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Abstract Coastal ecosystems, such as estuaries, salt marshes,
mangroves and seagrassmeadows, comprise some of theworld’s
most productive and ecologically significant ecosystems. Cur-
rently, the predominant factor considered in valuing coastal
wetlands as fish habitats is the contribution they make to off-
shore, adult fish stocks via ontogenetic migrations. However, the
true value of coastal nurseries for fish is much more extensive,
involving several additional, fundamentally important ecosystem
processes. Overlooking these broader aspects when identifying
and valuing habitats risks suboptimal conservation outcomes,
especially given the intense competing human pressures on
coastlines and the likelihood that protection will have to be
focussed on specific locations rather than across broad sweeps
of individual habitat types. We describe 10 key components of
nursery habitat value grouped into three types: (1) connectivity
and population dynamics (includes connectivity, ontogenetic

migration and seascape migration), (2) ecological and ecophys-
iological factors (includes ecotone effects, ecophysiological fac-
tors, food/predation trade-offs and food webs) and (3) resource
dynamics (includes resource availability, ontogenetic diet shifts
and allochthonous inputs). By accounting for ecosystem com-
plexities and spatial and temporal variation, these additional
components offer a more comprehensive account of habitat
value. We explicitly identify research needs and methods to
support a broader assessment of nursery habitat value. We also
explain how, by better synthesising results from existing re-
search, some of the seemingly complex aspects of this broader
view can be addressed efficiently.
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Introduction

Coastal wetlands comprise some of the most valuable ecosys-
tems on the planet (van den Belt 2011; Elliott and Whitfield
2011), and yet are among the most threatened (Bassett et al.
2013). Their position at the interface of land and sea means
they occupy locations that are highly prized by humans,
leading to unprecedented and rapidly increasing threats from
intense population pressure, rapid, large-scale development
and climate change (Hughes et al. 2009, Corn and Copeland
2010). This conjunction of high value and intense threats
makes a detailed understanding of the functioning of coastal
wetlands essential if they are to be managed and protected for
future generations (Elliott and Kennish 2011).

One value that is increasingly recognised for all types of
coastal wetlands, whether they are estuaries, salt marshes, man-
grove forests, seagrass meadows or floodplain swamps, is their
role as nursery grounds for aquatic species of immense ecolog-
ical, cultural and economic importance (Beck et al. 2001;
Mumby and Hastings 2008). This nursery value stems from the
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provision of habitat, refuge, food, favourable physical conditions
and advantageous hydrodynamics (Nagelkerken et al. 2014).
However, the provision of these services is complex. Not only
do the values manifest at a variety of scales (e.g. habitat or food
provided at a local scale, versus physical conditions at a whole of
ecosystems level) but, rather than being a function of a single
habitat, their values are usually conferred by a mosaic of
interacting habitats (Sheaves 2009; Berkström et al. 2012) and
may rely on processes or inputs derived from well beyond the
wetlands themselves (Beger et al. 2010). Many of the processes
that underpin nursery function may not be a feature of a spatial
habitat at all; for example, reliance on the delivery of allochtho-
nous sources of production to support food webs (Connolly et al.
2005), or the temporal coincidence of recruitment and the avail-
ability of suitable prey resources (Robertson and Duke 1990).
Nursery function is further complicated by the diversity of life-
history strategies of the species occupying these systems (Elliott
et al. 2007; Potter et al. 2014).

Although estuarine and coastal ecosystems have long been
recognised as nurseries for fish and crustaceans (Boesch and
Turner 1984), it was not until the seminal work of Beck et al.
(2001) that the concept was formalised. However, the ideas of
Beck et al. (2001) and their modification by Dahlgren et al.
(2006) focus on one aspect of nursery ground value; the supply
of juveniles from discrete spatial units of nursery habitat to adult
populations. Such approaches only consider contribution that can
be measured in terms of the movement of juvenile numbers/
biomass, so do not capture the complex dynamics that support
nursery function. While these approaches represent a significant
step forward, comprehensive nursery identification and valuation
requires that the complex, dynamic nature of nursery ground
function needs to be recognised (Able 2005; Mumby and
Hastings 2008; Sheaves 2009; Potter et al. 2014) and consoli-
dated into identification and valuation if nursery function is to be
maintained in the face of ever increasing anthropogenic pressures
(Nagelkerken et al. 2014).

There are two aspects to the value of nursery grounds to
fish: (1) their value in supporting successful nursery ground
occupation, and (2) the value to recipient populations and
ecosystems (Fig. 1). Most current concepts of nursery ground
value (e.g. Beck et al. 2001; Dahlgren et al. 2006) relate to the
output of juveniles from nursery grounds that reach offshore
(e.g. Reis-Santos et al. 2012), but the mechanisms that drive
this contribution to recipient populations are incompletely
understood. Recognition of the significance of the processes
which regulate juvenile populations within nursery habitats is
nothing new (e.g. Minello et al. 2003), and the need to
evaluate this information in the context of entire lifecycles is
increasingly recognised (Huijbers et al. 2013; Baker et al.
2014; Vasconcelos et al. 2014). However, current approaches
to the valuation of nurseries ultimately treat the processes
driving nursery function as a black box by simply measuring
what emerges at the end as emigrants to the adult populations.

The resulting rankings of nursery grounds fail to provide
managers with information on how to protect key processes
that underpin nursery value and function. Furthermore, focus-
ing management and further research on the identified ‘im-
portant’ nursery habitats is risky because the habitat units
identified will rarely contain all the elements that support the
nursery function we aim to protect.

Nursery ground value is the net result of a complex of
interacting factors that vary from situation to situation.
Some involve seascape structure and function directly
(Hammerschlag et al. 2010), but others extend to include
complex ecological interactions and resource dynamics,
and often involve a complex of cross-habitat and cross-
ecosystem movements. This complexity needs to be con-
sidered in the context of differences in the composition of
fish assemblages using coastal nurseries in different parts
of the world (Sheaves 2012; Potter et al. 2014) that is
likely to result in different mixes of factors being impor-
tant in different regions. Understanding this complexity
and the relative importance of different factors is the key
to meaningful nursery identification and valuation, and is
the raw material needed to inform population conserva-
tion decision support systems (Beger et al. 2010). Con-
versely, a lack of evaluation of the complexity is the
recipe for superficial assessment (Harris and Heathwaite
2012) that is likely to miss the most critical contributors
to value. Consequently, we build on earlier work to de-
velop a framework for a more comprehensive understand-
ing of nursery ground value, by considering the range of
contributions of nurseries to sustaining local production,
replenishing adult stocks and influencing recipient eco-
systems. We also consider approaches available to identi-
fy the range of factors underpinning nursery value at a
particular site, the extent to which they contribute to
nursery value and the factors that need to be taken into
account to inform comprehensive, effective and well-
grounded management decisions. At face value,
recognising and including this complexity seems a diffi-
cult task, but most of the research needed to underpin this
consolidation is already being conducted; it just needs to
be integrated and extended.

Factors Supporting Successful Nursery Ground
Occupation

Connectivity and Population Dynamics

At an operational level of supporting the lives of juvenile
fish, nurseries comprise a complex mosaic of interacting
habitat units and the connectivities enabling their interac-
tion (Sheaves 2009). The importance of juvenile habitat is
well recognised and is a key driver for the identification
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of essential fish habitat in the USA (e.g. Froeschke et al.
2013) and Europe (Vasconcelos et al. 2014). However,
current definitions for identifying nursery habitats empha-
sise the habitats which leave a distinctive chemical signa-
ture or are the habitats from which juveniles can be most
readily sampled (Gillanders 2005). This disregards the
fact that many aquatic species shift habitats during their
time within the nursery (Kimirei et al. 2011), and that
other critical habitats might only be occupied transiently
(Tupper 2007) or indirectly support nursery value
(Connolly et al. 2005).

Connectivity (Fig. 1a) Ontogenetic habitat shifts, the use of
transitory and temporary habitats (Potter et al. 2014) and
the use of a mosaic of habitats within the nursery seascape
(Nagelkerken et al. 2014) attest to the central importance
of connectivity in supporting nursery ground value
(Vasconcelos et al. 2011). Yet connectivity is more than
just the movement of individuals among habitats; it is a
facilitator that enables a variety of critical ecological
functions to support nursery value (Sheaves 2009). For
instance, deriving maximal nursery ground value relies on
spatio-temporal matching between the functional require-
ment to use the particular habitat (e.g. refuge), the occur-
rence of appropriate resources (e.g. flooded marsh

surface) and physical conditions in the habitat (e.g. oxy-
gen levels), and it is connectivity that allows this complex
matching to occur. The facilitating role of connectivity is
pervasive (Beger et al. 2010), and it is a key factor
supporting most ecological interactions conferring nursery
ground value.

Ontogenetic migrations (Fig. 1b) Ontogenetic migrations
occur at a range of scales, from movements along freshwater to
marine gradients (Russell and Garrett 1985;McBride et al. 2001;
Davis et al. 2012), and movements within local habitat mosaics
(Nagelkerken 2009; Grol et al. 2011). Local scale migrations
include both easily identifiable meso-term habitat shifts (e.g.
seagrass to mangrove to patch reefs (Nagelkerken et al. 2000a))
and ephemeral habitat occupancy (e.g. initial settlement habitats
(Dahlgren and Eggleston 2000; Grol et al. 2011)) that is more
difficult to detect. Not only do ontogenetic habitat shifts exist
across a range of dependencies, from facultative (Milton et al.
2008) to more obligate (Potter et al. 2014), but they may vary
spatially (Kimirei et al. 2011). For instance, Haemulon
flavolineatum, one of the most common Caribbean ontogenetic
shifters, moves from rubble habitat to seagrass beds to man-
groves to rocky substratum in some geographic locations (Grol
et al. 2011), but from rubble habitat to sea urchin spines to
seagrass beds to lagoonal patch reefs in others (Ogden 1988).

Support for Successful Nursery Occupation

NURSERY
GROUND
VALUE

ResourceDynamics

h: Resource
Availability

i: Ontogenetic Diet
Shifts

j: Allochthonous
Inputs

Value to Recipient Populations and Ecosystems
(see Figure 2)

Connectivity and
PopulationDynamics

a: Connectivity

b: Ontogenetic
Migration

c: Seascape
Migration

Ecological and Ecophysiological Factors

d: Ecotone
Effects

e: Eco-physiological
Factors

f: Food/Predation
Trade-Offs g: FoodWebs

Fig. 1 Components of nursery ground value. Each component is described and discussed in the text
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SeascapeMigrations (Fig. 1c) On shorter time scales, feeding
migrations and movements to refugia are vital facilitators of
key nursery functions and connect multiple habitats within the
nursery seascape (Sheaves 2005; Verweij and Nagelkerken
2007). In situations where large tidal differences occur, inter-
tidal habitats such as salt marsh or mangrove roots are only
available periodically (Minello et al. 2012), leading to regular
tidal migrations. Even in cases where tides do not play a major
role, many organisms show predictable diurnal movements
be tween she l te r habi ta t s and forag ing grounds
(Hammerschlag et al. 2010). Seascape structure, the spatial
patterning of prey and predator species, and the hydrodynam-
ics and geomorphology of the ecosystem all play important
roles in structuring such animal movements across habitats
(Nagelkerken 2007; Baker et al. 2013).

Ecological and Ecophysiological Factors

Ecotone Effects (Fig. 1d) Ecotones are important contribu-
tors to nursery ground value. Indeed, estuarine nurseries
occur in transitional waters between freshwater reaches
and the sea and have been defined as traditional ecosys-
tems in their own right (Basset et al. 2013). Animal com-
munities often show strong spatial patterning within the
seascape, and it is especially at the edges of habitats where
highest species richness and densities are observed
(Dorenbosch et al. 2005; Johnston and Sheaves 2007).
For example, fish densities in seagrass beds can decrease
with distance away from patch reefs (Valentine et al. 2008),
and the highest fish and crustacean densities are found at
the seaward fringes of salt marsh (Minello et al. 2003) and
mangroves forests (Vance et al. 1996). As boundaries that
need to be crossed moving between habitats, ecotones are
also areas where risks can be greatest (Hammerschlag et al.
2010), and so are points where population structuring
factors like predation focus can be particularly influential
(Sheaves 2005; Baker and Sheaves 2009b).

Ecophysiological Factors (Fig. 1e) Physical factors and phys-
iological abilities are critical in determining spatial (Sheaves
1996a; Harrison andWhitfield 2006) and temporal (Attrill and
Power 2004) patterns of nursery ground occupancy. This
manifests at a diversity of scales; for instance relating to
ontogeny of habitat use (McBride et al. 2001), seasonal oc-
currence of necessary physical conditions (Davis et al. 2012)
and nutrients (Abrantes and Sheaves 2010), long-term pat-
terns of nursery utilisation (Sheaves 1998), variations in opti-
mal nursery habitats (Hurst and Conover 2002) or responses
to multi-year climatic cycles (Sheaves et al. 2007). Conse-
quently, in many systems, nursery provision will change sub-
stantially over time (Minello et al. 2012), providing advantage
to different species under different conditions. Differing be-
havioural and physiological abilities allow different species,

and even different ontogenetic stages, to access and use dif-
ferent nursery grounds or use nursery grounds in different
ways. Air breathing organs in species such as tarpon
(Megalops spp.) allow them to utilise hypoxic wetland nurs-
eries (Seymour et al. 2008), while barramundi (Lates
calcarifer) juveniles are able to access hypersaline wetlands
from which predators and competitors are excluded (Russell
and Garrett 1985). Even in deeper estuarine waters, hypoxia
can exclude species from habitats during periodic hypoxic
events (Pihl et al. 1991; Switzer et al. 2009). In response,
many estuary species can detect and avoid areas of low
dissolved oxygen concentration (Wannamaker and Rice
2000). Not only do different salinity preferences contribute
to nursery habitat partitioning by co-occurring juvenile fish
(Davis et al. 2012), but physical conditions can have substan-
tial influences on growth rates of juveniles (Del Toro-Silva
et al. 2008), with salinity and temperature regimes often
having more substantial influences on growth than diet
(Baltz et al. 1998). Eco-physiological effects can be complex,
interacting with ecological processes to effect changes in
nursery value for different juvenile stages. For instance, eco-
physiological differences allow young juvenile California hal-
ibut, Paralichthys californicus, to occupy estuaries with abun-
dant prey and few predators from which larger juveniles are
excluded because of narrower salinity and temperature toler-
ances (Madon 2002).

Food/Predation Trade-Offs (Fig. 1f) Juveniles utilising
nurseries face a complex trade-off between the need to
obtain sufficient, appropriate prey, and minimising preda-
tion risk (Sogard 1992; Baker and Sheaves 2007). This
trade-off can profoundly affect nursery ground value, and
the quantity and quality of sub-adults migrating to adult
habitats (Walters and Juanes 1993; Kimirei et al. 2013).
The need to access prey-rich areas can initiate or neces-
sitate behaviour that exposes juveniles to increased pre-
dation risk (Alofs and Polivka 2004; Sheaves 2005) or to
forage in areas that support poor growth rates (Sogard
1992; Harter and Heck 2006). In fact, the underlying
mechanisms that drive habitat shifts are often related to
minimising the ratio of mortality risk to growth rates
(Werner and Hall 1988; Halpin 2000), because profitable
habitats for food acquisition are often riskier in terms of
probability of predator encounter (Hammerschlag et al.
2010). Predation is usually the largest source of mortality
for juvenile fish (Harter and Heck 2006), so high-risk
areas, such as transition zones between refuge and feeding
areas (Hammerschlag et al. 2010) may represent ecologi-
cal bottlenecks. For example, predatory activity at these
locations can control the supply of recruits to nursery
grounds (MacGregor and Houde 1994; Brown et al.
2004) and the supply of juveniles from nursery grounds
to adult populations (Yurk and Trites 2000; Friedland
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et al. 2012), and so provide the opportunity for predatory
control of nursery populations (Baker and Sheaves
2009b). In addition, these refuge-food acquisition trade-
offs vary between species (Camp et al. 2011) meaning
that nursery ground values may differ markedly depend-
ing on the species involved.

Food Webs (Fig. 1g) Predators have a strong top-down
control on food webs. While nurseries have typically been
assumed to harbour few predators, recent studies have
shown a more complex picture (Baker and Sheaves
2009a; Dorenbosch et al. 2009). Although standing stock
of predators may be low much of the time, immigrating
predators from adjacent systems can produce profound
predatory effects on nursery fish during their short forag-
ing forays (Baker and Sheaves 2009a). Moreover, many
nursery species shift ontogenetically to higher piscivory
while still occupying nurseries (Baker and Sheaves
2009a). The spatio-temporal presence of predators and
their specific gape sizes will determine to what degree
they control fish populations in nurseries. Secondly, inter-
specific interactions may determine which species ulti-
mately are responsible for greatest export to adjacent
ecosystems. Recruitment of nursery fish may be highly
variable in time, and feeding habitat and food availability
may be limiting during nursery occupancy (Igulu et al.
2013). Competitive exclusion from optimal foraging hab-
itats among species may be an important determinant of
the winners and losers of nursery habitat use in terms of
growth, survival and successful movement to consecutive
habitats.

Resource Dynamics

The availability, distribution and quality of resources within
the nursery are critical parameters underpinning nursery
ground value, the pattern of use of resources, and ultimately
the outcome of nursery ground residence. Resource use is
complex, varying along stage-specific, time-specific and
purpose-specific axes.

Resource Availability (Fig. 1h) Nursery grounds are often
nutritionally rich ecosystems maximising cohort growth
during nursery ground residence (Yanez-Arancibia et al.
1994), and marine organisms invest heavily in rapid
growth during their early life stages. Prey quantity and
quality affect growth (Sogard 1992; Scharf et al. 2006)
because of substantial differences in the energetic value of
different prey types (Ball et al. 2007). Although fish may
be able to switch to alternative prey (Gartland et al. 2006),
there are limits to this ability to adapt (Nobriga and Feyrer
2008), and particular prey may be required at particular
life stages (Robertson and Duke 1990; Baker and Sheaves

2005). Consequently, the quality, quantity and availability
of food resources is an important factor in nursery value,
although food acquisition often necessitates trade-offs
with predation avoidance (see above). High-quality nurs-
ery grounds are also those that provide optimal habitats
relative to the full range of life-history functions
(Nagelkerken and van der Velde 2002; Nagelkerken
et al. 2014), such as juvenile settlement (Dahlgren and
Eggleston 2000; Grol et al. 2011), foraging (Nagelkerken
et al. 2000b; Harter and Heck 2006) and refuge (Ellis and
Gibson 1995; Sheaves 1996b; Gorman et al. 2009).

Ontogenetic Diet Shifts (Fig. 1i) Complex seascape dynam-
ics, with juveniles obtaining resources from different hab-
itats during different phases of their nursery residence,
mean that the development of complicated and variable
food webs is inevitable (Nagelkerken et al. 2006). Due to
ontogenetic dietary shifts, many juveniles change their
trophic identity during nursery occupation. Profound
changes in diet over development mean they may not
even participate in the same trophic web throughout nurs-
ery occupation. For example, juvenile Platycephalus
fuscus initially feed almost entirely on amphipods and so
participate in a food web based on benthic productivity,
while larger juveniles in the same habitat switch to feed-
ing extensively on planktivorous fish (Baker and Sheaves
2005). Such ontogenetic diet shifts are widespread among
estuarine and coastal fishes (Elliott et al. 2007), and the
availability of the different food items that are preferen-
tially selected through ontogeny is an important driver of
the realised growth during nursery occupancy.

Allochthonous Inputs (Fig. 1j) In marine systems, water is
an effective vector for the movement of energy and nutri-
ents among habitats, allowing substantial trophic subsi-
dies that affect the structure of animal populations in
recipient systems (Deegan 1993). In some situations, an-
imals are sustained by food webs based on autotrophic
production within their habitat (e.g. juvenile fish in
seagrass meadows in the Mediterranean (Vizzini et al.
2002), and animals on salt marshes in subtropical Austra-
lia (Guest and Connolly 2004)). Often, however, nutrition
is derived ultimately from plants or algae growing else-
where. Organic matter from seagrass meadows can sustain
food webs in adjacent habitats (Heck et al. 2008),
supporting production in both temperate (e.g. Connolly
et al. 2005) and tropical (e.g. Melville and Connolly
2005) systems, while mangroves also have been shown
to support fish production in adjacent estuarine (Abrantes
and Sheaves 2009a) or coastal waters (Bouillon et al.
2008) in certain situations. Stable isotope analysis has
demonstrated both the detrital pathway for this transfer
and the fact that movement of nutrients can also occur
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through in-welling from coastal to intertidal waters
(Connolly et al. 2005).

The Support of Recipient Populations and Ecosystems
by Nursery Grounds

The conventional view of nursery ground value (e.g. Heck
et al. 1997; Beck et al. 2001) emphasises the contribution of
juveniles from inshore nurseries to recipient (usually offshore)
populations, and its crucial role in supplying adult populations
with new individuals. The migration of juveniles also repre-
sents the biologically mediated export of nutrients, incorpo-
rated into juvenile biomass during nursery residence, donated
to offshore systems (Deegan 1993; Beck et al. 2001). The
export of biomass was suggested by Beck et al. (2001) to be
the best integrative measure of the contribution of juveniles to
future generations. However, the numbers and biomass of
individuals that reach adult stocks represent only part of the
contribution that juveniles using nursery grounds make to
recipient populations and ecosystems (Figs. 1 and 2).

Diverse Trophic Contributions From the moment of
recruiting to the nursery ground, the abundance of a
cohort is continually and exponentially pruned back by
mortality (Yanez-Arancibia et al. 1994; Doherty et al.
2004). As abundance declines, individual biomass in-
creases until a very small number (relative to those
recruiting) of large individuals emigrate from the nursery
ground (Yanez-Arancibia et al. 1994; Sheaves et al. 2013)
transferring their accumulated biomass to offshore habi-
tats (Deegan 1993), where they may be ultimately mea-
sured as contributing to adult stocks (Beck et al. 2001)
(Fig. 2a). However, most individuals, and a significant
proportion of the biomass, do not survive to emigrate
(Deegan 1993; Yanez-Arancibia et al. 1994; Baker et al.
2014) and so do not figure in calculations of exported
biomass. However, these individuals are critical to nursery
ground value by forming what is essentially a sacrificial
nursery component that allows other nursery individuals
to survive (Sandin and Pacala 2005; Svenning et al. 2005)
(Fig. 2b). In doing so, they provide food for juvenile
predators within the nursery (Minello et al. 1989; Baker
and Sheaves 2005) (Fig. 2c) that ultimately translocate
accumulated nutrients offshore during their ontogenetic
migrations (Thorson 1971; Werry et al. 2011) (Fig. 2a),
and for transient predators from offshore feeding within
the nursery (Begg and Hopper 1997) that return offshore
exporting biomass accumulated in the nursery ground
(Fig. 2d). These juveniles also form critical links in nurs-
ery food webs (Abrantes and Sheaves 2009a, b) (Fig. 2e),
provide a vehicle for transferring production among

habitats (Rozas and LaSalle 1990) and form critical com-
ponents of trophic relays where intermediate prey link
production sources in one habitat with higher consumers
in another (Kneib 1997) (Fig. 2f). When viewed this way,
the nursery cohort is largely made up of individuals com-
prising a critical resource in the trophic functioning of the
nursery and adjacent connected ecosystems, with the sur-
vivors representing surplus individuals not consumed in
powering the system. Valuing a nursery based only on the
biomass of individuals that reach adult stocks clearly
overlooks a diversity of processes critical to the function
of these systems (Sheaves et al. 2006) because the relative
contributions from different nurseries of individuals that
ultimately reach the adult stocks does not reflect the full
production output of each nursery or their contributions to
the support of other species. Although specifically quan-
tifying all the components of biomass transfer will rarely
be practical given our current knowledge bases, quantifi-
cation is not the primary issue. Recognising that the true
value of trophic contributions from nursery grounds is
much more extensive than can be measured as exported
biomass alone is critical for the effective management of
nursery function and to developing approaches to begin to
quantify those additional contributions.

Export of Process The influence of nursery grounds on off-
shore ecosystems is not confined to the contribution of indi-
viduals to adult populations or biomass translocation but
extends to effects on key processes in the recipient ecosystems
(Fig. 2g). Connectivity to mangrove nursery grounds influ-
ences overall community structure and resilience on many
Caribbean coral reefs. Because dominant herbivores have an
obligate mangrove nursery phase, the presence of mangroves
has a substantial impact on the numbers of herbivores on
adjacent reefs, thus regulating the beneficial effects of herbiv-
ory in those systems (Mumby et al. 2004), and greatly in-
creases resilience of mid-shelf reefs to severe hurricane dis-
turbances (Mumby and Hastings 2008). At the other end of
trophic webs, as well as contributing to the export of biomass,
the movement of juvenile bull sharks, Carcharhinus leucas,
from coastal nurseries (Curtis et al. 2011; Heupel and
Simpfendorfer 2011) represents the supply of sub-adult and
adult high-level predators (Marshall and Bennett 2010) that
can be major influences on offshore predation dynamics
(Hunsicker et al. 2012) and severely impact lower trophic
levels through trophic cascades (Myers et al. 2007). The
export of process extends to biological controls, with juvenile
grouper from mangrove nurseries having the potential to
control populations of invasive lionfish on Caribbean coral
reefs (Maljkovic et al. 2008). The growing awareness of the
complexity of interactions between different environmental
realms and the importance of connectivities at all scales in
supporting ecological functioning (Beger et al. 2010) suggests
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that many more effects of nurseries on ecological processes in
recipient ecosystems are likely to be recognised as our under-
standing of linkages between ecosystems becomes more so-
phisticated. As with developing a more complete understand-
ing of the spectrum of contributions from trophic interactions,
developing a more complete understanding of the process
links emanating from nursery grounds to influence recipient
ecosystems is critical to developing a comprehensive under-
standing of the true value of nursery grounds.

Current Situation: Approaches Available to Identify
the Full Value of Nurseries

The value of any juvenile habitat depends on its complex
contributions to the sustainability of populations and the func-
tioning of replenishing and recipient ecosystems. Recognising
the lack of a framework for identifying valuable nurseries,
Beck et al. (2001) proposed an approach to rank nursery
grounds based on the total biomass contributed from different
putative nursery habitats. This was an important advance,
recognising the need to compare contributions across all pos-
sible nursery habitats. However, this is only a first step,

because comprehensive identification, valuation and manage-
ment of estuarine and coastal nurseries for fish requires de-
tailed understanding of the range of processes supporting
nursery value (Jones et al. 2002) and of the full value of
outputs to recipient ecosystems (Mumby and Hastings
2008). Additionally, while ranking nurseries may provide
guidance for prioritising areas for conservation very broadly,
it is of limited value for managers charged with maintaining
nursery function in the face of impacts at specific locations.
The increasingly urgent need to understand and maintain
ecosystem function across the globe is driven far more by
the need to manage ever increasing anthropogenic impacts,
and multiple coastal users with conflicting usages, to our
environment than by a desire to totally protect functional
ecosystem units. It would be better, therefore, if protection
and management of nursery grounds is not based solely on a
ranking of the relative value of different putative nurseries.
The approach we are recommending aligns with the broader
shift to managing marine systems to conserve ecosystem
functioning rather than focusing on individual species or
habitat units (Foley et al. 2010).

Determining the relative contributions of putative nurseries
to adult stocks in terms of numbers or biomass can often be
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than just export of new individuals to adult stocks and the biologically
mediated nutrient translocation they represent (a). Individuals lost
through mortality within the nursery facilitate the survival of those that
ultimately emigrate (b), as prey participate in the continued transfer of

biomass to local (c) and immigrating predators that feed in the nursery
and subsequently move to recipient habitats transferring biomass (d),
form important prey and critical links in food webs that support nursery
value (e), contribute to trophic relays as they are fed on during emigration
(f), and influence key processes in recipient ecosystems (g)
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Table 1 Solutions matrix: types of studies (bottom column titles) providing categories of information (top column titles) contributing to resolving
aspects of nursery ground value (row information)
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Study Types

Numbers at left reflect those in Fig. 1 (a–j) and Fig. 2 (a–e), hence e depicted in Fig. 2 lies in the upper half of the table as part of ‘Support for Nursery
Occupation.’ Temporal scales: short = minutes to hours, meso = days to weeks, life-history = a sequence of changes over time relating to life-history
events, all = relevant to all temporal scales. Spatial scales: local = within a local area or habitat, system = relating to a mosaic of habitats used by juveniles
or a whole system (e.g. an estuary), all = relevant to all spatial scales
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achieved via retrospective determination of movement of
individuals from particular nurseries to the adult population
using artificial or natural markers (Gillanders et al. 2003;
Gillanders 2005). For example, otolith chemistry may distin-
guish occupation of one coastal bay or estuary rather than
another (Yamane et al. 2010; Reis-Santos et al. 2012), or
differentiate between use of particular salinity zones
(Albuquerque et al. 2012; Webb et al. 2012), or distinguish
use of particular seascape components (Gillanders and
Kingsford 1996). However, while natural markers can be used
to define spatial units contributing most biomass to recipient
adult populations, they are really only able to identify areas
that can be most easily distinguished (e.g. ones that leave an
otolith chemical signature) and are unlikely to be able to
identify important habitats occupied for short periods (e.g.
initial settlement habitats (Dahlgren and Eggleston 2000;
Grol et al. 2011)), habitats that are used intermittently (forag-
ing and sheltering habitats (Sheaves 2005; Verweij et al.
2007)) and linkages and pathways among habitats
(Nagelkerken 2007; Hammerschlag et al. 2010). Moreover,
they provide little information on how habitats are used or on
the processes and functions (e.g. food web resilience or re-
source dynamics) that are critical to nursery value but are not
specifically related to a particular spatial unit.

There are also practical limitations to the use of rank-
ing based on the contribution of spatial units. As well as
providing scant information on process, approaches such
as otolith microchemistry frequently do not allow identi-
fication of juvenile habitats at the scale where key pro-
cesses operate, the scale used by the juveniles themselves,
or at a scale amenable to management action (Gillanders
et al. 2003). It will often not be feasible for management
to protect the entire unit identified; all of one bay, all of
one salinity zone or all of one seascape component. As a
result, managers will often seek to minimise impacts
within the unit identified as a nursery. However, many
supporting processes and negative impacts arise well be-
yond a specific unit of habitat, so unless the specific
values and supporting processes of particular sub-units
and connectivities are known, such spatial prioritization
is likely to fail. Ranking of nurseries assumes that nursery
components have independent contributions to nursery
value (Beger et al. 2010). However, the complex nature
of nursery ground provision, with multifaceted interac-
tions transcending individual spatial units, means that
identification of nursery habitat cannot be approached as
a static process in which individual habitats and life
phases are singled out. Ignoring these interactions could
be justified when it is possible to conserve a whole
ecosystem (e.g. whole estuary or whole of coastal sea-
scape) containing all units contributing to nursery func-
tion; as is the case with large protected areas. More often,
management will need to work with much more specific

units. The ranking process then provides little help, and
may even be misleading because it suggests that one area
can be protected at the expense of others. Even if ranking
could be achieved at an appropriate scale to enable rela-
tive valuation of different spatial units, it intrinsically
disregards the critical importance of interactions among
ensembles of habitat units (Sheaves 2009; Grol et al.
2011), the importance of connectivity among the habitat
units (Beger et al. 2010) and the importance of habitats
only occupied transiently (Nagelkerken et al. 2014).

Solutions: Approaches Available to Identify the True
Value of Nurseries

Determining how nursery value is influenced by connectivity,
habitat type, habitat diversity, ecological interactions and tro-
phic process seems like a complex task, but the type of
information needed is already being collected; it just needs
to be recombined, extended and refocused specifically on
understanding nursery function. Not only can particular tech-
niques contribute to understanding different aspects of nursery
value (columns of ticks in Table 1) but combining various
approaches can provide rich and extensive detail on specific
aspects of nursery value (rows of ticks in Table 1).

To illustrate this, connectivity studies using natural and
artificial markers are becoming the principal techniques for
determining biomass or numeric contributions from alterna-
tive nurseries to adult stocks (see above). However, marker
studies have broader applicability (Table 1). Not only can they
provide valuable inputs to understanding of nursery values
ranging from ontogenetic migration to export of process but,
when combined with other techniques, can contribute to a
much deeper understanding of many aspects of nursery value.
For example, combined with data including food web and
fish-habitat relationship information, gleaned from stable iso-
tope, dietary, observational and capture studies, they can
provide information on ontogenetic migration, seascape mi-
gration, ecotone effects and connectivity itself (Table 1: rows
1a-2a). Similarly, contributions to juvenile predator biomass
can be informed by the following: stable isotope and dietary
studies used to define nursery food webs; dietary, observa-
tional, capture and tethering studies supplying information on
predator identification and dynamics; and energetics and
condition studies determining juvenile growth and health
(Table 1: row 4d).

Many other solutions are indicated in Table 1. These are far
from exhaustive and a variety of other possibilities and com-
binations of approaches are likely to be fruitful. In particular, it
will usually be possible to definemore specific detail when the
ideas are applied to particular cases and the studies are con-
sidered in explicit spatial and temporal contexts. The possi-
bilities of the information that can be gleaned using multiple
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techniques should expand quickly as new combinations of
approaches are successfully applied to new problems.

Conclusion

A historical analysis of nursery-function studies shows pro-
gressive development of this important field: (1) the recogni-
tion that inshore habitats harbour high densities of juvenile
fish (1970s; e.g. Weinstein 1979), (2) the study of community
structures of individuals nursery habitats (1980s; e.g. Robert-
son and Duke 1987), (3) the quantification of consecutive
habitat usage by different life stages of fish (1990s; e.g.
MacPherson 1998), (4) development of conceptual frame-
works that identify critical nursery habitats (2000s; e.g. Beck
et al. 2001), (5) recent studies that have used these frameworks
in a quantitative way to identify primary nursery habitats
(Tupper 2007; Huijbers et al. 2013). We are now at a stage
where we need to take a step forward, building on these
advances by developing an understanding of the processes
that drive the productivity and maintenance of these identified
key nurseries, and to go beyond valuation based simply on
export of number or biomass, by incorporating the complex of
factors that contribute to nursery value to provide a more
comprehensive understanding of true nursery value. Only
through this comprehensive understanding can we confidently
identify the habitat mosaics and underlying connectivities/
processes that are important to conserve to maintain nursery
production and replenishment of recipient ecosystems. Ongo-
ing degradation of coastal ecosystems increases the imperative
for more complete understanding. Rapid loss of nursery hab-
itats and escalating habitat fragmentation increase the pressure
to conserve critical habitats and maintain ecosystem function.
The identification of nursery habitats at a whole of habitat-unit
scale, as is currently advocated, will not suffice in fragmented
seascapes or in the face of specific impacts at particular
locations. Consequently, an understanding of the complex
processes that underlie nursery function is needed to support
selection of appropriate fragments that can still provide key
nursery functions. Failure to incorporate this complexity into
conservation approaches and reserve design risks incomplete
or inaccurate identification of key habitats and connectivities,
and leads to significant potential for unexpected negative
outcomes (Harris and Heathwaite 2012). Our current perspec-
tive provides a conceptual framework that can aid progress
towards more complete understanding of nursery ground val-
ue, utilising data that are already available in the literature. It is
only by continuing development of detailed understanding of
the true value of nursery grounds and their functioning that we
can hope to effectively protect these systems into the future.
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