choctawhatchee Bay, and elsewhere in Florida
(e.g., FDEP 2012; US EPA 2012) and can be traced to the
estimate of 22.5% for lower Tampa Bay from Dixon and
Leverone (1995).

Sources of variation in estimates of seagrass light require-
ments are numerous and include physiological differences
among seagrass species, differences in attenuation on the leaf
surface by attached algae and detritus (i.e., Ke in Kemp et al.
2004), and variations in other physiological stressors such as
salinity or water temperature (Kenworthy and Haunert 1991;
Kemp et al. 2004; Choice et al. 2014). For example, long-term
or seasonal increases in water temperature could increase es-
timates of light requirements due to increased metabolic rates
(Masini and Manning 1997). Differences in operational
definitions and method of estimation are also likely to
contribute to differences in reported values. For example,
Dennison et al. (1993) defined minimal light requirements as
the percent light at the maximal depth limit for seagrass—
where depth limit was defined variously by different included
studies. Choice et al. (2014) applied a statistical method to
data from individual stations seeking to find the percentage
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of surface irradiance linked to seagrass percent cover or shoot
density of zero. In this study, we sought to generate more
comparable estimates of depth of colonization and light re-
quirements by broadly applying the same method to charac-
terize seagrass depth of colonization and relating it to esti-
mates of light attenuation at similar scales. To quantify light
attenuation at temporal and spatial scales relevant to under-
standing seagrass distributions in coastal ecosystems, we used
estimates derived from satellite remote sensing along with
more conventional observations of water clarity, including
profiles using underwater radiometers and Secchi depth.
Although in situ measures provide locally precise estimates,

ocean color data from satellite remote sensing can provide
consistent estimates of light attenuation across a large spatial
extent, often with a high return frequency (e.g., ~8 days) and
long-term data collection, which is useful for characterizing
average attenuation (Woodruff et al. 1999; Chen et al. 2007).

The overall goal of this study is to present an algorithm for
estimating seagrass depth of colonization and light require-
ments using geospatial datasets describing seagrass coverage
and satellite remote sensing data of light attenuation in the
water column. The approach allowed us to generate consistent
estimates of seagrass depth of colonization and light require-
ments, enabling meaningful comparisons of each across space

Fig. 1 Examples of data and grid
locations for estimating seagrass
depth of colonization for a region
of the Big Bend, Florida. a
Seagrass coverage and depth
contours at 2-m intervals, includ-
ing the whole-segment estimate
for depth of colonization and lo-
cation of the outflow of the
Steinhatchee River (x); b a grid of
sampling locations with sampling
radii for estimating Zc and
seagrass depth points derived
from bathymetry and seagrass
coverage layers; c an example of
sampled seagrass depth points for
a test location
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and time. This supports the management need to evaluate
status and trends, and to predict how water quality changes
could affect seagrass extent and distribution given existing
relationships with light attenuation. Specific objectives were
to (1) describe the method for estimating seagrass depth of
colonization, (2) apply the technique to target locations in four
Florida estuaries to illustrate quantification of seagrass growth
patterns, and (3) develop a spatial description of relationships
among depth limits and light attenuation, characterizing pat-
terns in light requirements in each case study and between
regions. The analytical approach was also automated for use
in the R statistical programming language (RDCT 2016),
which allowed us to evaluate changes in seagrass light re-
quirements in Tampa Bay over a period of 25 years.

Methods

Study Sites and Data Sources

Study sites included four coastal areas in Florida: the Big
Bend region (northeast Gulf coast), Choctawhatchee Bay
(panhandle), Tampa Bay (central Gulf coast), and Indian
River Lagoon (Atlantic coast; Table 1 and Fig. 2). Florida’s
estuaries and coastal waters are partitioned into segments fol-
lowing a scheme developed by the US Environmental
Protection Agency for numeric nutrient criteria (US EPA

2012). The method for estimating depth of colonization was
evaluated initially using one segment in each of the four areas,
chosen based on geographic coverage in Florida coastal areas
and availability of seagrass data. These segments included Big
Bend (BB), Western Choctawhatchee Bay (WCB), Old
Tampa Bay (OTB), and Upper Indian River Lagoon (UIRL).
The analysis was then expanded to quantify spatially resolved
seagrass depth limits and associated light requirements for all
the segments in three of the estuaries, omitting the Big Bend
from further analysis due to an insufficient number of light
attenuation measurements.

Geospatial data describing seagrass coverage and bathyme-
try were used to estimate depth of colonization. These data are
available for coastal regions of Florida from the US Geological
Survey, Florida Department of Environmental Protection,
Florida Fish and Wildlife Conservation Commission, and
Florida’s watershed management districts. Seagrass coverage
maps were obtained for a recent year in each of the study sites
(Table 1), except for Tampa Bay, for which coverages were
obtained for every available year from 1988 to 2014. The orig-
inal coverage maps were produced by photo-interpreting aerial
images to categorize seagrass as absent, discontinuous
(patchy), or continuous. We aggregated to two categories, pres-
ent (continuous and patchy) and absent.

Bathymetry data were obtained from the National Oceanic
and Atmospheric Administration’s (NOAA) National
Geophysical Data Center (http://www.ngdc.noaa.gov/) as
either Digital Elevation Models or as bathymetric sounding
data from hydroacoustic or other surveys. Tampa Bay
bathymetry provided by the Tampa Bay National Estuary
Program are described in Tyler et al. (2007). Bathymetry for
the Indian River Lagoon were obtained from the St. John’s
Water Management District (CPE 1997). Because the vertical
datum (i.e., MLLW, NAVD88, etc.) varied, all bathymetric
data were vertically adjusted to local mean sea level using
the NOAAVDatum tool (http://vdatum.noaa.gov/). Adjusted
data were combined with seagrass coverage layers using
standard union techniques for raster and vector layers in
ArcMap 10.1 (ESRI 2012). To reduce computation time, ba-
thymetry layers were first masked to remove observations
more than 1 km from any seagrass polygon. Raster bathymet-
ric layers were converted to point layers to combine with
seagrass coverage maps, as described below.

Quantifying Light Attenuation

Satellite remote sensing imagery was used to create a gridded
1-km2 map of estimated light attenuation for Tampa Bay and
Choctawhatchee Bay. Secchi depth measurements were used
to quantify attenuation for the Indian River Lagoon because
light scattering from bottom reflectance and insufficient grid
resolution prevented use of satellite remote sensing measure-
ments in this very narrow, back-bay estuary.

Table 1 Characteristics of coastal segments used to evaluate seagrass
depth of colonization estimates (see Fig. 2 for spatial distribution)

BB OTB UIRL WCB

Year 2006 2010 2009 2007

Latitude 29.61 27.94 28.61 30.43

Longitude −83.48 −82.62 −80.77 −86.54
Surface area 271.37 205.5 228.52 59.41

Seagrass area 203.02 24.48 74.89 3.51

Depth (mean) 1.41 2.56 1.4 5.31

Depth (max) 3.6 10.4 3.7 11.9

Secchi (mean) 1.34 1.41 1.3 2.14

Secchi (SE) 0.19 0.02 0.02 0.08

Year is the date of the seagrass coverage and bathymetric data. Latitude
and longitude are the geographic centers of each segment. Area and depth
values are square kilometers and meters, respectively. Secchi measure-
ments (m) were obtained from the Florida Department of Environmental
Protection’s Impaired Waters Rule (IWR) database, update number 40.
Secchi mean and standard errors are based on all observations within the
10 years preceding each seagrass survey. Seagrass coverage data sources,
see BMethods^ section for bathymetry data sources. BB, WCB: http://
geodata.myfwc.com/; OTB: http://data.swfwmd.opendata.arcgis.com/;
UIRL: http://www.sjrwmd.com/gisdevelopment/docs/themes.html

BB Big Bend, OTB Old Tampa Bay, UIRL Upper Indian River Lagoon,
WCB Western Choctawhatchee Bay
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For Tampa Bay, daily MODIS (Aqua level-2) satellite data
were downloaded from the NASAwebsite (http://oceancolor.
gsfc.nasa.gov/) for the 5 years preceding the year the seagrass
imagery was acquired. Images were reprocessed using the
SeaWiFS Data Analysis System software (SeaDAS, version
7.0). For Tampa Bay, light attenuation was derived from daily

MODIS images using a previously developed algorithm that
estimates Secchi depth using a regression relating field
observations and satellite-derived estimates of the diffuse at-
tenuation coefficient at 490 nm (Kd (490), Chen et al. 2007).
Monthly and annual mean Secchi depth was estimated from
the daily images and then averaged to create a single layer.

Fig. 2 Locations and seagrass coverage of estuary segments used to
evaluate depth of colonization estimates. Seagrass coverage layers are
from 2006 (BB Big Bend), 2010 (OTB Old Tampa Bay), 2009 (UIRL

Upper Indian R. Lagoon), and 2007 (WCB Western Choctawhatchee
Bay). SR Steinhatchee River outflow, MI Merritt Island National
Wildlife Refuge
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Similarly, Kd for Choctawhatchee Bay was derived from
MODIS using the QAA algorithm (Lee et al. 2005), which
was also used by Chen et al. 2007 to estimate Kd (490).
Monthly field measurements of Kd obtained in 2010 at ten
optically deep locations in Choctawhatchee Bay were used to
correct annual means of the un-validated satellite values
(Kd,MODIS) to match annual means of in situ measurements
(Fig. S1a). The satellite estimates ofKd were corrected by com-
paring regression curves of in situ data and satellite estimates
from corresponding pixels versus cumulative frequency of each
type of measurement (Cumulative Freq = −0.34 + 1.75 ∙ Kd,
r2 = 0.93 for in situ model; Cumulative Freq = −0.35 +
1.15 ∙ Kd,MODIS, r

2 = 0.95 for satellite model). For any uncor-
rected satellite estimate (Fig. S1b), the corresponding cumula-
tive estimate on the regression curve from the satellite data was
identified, matched with the corresponding percentile for the in
situ data, and then related to the associated in situ Kd value to
yield the corrected satellite estimate. Annual means were used
to create the regressions and corrections for the remaining years
of satellite data from Choctawhatchee Bay. These were pre-
ferred rather than daily match-ups because many of the in situ
observations would not generate match-ups due to cloud cover
and because the annual mean was the time scale of interest.
Field Kd estimates were estimated as the slope relating log
irradiance and log depth (i.e., logIZ = logIO − KdZ) measured
using a 4 pi Biospherical PAR sensor on a SBE25 CTD. The
empirical relationship for the 2010 data was applied to all
5 years of annual mean satellite-derived Kd data prior to aver-
aging to create a single layer for further analysis.

For Indian River Lagoon, Secchi depth data (meters,
ZSecchi) collected within 10 years prior to the seagrass cover-
age data (i.e., 1999–2009) were obtained from the state of
Florida’s Impaired Waters Rule (IWR) database, update 40.
A 10-year averaging period was used for Indian River Lagoon
to compensate for uneven temporal coverage, whereas 5-year
averages were used for the other estuaries. Stations with less
than five observations were removed as were observations
flagged because the Secchi disk was visible on the bottom.
As an additional data quality screen, Secchi data were com-
pared with bathymetry to ensure that the reported Secchi depth
was less than the water depth.

A land mask was applied to MODIS data for Tampa Bay
and Choctawhatchee Bay, and pixels were further masked
where water depth was less than the local estimate of seagrass
depth of colonization thereby eliminating data from optically
shallow water. For all three estuaries, light attenuation in
deeper water adjacent to seagrass beds was assumed to be
similar to attenuation at the deep-edge of seagrass. In general,
Secchi depth cannot be used to estimate water clarity directly
in a seagrass bed because the disk is visible on the bottom.
Bottom reflectance similarly limits application of remote sens-
ing, with some exceptions (Barnes et al. 2013). Although PAR
profiles can in principle be made in shallow water, these often

give less precise estimates of Kd than deeper profiles. Many
studies have similarly used open-water estimates to infer water
clarity in adjacent seagrass beds (e.g., Kemp et al. 2004; Biber
et al. 2005; Corbett and Hale 2006).

Estimating Seagrass Depth of Colonization

Seagrass depth of colonization (Zc) was computed by overlay-
ing seagrass coverage maps and bathymetry data to generate a
point shapefile with attributes of location, depth (m), and
seagrass presence or absence. To relate depth and seagrass
presence/absence, the proportion of points with seagrass pres-
ent was computed as a function of depth within discrete depth
bins and parameters describing the distribution were comput-
ed from the resulting function. The analysis was repeated for
observations within a particular search radius of grid nodes
spanning the study areas, generating a map of depth of colo-
nization (Fig. 1). The analysis was also repeated with a large
radius encompassing entire segments, resulting in whole-
segment estimates. Further details are provided below regard-
ing search radius, depth bins, and computing depth of coloni-
zation metrics.

Depth of colonization at particular locations was computed
using observations found within a search radius, which was
0.04 degrees for Choctawhatchee Bay, 0.1 degrees for Tampa
Bay, and 0.15 degrees for Indian River Lagoon. Analyses that
focused on an individual segment at each study location used
a common search radius of 0.02 degrees for visual and scale
comparisons in the resulting figures. Geospatial data were
imported and processed using functions in the rgeos and sp
packages in R (Bivand et al. 2008; Bivand and Rundel 2014).
Although no particular radius is Bwrong,^ selection involves
several trade-offs. A large search radius improves the preci-
sion of estimates by finding more data, but may encompass
areas that are ecologically dissimilar. As an example, the ra-
dius to characterize depth of colonization at the outflow of the
Steinhatchee River in Fig. 1 was large enough to describe
variation in growth affected by local water quality, but small
enough to not include observations well outside the influence
of the river outflow. Moreover, a radius much larger than the
grid spacing inflates the computational requirements with lit-
tle benefit. A smaller search radius and closer grid spacing
provides more spatial resolution, but also finds less data, in-
creasing uncertainty. A small radius may also encompass little
or no depth gradient, in which case the relationship between
seagrass and depth cannot be quantified. An appropriate
search radius will in many cases result in a plot illustrating a
decreasing proportion of points with seagrass with increasing
depth (Fig. 3). The appropriate scale may be related to the size
of the estuary. A larger radius was selected for Tampa Bay,
which is the largest of the water bodies in our study.

Depth bins, within which seagrass presence/absence pro-
portions were computed, had variable widths <0.5 m defined
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to include 1 to 50 bathymetric soundings (i.e., if a 0.5-m bin
includes more than 50 observations, the bin width is reduced).
For whole-segment estimates, these parameters were changed
to 0.1 m and 1 to 1000 points. This method created many
narrow bins if a large number of soundings were present and
fewer, wider bins when fewer observations were available.
The result is that, other factors being equal, having more data
resulted in lower estimates of parameter uncertainty.

Three depth of colonization metrics were derived from the
function relating seagrass presence versus depth (Fig. 3).
These included minimum (Zc,min), median (Zc,med), and max-
imum (Zc,max) depth of colonization. These terms each de-
scribe meaningful points on the depth distribution of the
seagrass coverage map. Zc,max is the deepest depth at which
mappable seagrasses occurred, excluding isolated patches (or
outliers) at deeper depths. Zc,med is the median depth of the
deep water edge of seagrass. Finally, Zc,min approximates the
depth at which seagrass percent cover begins to decline with
increasing depth, which may occur at Z = 0 m.

At each sampled location, a logistic function was fitted to
the extracted depth points using non-linear regression, quan-
tifying the decrease in seagrass cover with respect to depth
(Eq. 1; Fig. 3):

P ¼ α
1þ exp β−Zð Þ=γð Þ ð1Þ

where the proportion of points with seagrass present, P, within
each depth bin, centered at Z, was defined by a logistic curve
with an upper asymptote α, an inflection point β, and a scale
parameter γ. The curve was fitted by minimizing the residual
sums-of-squares with the Gauss-Newton algorithm (Bates and
Chambers 1992). Initial parameter values for fitting were es-
timated as α = max (P), β = median (Z), and γ = 75th percen-
tile (Z) − median (Z). The maximum rate of decrease in
seagrass coverage with respect to Z is −α/4γ and occurs at
Z = β. The tangent at Z = β passes through the line P = α at
Z = β − 2γ and through P = 0 at Z = β + 2γ. The three seagrass
depth of colonization metrics were defined in terms of these
reference values as follows:

Zc;min ¼ max β−2γ; 0ð Þ ð2Þ
Zc;max ¼ β þ 2γ ð3Þ

Zc;med ¼ β when β−2γ > 0
β þ 2γð Þ=2 otherwise

�
ð4Þ

Several quality control measures were implemented to re-
duce spurious estimates. First, Zc parameters (i.e., depth of col-
onization) were estimated only if the number of seagrass depth
points was sufficient for the logistic curve to be estimable.
Second, estimates were provided only if the fitted value for β,
the inflection point on the logistic curve, was within the range of
depth, Z, in the data. It was possible for β − 2γ to be less than
zero, and this was common when seagrass cover declined im-
mediately as depth increased from zero. In these cases, Zc,min = 0
and Zc,med is half the depth from zero to Zc,max (Fig. 3b).

Estimates of parameter uncertainty from the logistic model
were also used to evaluate the quality and variability associ-
ated with individual depth of colonization estimates. Elements
of the model-estimated variance–covariance matrix for the
model parameters α, β, and γ were used to estimate the vari-
ance of the depth of colonization parameters using equations
for sums and differences of normal random variables (Ku
1966):

σ2Zc;min
¼ σ2

β þ 4σ2
γ−4σβγ when β−2γ > 0

not defined otherwise

�
ð5Þ

σ2
Zc;med

¼
σ2
β when β−2γ > 0

σ2
β þ 4σ2

γ þ 4σβγ

� �
=4 otherwise

(
ð6Þ

σ2Zc;max
¼ σ2

β þ 4σ2
γ þ 4σβγ ð7Þ

Fig. 3 Methods for estimating seagrass depth of colonization using
sampled seagrass depth points around a single location. Three depth
estimates (Zc,min, Zc,med, Zc,max) are based on a linear curve through the
inflection point of a logistic curve. The curve is defined by the parameters
α, β, and γ and describes the decrease in the proportion of sample points
with seagrass as a function of depth below mean tide level (MTL). a The
estimation method when the linear curve intercepts α at a depth greater
than zero. b The alternative method when the linear curve intercepts α at
depth less than zero

598 Estuaries and Coasts (2018) 41:592–610



We then estimated 95% prediction intervals for each param-

eter as the estimate 1:96�
ffiffiffiffiffi
σ2

p
where σ2 is the appropriate

estimate from Eqs. 5, 6, or 7. The value of σ2
Zc;min

is not defined

when β− 2γ < 0 because Zc,min is fixed at zero (Fig. 3b). Given
the estimated prediction intervals, we also considered depth of
colonization to be inestimable if the 95% prediction interval for
Zc,max included zero.

Given estimates of depth of colonization for grid nodes,
calculated as above, segment means and standard errors were
computed using an intercept-only spatial mixed model, imple-
mented using the nlme package in R (Pinheiro et al. 2016),
thereby accounting for spatial autocorrelation among the
gridded estimates. An isotropic Gaussian correlation structure
with a nugget effect was selected from among other options
based on the Akaike Information Criterion. This approach
made it possible to separate variability within the segment
from uncertainty regarding either individual node estimates
or segment means. Whole-segment estimates, calculated
using a single node with a large search radius, also provided
an estimate of uncertainty, but not an estimate of variability
within the segment.

Seagrass Light Requirements

Seagrass light requirements were estimated as the average
fraction of surface irradiance (PAR) reaching the depth of
colonization, which was quantified for this purpose as
Zc,med. The same calculations using Zc,max are included as
supplemental information. Light attenuation was quantified
on the same grid as depth of colonization, which was selected
to maximize the number of matches between depth of coloni-
zation and light attenuation measurements. Grid cells centered
more than 1 km from seagrass were not included, preventing
spurious comparison of seagrass depth of colonization with
light attenuation far from shorelines. The percentage of sur-
face irradiance (% SI) at the median depth of colonization was
computed using

%SI ¼ 100⋅
IZ
IO

¼ exp −Kd⋅Zc;med

� � ð8Þ

where the light extinction coefficient (Kd) was obtained as a
remote sensing product (Choctawhatchee Bay, Tampa Bay) or
from field-based Secchi depth measurements (Indian River
Lagoon). Surface irradiance at the seagrass edge was not esti-
mated from remote sensing data if the associated depth of
colonization estimate exceeded the actual bottom depth.
These locations were removed to reduce potential bias from
bottom reflectance in shallow waters (10% of locations in
Choctawhatchee Bay, 13% in Tampa Bay). Where Kd was
derived from Secchi depth (ZSecchi), it was computed using
Kd ∙ ZSecchi = 1.7. The product Kd ∙ ZSecchi varies in relation
to the ratio of scattering to absorption, with higher values for

the product associated with greater scattering. A range of 1.1
to 2.0 (Liu et al. 2005) encompasses the values commonly
applied in estuaries. An analysis of 504 PAR profiles and
corresponding Secchi depth measurements from Pensacola
Bay, FL (Murrell et al. 2009), had a mean (±SE) Kd ∙ ZSecchi
of 1.63 ± 0.03, which likely reflects a relatively low ratio of
scattering to absorption in the Florida estuaries (Davies-
Colley and Vant 1988). The % SI at the maximum depth of
colonization (Zc,max) was also estimated and is reported as
supplemental information.

Segment means and standard errors for light requirements
were computed from the spatially correlated gridded estimates
using an intercept-only spatial mixed model, as for depth of
colonization. Tests for differences in mean light requirements
between estuary segments were also implemented using a
spatial mixed model using the nlme package in R, in this case
with a single categorical fixed effect (estuary segment) and a
Gaussian spatial correlation structure with a nugget effect.

Trends in Seagrass Light Requirements in Tampa Bay

To demonstrate a useful application of our analysis, we esti-
mated changes in depth of colonization and light requirements
in Tampa Bay, where seagrass recovery has been a focus of
management efforts for decades (Greening et al. 2014) and
nominally biennial seagrass surveys were available for 1988
to 2014 (1988, 1990, 1992, 1994, 1996, 1999, 2001, 2004,
2006, 2008, 2010, 2012, and 2014). Light attenuation was
estimated from monthly Secchi depth (TBEP 2011, Fig. S2),
rather than satellite estimates, which were not available for the
full extent of the seagrass time series. Secchi depth at each
station was averaged by year then translated to light attenua-
tion using Kd ∙ ZSecchi = 1.7, as above. Seagrass light require-
ments were estimated at each monitoring station for each year
with seagrass coverage, then evaluated to describe trends.

Results

Segment Characteristics and Seagrass Depth
of Colonization Estimates

The surface area of the study regions ranged from 59 km2 for
Western Choctawhatchee Bay (WCB) to 271 km2 for the Big
Bend (BB) (Table 1). Mean depth was less than 5 m in each
segment, except for WCB, which was slightly deeper (5.3 m).
Maximum depth was greater in WCB (11.9 m) and Old Tampa
Bay (OTB, 10.4 m) compared to BB (3.6 m) and Upper Indian
River Lagoon (UIRL, 3.7 m) segments. Seagrass coverage was
extensive in BB (74.8% of total segment area), less in UIRL
(32.8%) and OTB (11.9% in 2010), and very sparse in WCB
(5.9%), where most seagrass was in a large patch located just
west of the inlet to the Gulf ofMexico (Fig. 2). Seagrasses were
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distributed throughout BB except for a noticeable area of de-
creased coverage near the outflow of the Steinhatchee River
(Fig. 2, upper left). Seagrasses in OTB and UIRL were distrib-
uted narrowly along the shorelines, consistent with strong
depth-dependence. Seagrass coverage declined toward the
northern ends of both OTB and UIRL.

Whole-segment estimates (±prediction interval) based on
single locations with large radii for Zc,med varied from
0.95 ± 0.07 m in OTB to 2.29 ± 0.19 m in BB, with 95%
prediction intervals equal to ±1% to 10% of the estimate
(Table 2). Estimates of Zc,max varied from 1.1 to 3.8 m and were
somewhat less precise, with 95% prediction intervals equal to 3
to 20% of the estimate (Table 2). Means of spatially resolved
estimates of Zc,med for a grid of points in each segment varied
from 2% more to 15% less than the whole-segment estimates
(Table 2), within the margin of uncertainty for each, suggesting
that the two approaches gave comparable results. The differ-
ence was largest for BB, where the gridded estimates of depth
of colonization had a bi-modal distribution (i.e., lower estimates
near the Steinhatchee outflow vs. higher values distant from the
river outflow; Fig. 4, upper left). The whole-segment estimate
of Zc,max for BB was 3.8 m, 65% more than the 2.3 m average

of the gridded estimates, reflecting a greater influence of the
deeper-distributed seagrass on the whole-segment calculation
(Table 2; Fig. 4). Estimates for Zc,min were as low as zero in
BB and OTB (Table 2), indicating that seagrass coverage de-
creased immediately with any increase in depth. The highest
values for Zc,min were associated with relatively deep seagrass
distributions, as in WCB. In these cases, coverage increased
initially with increasing depth, rather than decreasing.
Seagrass percent cover often increased initially with increasing
depth, likely reflecting stressors such as wave energy or desic-
cation during extreme low tides affecting the shallow margin of
the seagrass bed.

Spatial heterogeneity of the gridded estimates for depth of
colonization was particularly apparent for segments BB and
UIRL (Fig. 4). As previously mentioned, depth of colonization
in the Big Bend segment was reduced in the vicinity of the
Steinhatchee River discharge. Seagrasses were also limited to
shallower depths at the north end of the Upper Indian River
Lagoon segment, but grew at maximum depths up to 2.2 m on
the eastern portion of the Upper Indian River Lagoon segment
near the Merritt Island National Wildlife Refuge (Fig. 2).
Seagrasses in Old Tampa Bay grew to slightly greater depth
in the eastern and southern portion of the segment and were
limited to shallower depths near freshwater inflow channels on
the northern margin (Fig. 4). The deepest growing seagrass in
Choctawhatchee Bay was closest to Destin Pass, where regular
tidal exchange with Gulf of Mexico waters keeps light attenu-
ation low (Fig. 4). Zc could not be estimated where seagrasses
were sparse or absent as in the center of Old Tampa Bay and
western Choctawhatchee Bay, or where there was an insuffi-
cient gradient in water depth, as in several areas of the Big
Bend segment (Fig. 4). However, depth of colonization can
be estimated for locations that lack seagrass if sufficient cover-
age is present within the search radius. As a result, gridded
maps illustrate the spatial patterns of depth of colonization
and do not repeat the spatial patterns of seagrass coverage
(i.e., Fig. 4 does not always resemble coverage in Fig. 2).

Gridded estimates for all segments in each bay (exclud-
ing Big Bend) provided further information on seagrass
depth of colonization within and among segments and the
average depth of colonization in each estuary (Table 3;
Figs. 7, 8, and 9). Seagrass Zc estimates were computed
for 338 locations in Choctawhatchee Bay, 252 locations
in Tampa Bay, and 47 locations in the Indian River Lagoon.
Mean Zc,med (±SE) was 1.43 ± 0.38 for Choctawhatchee Bay,
0.91 ± 0.31 for Tampa Bay, and 1.12 ± 0.26m for Indian River
Lagoon. Mean Zc,med was not significantly different between
any of the bays. Means for segments within estuaries varied,
although statistical differences were difficult to determine in
some locations due to low sample size (i.e., Indian River
Lagoon segments, Table 3). In Tampa Bay, Zc,med was
~0.5 m less in Old Tampa Bay than in the Lower or Middle
Tampa Bay segments, but was only significantly different

Table 2 Summary of seagrass depth estimates (m) for each segment in
Fig. 4 and the year indicated in Table 1

Segment Whole
segment

Prediction
interval (±)

Mean SE SD Min Max

BB

Zc,min 0.75 0.25 1.56 0.18 0.79 0 2.72

Zc,med 2.29 0.19 1.94 0.17 0.76 0.55 2.97

Zc,max 3.84 0.43 2.29 0.19 0.81 0.74 3.48

OTB

Zc,min 0.83 0.16 0.58 0.07 0.28 0.05 1.48

Zc,med 0.95 0.07 0.86 0.08 0.3 0.33 1.74

Zc,max 1.07 0.21 1.17 0.12 0.4 0.34 2.04

UIRL

Zc,min 1.19 0.04 1.36 0.06 0.27 0.75 2.01

Zc,med 1.48 0.02 1.51 0.08 0.23 0.98 2.08

Zc,max 1.77 0.05 1.63 0.08 0.23 1.11 2.16

WCB

Zc,min 1.84 0.42 1.58 0.11 0.34 0.78 2.29

Zc,med 2.17 0.22 1.96 0.1 0.31 1.51 2.51

Zc,max 2.5 0.47 2.36 0.14 0.39 1.75 3.1

Whole-segment estimates and prediction intervals were obtained from a
single point estimate that included all seagrass depth data for the segment.
Mean, standard error, standard deviation, minimum, and maximum
values are for multiple grid points within each segment in Fig. 4. Mean
and standard error estimates were from intercept-only models that includ-
ed Gaussian correlation structures to account for spatial dependencies
between points

BB Big Bend, OTB Old Tampa Bay, UIRL Upper Indian River Lagoon,
WCB Western Choctawhatchee Bay
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(p < 0.05) compared with the latter. Similarly, Zc,med in the
eastern segment of Choctawhatchee Bay was 1.1 and 1.5 m
less than Zc,med in the central and western bay, respectively,
although only the eastern and western estimates were signifi-
cantly different (p < 0.05). No statistical differences were ob-
served between segments of the Indian River Lagoon despite
higher Zc,med in more southern segments (Fig. 9).

Seagrass Light Requirements

Estimates of light attenuation, seagrass depth of colonization,
and corresponding light requirements for all locations in
Choctawhatchee Bay, Tampa Bay, and the Indian River
Lagoon indicated substantial variation, both between and
within the different bays. Satellite-derived estimates for

Fig. 4 Spatially resolved estimates of maximum seagrass depth of
colonization (m) for four coastal segments of Florida. Estimates are
assigned to grid locations for each segment, where grid spacing was fixed
at 0.01 decimal degrees. Radii for sampling seagrass bathymetric data

around each grid location were fixed at 0.02 decimal degrees. BB Big
Bend, OTB Old Tampa Bay, UIRL Upper Indian River Lagoon, WCB
Western Choctawhatchee Bay
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Choctawhatchee Bay and Tampa Bay resolved spatial varia-
tion in average light attenuation (Figs. 5 and 6). For
Choctawhatchee Bay, Kd increased from the western and cen-
tral segments toward the eastern segment, which is adjacent to
the Choctawhatchee River discharge (Fig. 5). Similarly, atten-
uation increased from lower and central Tampa Bay into Old
Tampa Bay and Hillsborough Bay. Attenuation was also less
in the central area of the lower bay segments (Fig. 6). Secchi
depth was highest in the southern Indian River Lagoon and
decreased to the north. Relatively few Secchi depth measure-
ments were available for the Upper Indian River Lagoon and
Banana River segments, likely because maximum water clar-
ity exceeded the maximum depth in shallow areas, resulting in
right-censored measurements.

Whole-estuary means for percent surface irradiance (% SI)
at Zc,med (i.e., seagrass light requirement) was (mean ± SE)
58 ± 3.2% SI for Choctawhatchee Bay, 42 ± 2.6% SI for
Tampa Bay, and 18 ± 3.0% SI for Indian River Lagoon.
Based on Tukey contrasts, average light requirements for
seagrass were significantly different between all estuaries, par-
ticularly for Indian River Lagoon. Despite some apparent spa-
tial patterns in seagrass light requirements (Figs. 7, 8, and 9),
significant differences were not found between segments of a

single estuary, except for a marginally significant difference
between eastern and western Choctawhatchee Bay (p = 0.04).
In Tampa Bay, the segment mean (±SE) % SI at Zc,med ranged
from 36 ± 5.5% SI to 48 ± 5.6% SI (Table 3, Fig. 8). For
Choctawhatchee Bay, segment means were 50 ± 5.7% SI to
75 ± 8.7% SI, with the apparently higher values in eastern
Choctawhatchee Bay (Table 3, Fig. 7). For Indian River
Lagoon, segment means ranged from 9 ± 7.1% SI to
24 ± 8.6% SI (Table 3, Fig. 9). Either small sample sizes, as
for Indian River Lagoon, or a small number of effectively
independent samples, given the spatial correlation of resid-
uals, reduced the statistical significance of apparent spatial
differences in light requirements between segments.

The final analysis illustrated the temporal evolution from
1988 to 2014 of seagrass depth of colonization and light at-
tenuation (Fig. 10, upper panel), and resulting expression as
light requirements (Fig. 10, lower panel) in Tampa Bay. Depth
of colonization decreased in Hillsborough Bay and Middle
Tampa Bay during the early 1990s before rebounding strongly
toward the end of the time series (Fig. 10, upper panel).
Median light attenuation varied from year to year, but de-
creased overall. We applied spatial mixed models to evaluate
pairwise comparisons at 18 grid nodes covering the whole

Table 3 Summary of median
depth of colonization (Zc,med, m)
and light requirements (%) for all
bay segments of Choctawhatchee
Bay, Indian River Lagoon, and
Tampa Bay

Segment Zc,med % light

n Mean SE Min Max n Mean SE Min Max

Choctawhatchee Bay

CCB 171 1.9ab 0.2 0.5 4.2 156 59.4 4.6 23.4 91.7

ECB 16 0.8a 0.4 0.4 0.9 16 74.7 8.6 58.0 88.6

WCB 151 2.3b 0.3 1.6 2.8 131 50.5 5.7 35.5 77.9

Indian River Lagoon

BR 2 1.0c 0.4 1.0 1.1 17 20.7 7.5 20.2 21.3

LCIRL 14 1.2c 0.3 0.9 1.6 2 13.6 6.4 5.8 24.7

LIRL 3 1.6c 0.4 1.5 1.6 3 9.2 7.1 6.0 11.2

LML 4 1.0c 0.4 1.0 1.0 14 22.1 6.9 19.3 24.3

UCIRL 17 1.0c 0.3 0.8 1.1 1 20.0 6.4 7.5 30.7

UIRL 1 1.0c 0.4 1.0 1.0 4 24.1 8.6 24.1 24.1

UML 6 1.0c 0.3 0.8 1.0 6 24.0 6.7 15.2 30.9

Tampa Bay

HB 22 1.0de 0.2 0.6 1.3 19 43.2 6.9 17.7 50.8

LTB 70 1.3de 0.1 0.8 1.5 56 38.3 5.6 22.5 58.7

MTB 73 1.4e 0.1 1.1 1.6 62 36.5 5.5 15.2 50.2

OTB 87 0.8d 0.1 0.5 1.1 83 47.7 5.6 31.5 77.4

Letters for mean Zc,med denote significant differences in segment means. Segments with the same letter are not
significantly different. Multiple comparison tests are only within estuaries, not between estuaries. See Figs. 7 to 9
for spatial distribution of the results

CCB Central Choctawhatchee Bay, ECB Eastern Choctawhatchee Bay, WCB Western Choctawhatchee Bay, BR
Banana River, LCIRL Lower Central Indian River Lagoon, LIRL Lower Indian River Lagoon, LML Lower
Mosquito Lagoon, UCIRL Upper Central Indian River Lagoon, UIRL Upper Indian River Lagoon, UML
Upper Mosquito Lagoon, HB Hillsborough Bay, LTB Lower Tampa Bay, MTB Middle Tampa Bay, OTB Old
Tampa Bay
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Bay (Fig. S2) using the terminal ends of the time series to
evaluate overall changes from 1988 to 2014. Depth of coloni-
zation increased by 3 to 30 cm between 1988 and 2014
(mean = 16 cm, p < 0.01). Light attenuation decreased by
0.04 to 0.5 m−1. Changes in light requirements (reflecting
the interaction of both trends) were positive at 17 of 18 nodes
and varied from −3.5 to 14% of surface irradiance between
years. The largest increases in depth of colonization were near

the boundary between lower and middle Tampa Bay and in
Old Tampa Bay. The largest increases in light requirements
were in HillsboroughBay, where light requirements were low-
est early in the time series (Fig. 10, lower panel).

As a final note, the estimates of light requirements for 2010
shown in Fig. 10 (lower panel) differ from those in Fig. 8.
These relate to the small number of locations for which
Secchi depth data were consistently available from 1988
through 2014 (Fig. S2), compared to the virtually complete
spatial coverage obtained from the satellite remote sensing
data. Although the time series values are not as representative
of all values in the segment (i.e., as in Fig. 8), they are con-
sistent in each year and, thus, are a valid representation of
change over time at those locations.

Discussion

Seagrass depth of colonization is an important measure of the
status and condition of seagrass communities in estuaries be-
cause it relates to light attenuation and related anthropogenic
water quality changes, especially eutrophication caused by
excess nutrient loading (Dennison et al. 1993; Short and
Wyllie-Echeverria 1996; Burkholder et al. 2007). Because
seagrasses are ecologically important and sensitive to water
quality changes, both seagrass coverage and depth of coloni-
zation have been used to define water quality management
objectives (Steward et al. 2005; US EPA 2012; Greening
et al. 2014). For applications to water quality management,
deriving estimates and associated estimates of uncertainty at
appropriate scales using a consistent methodology is particu-
larly important (US EPA 2012). The methods developed and
demonstrated in this study are a rigorous, yet efficient and
practical approach for computing seagrass depth of coloniza-
tion at a large scale using widely available geospatial data sets
describing seagrass areal extent and bathymetry. The method
is automated via R code and, thus, not especially labor inten-
sive. Because it is automated, it is reproducible and can be
applied to new data from the studied estuaries or other estuar-
ies with appropriate data. To demonstrate this, we applied the

Fig. 6 Satellite estimated light attenuation for Tampa Bay as an average
of years from 2006 to 2010. See Fig. 8 for segment identification

Fig. 5 Satellite estimated light
attenuation for Choctawhatchee
Bay as an average of years from
2003 to 2007. See Fig. 7 for
segment identification
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analysis to 13 seagrass coverage maps for Tampa Bay, quan-
tifying changes in depth of colonization and light require-
ments from 1988 to 2014, which can be interpreted in the
context of long-term water quality changes (e.g., Beck and
Hagy 2015). The method provides maps of depth of coloni-
zation, resolving bothmeans and spatial gradients at a range of
scales from an individual measurement to the whole estuary.
Uncertainty is estimated for individual estimates of depth of
colonization, while both variability (SD) and uncertainty (SE)
are quantified for segments of estuaries, whole estuaries, and
temporal changes. Given these characteristics, our approach is
a novel tool for assessment of seagrass distribution with

respect to water depth at different spatial scales. Resolving
spatial differences in depth of colonization and light require-
ments provides valuable information to support further inves-
tigation of the causes and mechanisms affecting the extent and
spatial distribution of seagrass habitats and also informs pol-
icy development and evaluation of ecosystem responses to
water quality management.

Maps illustrating spatial patterns in depth of colonization
quantified expected but previously unquantified spatial pat-
terns, wherein seagrasses grew to greater depth when closer to
ocean passes, where water was clearer (Figs. 7, 8, and 9).
Differences among segment means were mostly not statistically

Fig. 7 Median depth of seagrass colonization (Zc,med, m) and light
requirements (% surface irradiance at Zc,med) for multiple locations in
Choctawhatchee Bay, Florida. Each location has light attenuation from
satellite observations and an estimate of seagrass depth of colonization

with a search radius of 0.04 degrees. Box plots show the 25th percentile,
median, and 75th percentile. Whiskers extend to the 5th and 95th
percentiles with outliers beyond. CCB Central Choctawhatchee Bay,
ECB East Choctawhatchee Bay, WCB West Choctawhatchee Bay
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different, reflecting variability within segments in addition to
variability among segments. Evaluations of temporal changes,
which may be even more important for policy applications,
could be evaluated without segmentation as pairwise differ-
ences of estimates by grid node. These revealed statistically
significant changes in depth of colonization and light require-
ments, as well as spatial patterns in such changes. Application
to other estuaries with substantial time series of water quality
and seagrass distributions, such as Chesapeake Bay (Orth et al.
2010), could glean valuable new insights from these data.

For the first time, we also combined estimates of light at-
tenuation for estuaries based on satellite remote sensing and
Secchi depth measurements to resolve spatial patterns in
seagrass light requirements. Like depth of colonization, maps
of these values quantify gradients in light requirements, even
if Bsegments^ delineated for management purposes did not
clearly identify regions that differed by light requirements.
We would expect light requirements, as we defined them, to

be higher at locations closer to freshwater and nutrient sources
because epiphytic algal growth, salinity variations, color, or
other factors such as sediment geochemistry could impose
constraints on seagrass growth beyond those imposed by light
attenuation in the water column (Hemminga 1998; Kemp et al.
2004). The results neither conflicted with nor definitively sup-
ported this expectation. For example, the highest light require-
ments in each of the estuaries were furthest from tidal ex-
change and closest to sources of freshwater and nutrients
(Figs. 7, 8, and 9). However, the differences were subtle
and, given variations within segments, did not emerge as sig-
nificant differences among segment means. Alternatively,
light requirements for seagrass in Indian River Lagoon were
significantly less than for seagrass in Choctawhatchee Bay
and Tampa Bay. Light requirements for Choctawhatchee
Bay and Tampa Bay were both more than the 20% estimate
that has been referenced broadly in water quality management
(Batiuk et al. 1992; Dennison et al. 1993; Kemp et al. 2004)

Fig. 8 Median depth of seagrass
colonization (Zc,med, m) and light
requirements (% surface
irradiance at Zc,med) for multiple
locations in Tampa Bay, Florida.
Each location has light
attenuation from satellite
observations and an estimate of
seagrass depth of colonization
with a search radius of
0.1 degrees. Box plots show 25th
percentile, median, and 75th
percentile.Whiskers extend to the
5th and 95th percentiles with
outliers beyond.HBHillsborough
Bay, LTB Lower Tampa Bay,
MTB Middle Tampa Bay, OTB
Old Tampa Bay
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and locally within Florida (Dixon and Leverone 1995; US
EPA 2012). Light requirements for Tampa Bay were similar
to 20% in only a few areas of the Bay. We further note the
differences in light requirements for Tampa Bay using grid-
based estimates at a uniform and fine spatial scale in Fig. 8,
compared to those based on relatively few locations at routine
monitoring stations (Figs. 10 and S2). This highlights the need
to consider sampling regime and relevant scales for estimates of
light requirements that apply to an entire estuary. Regardless,
our estimates are not outside the norm given the broad range in
published estimates of seagrass light requirements (Dennison
et al. 1993).

Some of the differences in light requirements that we ob-
served may relate to differences in species composition since
the physiology of seagrass is known to vary among seagrass
species. For example, Halodule wrightii is the most abundant
seagrass in western Choctawhatchee Bay (Yarbro and Carlson
2015) and has higher light requirements than several other
abundant species in Florida (Choice et al. 2014) including
Thalassia testudinum, which dominates the more oceanic
areas of Tampa Bay. Choice et al. (2014) found that light
requirements for Syringodium filiforme were much less, as
low as 8–15% SI, although Kenworthy and Fonseca (1996)
found that the depth distribution ofH. wrightii and S. filiforme

Fig. 9 Median depth of seagrass
colonization (Zc,med, m) and light
requirements (% surface
irradiance at Zc,med) for multiple
locations in Indian River Lagoon,
Florida. Each location has an
average Secchi depth observation
and an estimate of seagrass depth
of colonization with a search
radius of 0.15 degrees. Map
locations are georeferenced
observations of Secchi depth. Box
plots show 25th percentile,
median, and 75th percentile.
Whiskers extend to the 5th and
95th percentiles with outliers
beyond. BR Banana River, LCIRL
Lower Central Indian River
Lagoon, LIRL Lower Indian
River Lagoon, LML Lower
Mosquito Lagoon, UCIRL Upper
Central Indian River Lagoon,
UIRL Upper Indian River
Lagoon, UML Upper Mosquito
Lagoon
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were similar in the lower Indian River Lagoon, implying their
light requirements may be similar. Estimates of light require-
ments for several species of Halophila indicate a potential to
grow at 5% SI or less (Kenworthy and Haunert 1991), consis-
tent with some of our lowest estimates from Lower Indian
River Lagoon (Fig. 9). Neither S. filiforme nor any of the
Halophila spp. appear to be dominant species in Tampa Bay
or Choctawhatchee Bay, perhaps limiting seagrass distribu-
tions in those estuaries to higher light environments compared
with lower Indian River Lagoon. Although we cannot be cer-
tain the extent to which species composition can explain the
differences we observed in % SI at the depth of colonization,
the key observation is that differences were observed that

seagrass species vary in their physiology and responses to a
range of factors and that, therefore, it may be useful to under-
stand and manage seagrass habitats utilizing local information
where possible. Another consideration related to species com-
position is that our estimates are likely driven by the deepest
growing species. Light attenuation changes could alter com-
petitive relationships among species within the mappable
seagrass area, which would not be apparent in our analysis.

Our estimates of % SI at the depth of colonization necessar-
ily also depend on our approach to estimating depth of coloni-
zation, as do others in the literature. Depth of colonization is a
reference point along a gradient of decreasing seagrass cover
(presumably) associated with increasing light limitation and

Fig. 10 Annual changes in median light attenuation (Kd, m
−1) and depth

of colonization (Zc,med, m) in segments of Tampa Bay from 1988 to 2014
(upper panels) and resulting changes in percent of surface irradiance at
the depth of colonization (lower panel). Contours in upper panels

illustrate isopleths of percent surface irradiance at depth of colonization
(Eq. 8). Box plots show the distribution of light requirements at locations
in each segment shown in Fig. S2. HB Hillsborough Bay, LTB Lower
Tampa Bay, MTB Middle Tampa Bay, OTB Old Tampa Bay
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related physiological stress (e.g., figure 3 in Hemminga 1998).
In some studies, percent cover was estimated by diver observa-
tion (Choice et al. 2014), enabling a statistical approach (e.g.,
moving split window) that directly resolves a threshold for
rapid decline in percent cover with respect to % SI at the scale
of a single quadrat. To scale up the analysis, we needed to use
seagrass coverage maps based on photointerpretation, which
imposes a binary classification (present/absent). By inferring
the probability of seagrass presence conditional on depth, how-
ever, we obtained an estimate analogous to that of Choice et al.
(2014), with the parameter β (Fig. 3) estimating the threshold
for most rapid decline in seagrass presence. However, it is still
unavoidable that seagrass will be both present at greater depths
and stressed by light limitation at lesser depths. In this regard, a
strength of our approach is that we can estimate the % SI asso-
ciated with both the local extremes of the mappable seagrass
distribution (i.e., Zc,max; Figs. S3, S4, and S5) and the center of
that depth distribution (i.e., Zc,med). Moreover, by being linked
to aerial coverage data, the estimates are available for a range of
spatial scales, are comparable across all those scales, and can be
quickly re-computed when new surveys are completed.

Our estimates also depend on an accurate characterization
of average light attenuation, something that will always be
challenging in the context of seagrass ecology. For example,
since %SI = exp(−Kd ∙ Zc), Kd = KSecchi/ZSecchi, and KSecchi is
generally between 1 and 2, Secchi depth in seagrass habitats is
often similar to the depth of colonization, potentially leading
to right censoring of Secchi measurements when the disk
would be visible on the bottom. Accurate light profiling is
possible but is also difficult in shallow water. Limitations on
boat operations also favor sampling during calm winds, per-
haps leading to under-sampling when sediment resuspension
is above average. Quantifying light attenuation via satellite
remote sensing has advantages but also presents similar and
new challenges. For example, concern regarding bottom
reflectance led Chen et al. (2007) to exclude data if water
depth was <2 m, excluding nearly all seagrass areas. Light
attenuation estimates for seagrass areas may therefore be
based on nearby but deeper waters, whether measured via
satellite remote sensing or boat-based estimates. If light atten-
uation is lower in open water, this will tend to increase the
estimate of % SI at the depth of colonization. Conversely, it
may not be preferable to measure attenuation on the interior of
a seagrass beds since seagrass feedback effects may decrease
light attenuation there (Gurbisz and Kemp 2014) and light
attenuation at the deeper perimeter has more relevance to
seagrass depth of colonization. Thus, using established satel-
lite remote sensing methods, despite challenges and limita-
tions, offers the advantage of uniform and sustained spatial
and temporal coverage.

Sustained trends in water quality are another factor that can
affect estimates of light requirements because seagrasses can be
both slow to recover following disturbance and resistant to stress

in the first place. In particular, species such as T. testudinum
display a phalanx growth strategy and buffer against periods
of low light by tapping into below ground reserves, making
them slow to achieve a light-limited equilibrium distribution in
the presence of water quality trends. Improving trends in light
attenuation, accompanied by a lagging response in depth of
colonization, as we observed for Tampa Bay, could explain
our increasing estimates of light requirements, whereas the op-
posite may be true with declining trends in clarity. Epiphytes on
seagrasses can also account for a significant fraction of total
attenuation of light reaching seagrass leaves, and epiphyte
growth may also respond directly to the availability of light in
the water (e.g., Stankelis et al. 2003; Kemp et al. 2004). As a
result, simultaneously considering changes in depth of coloni-
zation, light attenuation, and apparent light requirements may be
useful for understanding the status and trends related to seagrass
habitats.

This study has implications for both seagrass ecology and
environmental management. Scientifically, the ability to resolve
patterns in several parameters related to depth of colonization as
well as % SI at the depth of colonization could be useful for
generating testable hypotheses. For example, persistent differ-
ences in spatial patterns of depth distributions may suggest
hypotheses regarding the causes and could stimulate research
to identify local drivers. Similarly, we could seek to better un-
derstand temporal changes in depth of colonization, but without
a consistent approach for quantifying, we may not be aware of
such changes. For example, despite extensive documentation of
changes in the area of seagrass habitat in Tampa Bay (Greening
et al. 2014) and Chesapeake Bay (Orth et al. 2010), little atten-
tion has been given to associated trends in the depth distribu-
tion. Our results in Fig. 10 demonstrate the novelty of our
approach and its potential to describe these previously undoc-
umented changes in seagrass recovery from eutrophication
impacts.

There are several important management implications re-
lated to our method and results. Localized patterns in depth of
colonization, such as in the case of the Steinhatchee River
outflow, illustrate that management goals related to seagrass
depth distribution and light attenuation may not be applicable
in water quality segments that are drawn without considering
local drivers. At a slightly larger scale, differences among
segments and among entire estuaries show that it can be both
important and possible to consider local differences in the
water quality requirements for seagrasses when developing
and evaluating water quality goals over time. Even though
seagrasses are affected by factors other than light attenuation,
resistance and resilience in the face of multiple stressors can
be influenced by the physiological and energetic changes af-
fected by light availability (Burkholder et al. 2007). In the case
of Tampa Bay, light availability generally exceeds seagrass
light requirements estimated in the early 1990s. This may
have sustained the seagrass recovery, which accelerated
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following a brief El Niño-Southern Oscillation (ENSO)-relat-
ed period of increased river flow and increased light attenua-
tion in the late 1990s (Greening et al. 2014).
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