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Abstract
In potato breeding, maturity class (MC) is a crucial selection criterion because this is a critical aspect of commercial potato 
production. Currently, the classification of potato genotypes into MCs is done visually, which is time- and labor-consuming. 
The objective of this research was to use vegetation indices (VIs) derived from unmanned aerial vehicle (UAV) imagery to 
remotely assign MCs to potato plants grown in trials, representing three different early stages within a multi-year breeding 
program. The relationships between VIs (GOSAVI – Green Optimized Soil Adjusted Vegetation Index, MCARI2 – Modi-
fied Chlorophyll Absorption Index-Improved, NDRE – Normalized Difference Red Edge, NDVI – Normalized Difference 
Vegetation Index, and OSAVI – Optimized Soil Adjusted Vegetation Index and WDVI – Weighted Difference Vegetation 
Index) and visual potato canopy status were determined. Further, this study aimed to identify factors that could improve the 
accuracy (decrease Mean Absolute Error – MAE) of potato MC estimation remotely. Results show that VIs derived from 
UAV imagery can be effectively used to remotely assign MCs to potato breeding lines, with higher accuracy for the potato 
B-clones (20 plants per plot) than the A-clones (6 plants per plot). Among the tested VIs, the NDRE allowed for potato MC 
evaluation with the lowest MAE. Applying NDRE for remote MC estimation using a validation dataset of potato B-clones 
(100 plants per plot), resulted in an MC estimate with a 0.81 MAE. However, the accuracy of potato MC estimation using 
UAV image-based methods should be improved by reducing the potato canopy’s variability (increasing uniformity) within 
the plot. This could be achieved by minimizing 1) potato vines bending over the neighboring row, causing vine overlap 
between plots, and 2) plants damaged by tractor wheels during field operations.

Resumen
En el mejoramiento de la papa, la clase de madurez (CM) es un criterio de selección crucial porque este es un aspecto crítico 
de la producción comercial de papa. Actualmente, la clasificación de los genotipos de papa en MC se realiza visualmente, 
lo que requiere mucho tiempo y trabajo. El objetivo de esta investigación fue utilizar índices de vegetación (VIs) derivados 
de imágenes de vehículos aéreos no tripulados (UAV) para asignar de forma remota MCs a plantas de papa cultivadas en 
ensayos, representando tres etapas tempranas diferentes dentro de un programa de mejoramiento de varios años. Se deter-
minaron las relaciones entre los VIs (GOSAVI – Índice de Vegetación Ajustado al Suelo Optimizado Verde, MCARI2 – 
Índice de Absorción de Clorofila Modificado-Mejorado, NDRE – Borde Rojo de Diferencia Normalizada, NDVI – Índice de 
Vegetación de Diferencia Normalizada, y OSAVI – Índice de Vegetación Ajustado al Suelo Optimizado y WDVI – Índice 
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de Vegetación de Diferencia Ponderada) y la visualización del dosel de la papa. Además, este estudio tuvo como objetivo 
identificar factores que podrían mejorar la precisión (disminuir el Error Absoluto Medio – MAE) de la estimación de MC de 
papa de forma remota. Los resultados muestran que los VI derivados de las imágenes de UAV se pueden utilizar de manera 
efectiva para asignar MC de forma remota a las líneas de mejoramiento de papa, con mayor precisión para los clones B de 
papa (20 plantas por parcela) que para los clones A (6 plantas por parcela). Entre los VI probados, el NDRE permitió la 
evaluación de la MC de papa con el MAE más bajo. La aplicación de NDRE para la estimación remota de MC utilizando 
un conjunto de datos de validación de clones B de papa (100 plantas por parcela), resultó en una estimación de MC con un 
MAE de 0.81. Sin embargo, la precisión de la estimación de la MC de la papa utilizando métodos basados en imágenes UAV 
debe mejorarse reduciendo la variabilidad del dosel de la papa (aumentando la uniformidad) dentro de la parcela. Esto podría 
lograrse minimizando 1) los tallos de papa que se doblan sobre el surco vecino, lo que causa la superposición de follaje entre 
las parcelas, y 2) las plantas dañadas por las ruedas de los tractores durante las operaciones de campo.

Keywords  Potato breeding · Crop phenomics · Maturity class · Digital agriculture · Unmanned aerial vehicle · UAV · 
Imagery · Vegetation index

Introduction

Potato (Solanum tuberosum L.) is a globally significant 
food crop, ranking as the third most important after rice 
and wheat and the foremost vegetable crop, producing 375 
million tons in 2022 (FAOSTAT 2024). Conventional plant 
breeding, based on the hybridization of parents and pheno-
typic selection of offspring, while very effective, is also slow 
(Spindel and McCouch 2016). Reducing the time required to 
shrink the population size improves the economic feasibility 
of the breeding program. Among the about seventy traits the 
potato varieties are screened for (Zimnoch-Guzowska 2017), 
there is also a maturity class (MC), that expresses the length 
of the vegetation period required to produce a harvestable 
product (Plich 2017), a critical aspect of commercial potato 
production. Maturity is a complex phenomenon affected by 
many potato growth and development components (Khan 
et al. 2013). However, the variation in maturity between the 
genotypes could be reflected in differing periods of attain-
ing critical physiological stages such as canopy develop-
ment, tuber initiation, filling, and total duration. Currently, 
the classification of potato breeding lines and varieties into 
MCs is still done visually on thousands of experimental 
plots by an experienced breeder who monitors the vine 
characteristics at particular time intervals during the crop 
cycle (Haga et al. 2012). To maintain the same classifica-
tion standard throughout the germplasm nursery, the same 
person must perform the procedure quickly. This time- and 
labor-consuming task can be additionally limited by unfa-
vorable ground conditions such as rainy weather, associated 
high soil moisture, and changing light conditions that affect 
the human perception of the plant color. Remote estima-
tion of potato MC can partially overcome these limitations 
because flights with unmanned aerial vehicles (UAVs) can 
be done at times of high soil moisture and at changing light 
conditions, providing that radiometric calibration of the 
image is performed if comparing between collection dates 

(Aasen et al. 2018). Moreover, the UAV can be flown over 
the potato experiments, covering several thousand small 
plots, more often than the visual observation done by the 
breeder, and used to evaluate multiple plant traits other than 
the MC alone. The high temporal resolution of data collec-
tion with UAVs allows for timely estimation of the essential 
plant traits rather than missing the critical stages in plant 
development (Burkart et al. 2018). This approach reduces 
input costs, saves time, and minimizes errors caused by mul-
tiple rounds of phenotyping done by various people when 
evaluating the same plots (Chawade et al. 2019).

Recently, UAVs have been used for various aspects of 
potato plant phenotyping. The work by ten Harkel et al. 
(2020) in the Netherlands has shown that data derived 
from LiDAR (Light Detection and Ranging) mounted on 
the UAV could estimate fresh potato biomass and plant 
height. However, the accuracy of estimation of both plant 
traits was less reliable (compared to other crops like sugar 
beet and wheat) due to the complexity of plant canopy field 
architecture because potatoes are grown in beds. Li et al. 
(2020) selected crop heights derived from UAV imagery 
and vegetation indices (VIs): CI1 – red-edge chlorophyll 
index 1; MSR – modified simple ratio as the best potato 
yield and biomass predictors. Those researchers stated that 
crop heights obtained in an automated way are likely to 
be more accurate than manually estimated crop heights 
from limited sampling. The study by Colwell et al. (2021) 
demonstrated how the use of point cloud data obtained 
from low-cost UAV imaging can be used to create 3D sur-
face models of the plant canopy, from which detailed and 
accurate data on plant height and its distribution, canopy 
ground cover and canopy volume can be obtained over 
the growing season. Franceschini et al. (2017) compared 
ground-based and UAV-mounted spectrometers in organic 
potato cultivation. The UAV-based canopy structure and 
leaf chlorophyll estimates, leaf area index (LAI), and 
ground cover were relatively more accurate than those 
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derived from ground-based measurements. Recently, 
Matias et al. (2020) developed the FIELDimageR pack-
age, which includes functions allowing the determination 
of the number of plants per plot, canopy cover percent-
age, VIs, and plant height from UAV orthomosaic images 
of potato field trials. However, there are still gaps in the 
literature regarding the application of vegetation indices 
derived from UAV orthomosaics for potato MC estimation 
in breeding trials.

The objectives of this study were to 1) establish the 
relationship between VIs developed using UAV-derived 
spectral data (remote method) and visual potato canopy 
status estimation (vine greenness and growth habit) and 
determine the effectiveness of these measurements in 
detecting differences among MCs at two stages of the 
potato breeding program; 2) validate the remote MC evalu-
ation using a set of new potato genotypes grown as a third 

stage of the potato breeding program; and 3) identify fac-
tors that could improve the accuracy of remote potato MC 
estimation.

Methods

Experimental Sites and Growing Conditions

Research was conducted in 2021 on regular potato breed-
ing trials of the Zamarte Potato Breeding Ltd. company at 
Zamarte in northern Poland (53°36′9.22"N,17°29′16.05"E, 
elevation: 148 m) (Fig. 1a). The trials covered 4660 plots 
with potato A-clones (breeding lines A – second field gen-
eration/propagation which consists of all potato genotypes 
tested at the earlier stage of the breeding program, and 
1320 plots with potato B-clones (breeding lines B – third 

Fig. 1   Illustration of experi-
ments set up (a) location of 
breeding trials of the Zamarte 
Potato Breeding Ltd. company 
at Zamarte, Poland, in 2021, 
(b) overview of the location of 
the trials with potato A-clones 
(parts 1 and 2, red outlines) 
and B- clones (parts 1 and 2, 
blue outlines) superimposed 
on the UAV images taken on 
July 25 and 26, 2021. Green 
strips represent the location of 
the standard potato varieties. 
Scheme of a single potato plot 
of (c) A-clones and (d) B-clones



	 American Journal of Potato Research

field generation/propagation) – the later stage of the breed-
ing program (Fig. 1b). UAV imagery was used at these two 
stages of the breeding program because the classification 
of potato genotypes into MCs is done at this time visu-
ally to the highest number of plots, which is time- and 
labor-consuming. Each plot consisted of one row (bed) of 
6 plants and two rows of 10 plants each for the A- and 
B-clones, respectively (Fig. 1c and 1d). A set of standard 
potato varieties: Bielik (1), Impresja (1), Gala (3), Ismena 
(3), Longina (3), Madeleine (5), and Oberon (5) in A- 
clones experiment and Werbena (1), Bielik, Gala, Ismena, 
Longina, Madeleine, Oberon and Widawa (5) in B- clones 
experiment, covering a wide range of MCs (given in the 
brackets) under Polish conditions was planted to bench-
mark the effects of maturity type among known genotypes. 
All outer beds of the experiments were planted with a very 
early variety of Miłek (1). The spacing between plants was 
0.34 m, and the total row length was ~ 2.04 m for the A- 
clones and ~ 3.40 m for the B- clones (Fig. 1c and 1d). 
The bed width was 0.75 m. To eliminate the border effect, 
there was no distance between plots. Potatoes were hand 
planted for A- clones experiments on April 21, 2021, and 
for B-clones experiments on April 23 and 28, 2021. All 
field operations were conducted by technical staff of the 
Zamarte Potato Breeding Ltd. company. The potato A-and 
B- clones breeding trials were harvested on August 25–26, 
2021, and September 1 and 2, 2021, respectively.

The research location is characterized by a moderate cli-
mate with the year average air temperature of 8.1 °C and 
cumulative participation of 612.4 mm for the 30-year period 
of 1991–2020 registered by a weather station of the Insti-
tute of Meteorology and Water Management (IMWM 2024) 
placed in Chojnice c. 10 km from the research trials (https://​
klimat.​imgw.​pl/​pl/​clima​te-​norma​ls/​TSR_​AVE). The soils of 
the trials corresponded mainly to Luvisols and Cambisols 
(IUSS Working Group WRB 2014), with loamy sand in 
the plow layer. Rainfall was registered by a manual Hell-
mann rain gauge of 200 cm2 surface area (P.P.U.H WOBIS, 
Zabrze, Poland), located near the potato trials. Air tem-
peratures were obtained from the IMWM weather station. 
The average monthly mean, maximum, and minimum air 
temperatures during the study period (April-August 2021) 
were 16.5, 21.7, and 11.5 °C, respectively (Fig. 2). The total 
rainfall for that period was 181 mm, with half of this amount 
registered in April–May, and the other half in July–August. 
According to Chmura et al. (2013), this amount of rainfall 
on medium to light soils in Polish conditions was suboptimal 
for growing potatoes. This is because to achieve the maximal 
yield, rainfall distribution should be about 143 mm during 
May–June and 220 mm in July–August. Thus, the experi-
ment was carried out in a year with insufficient rain in most 
of the growing season.

The validation trial with potato C-clones (breeding lines 
C), located at Zamarte (53°35′31"N, 17°30′08"E, elevation: 
148 m) ~ 730 m south from the B-clones (part 2) trial, was 
the fourth field generation/propagation of the breeding pro-
gram after the potato B-clones (Fig. 1b). This experiment 
included 240 out of the 4660 potato genotypes that were 
previously grown in 2021 as potato A-clones. Potatoes were 
hand planted on April 25, 2023. The single plot covered 
an area of 25.5 m2 and consisted of two beds (like in the 
trial with the potato B-clones) but with 50 plants grown in 
each of the beds. Spacing between plants was 0.34 m, the 
bed width was 0.75 m, and the total row length was 17 m 
(Fig. 1c and 1d).

Visual Observations

The visual estimation of the MC of potato A-clones and 
B-clones, based on a genotype plant growth habit, uniform-
ity of growth, and intrinsic vine color, was performed during 
intensive yellowing and bending of potato vines over the 
beds of very early standard varieties: Bielik and Impresja. 
The MC estimation was done according to the Research Cen-
tre for Cultivar Testing (2018) on a 9-degree scale, namely:

1 – very early.
2 – very early to early.
3 – early.
4 – early to medium.
5 – medium.
6 – medium to late.
7 – medium late.
8 – late to very late.
9 – late.

Fig. 2   Monthly averages of maximum, minimum, and mean air tem-
peratures and precipitation from May to September 2021. Numbers 1, 
2, and 3 on the X-axis refer to the successive 10 or 11-day average to 
present the distribution of precipitation within each month

https://klimat.imgw.pl/pl/climate-normals/TSR_AVE
https://klimat.imgw.pl/pl/climate-normals/TSR_AVE
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The visual estimation of the MC of potato A-clones and 
B-clones was performed by an experienced breeder, respec-
tively, on July 22 and 23 and July 26 and 27, 2021. Among 
the potato A and B-clones tested in the Zamarte Potato 
Breeding Ltd. breeding trials, the MCs range from 1 to 7. 
Very early A-clones, with a completely dry canopy during 
the visual estimation, were additionally assigned an MC of 
0.5.

Commercial standard (reference) varieties, planted as a 
benchmark against the MC of the tested A and B-clones, 
representing various plant MC (given in Sect. 2.1) MC, 
namely Bielik, Impresja, Gala, Ismena, Longina, Madeleine, 
and Oberon, were planted every ten plots in the A-clones 
trial. Werbena, Bielik, Gala, Ismena, Longina, Madeleine, 
Oberon and Widawa varieties were planted in every five 
plots in the B-clones trial (Fig. 1b).

Between June 14 and July 2, 2021, a negative selection 
was performed twice to remove clones with a virus, infection 
of blackleg (Pectobacterium atrosepticum and Dickeya spp., 
van Hall; Robert S. Dickey), and rogues (i.e., those plants 
that differed from other plants of the exact clone). In total, 
3883 A-clones and 1059 B-clones were assigned the MC 
and used for statistical analysis. Visual estimation of the MC 
in the validation trial with C-clones was performed on July 
28, 2023. The negative selection in this trial was performed 
on June 22 and 23, 2023. In total, 120 new potato genotypes 
were assigned an MC and used for statistical analysis to vali-
date the usefulness of the VIs for remote MC estimation.

UAV Image Acquisition

The ariel-based data was collected by UAV (Phantom 4 
Multispectral, DJI, Shenzhen Dajiang Baiwang Technol-
ogy Co., Ltd., China), equipped with a highly accurate 
Global Navigation Satellite System with RTK (Real Time 
Kinematic) correction. Flights were conducted on July 25 
and 26, 2021, perpendicularly to sunlight direction close 
to solar noon, on cloud-free days, to avoid changing light 
conditions. The UAV speed was about 1 m/s, flown 20 m 

above ground level to achieve high spatial resolution, result-
ing in a 1.1 cm pixel−1 image spatial resolution. UAV images 
were taken by DJI’s multispectral FC6360 camera with 80% 
front and side overlap. The Phantom 4 Multispectral imag-
ing system contains six cameras with 1/2.9" CMOS sen-
sors, including an RGB camera and a multispectral camera 
array of the following bands: blue (B) – 450 nm ± 16 nm, 
green (G) 560 nm ± 16 nm, red (R) – 650 nm ± 16 nm, 
red edge (RE) – 730 nm ± 16 nm, and near-infrared (NIR) 
– 840 nm ± 26 nm. The spectral sunlight sensor on top of 
the aircraft detects solar irradiance in real time for image 
compensation, maximizing the accuracy of collected multi-
spectral data. Images of the validation trial with the C-clones 
were taken on July 26, 2023, using the same UAV platform 
and flight settings as for the potato A and B-clones trials. 
The radiometric calibration to the images was not applied 
in 2021 but was applied in 2023.

UAV Image Processing

The multispectral images were uploaded to the Pix4Dmap-
per computer software (Pix4D S.A. Prilly, Switzerland) for 
processing and generating orthorectified reflectance maps. 
Five reflectance maps were generated, one for each spectral 
band (B, G, R, RE and NIR). Using QGIS.org (2022), plot 
shape files were created and manually placed over each of the 
single potato plots (Fig. 1c and 1d). The image reflectance 
maps and shape files were exported to ENVI (Harris Geo-
spatial Solutions Inc. Broomfield, CO, United States) for data 
analysis. The five reflectance datasets were combined to create 
a composite-band stack. The plot shape files were converted 
into a rectangular region of interest (ROI) of 0.60 (width) by 
2.04 m, 1.2 (width) by 3.40 m, and 1.2 (width) by 17 m for 
the plots of the A-clones, B-clones, and the C-clones, respec-
tively. The width of the frame was narrower than the bed 
width of 0.75 m and the double width of 1.50 m for the potato 
A-clones and B-clones, respectively. This was done to avoid 
deviation of the VIs for the plot regions where the plants from 
the neighboring plots might have overlapped. A total of six 

Table 1   Summary of vegetation indices

Abbreviations: NIR: near-infrared; RE: red-edge; R: red; G: green
ρ:reflectance; c: reflectance of the crop canopy; s: reflectance of the bare soil

Vegetation Index Abbreviations Formula Reference

Green Optimized Soil Adjusted Vegetation Index GOSAVI (ρNIR-ρG)/(ρNIR + ρG + 0.16) Sripada et al. 2005
Modified Chlorophyll Absorption Index-Improved MCARI2 1.5*[2.5(ρNIR-ρR)-1.3(ρNIR-ρG)]/

[(2*ρNIR + 1)2-(6*ρNIR-5*ρR1/2)-0.5]1/2
Haboudane et al. 2004

Normalized Difference Red Edge NDRE (ρNIR-ρRE)/(ρNIR + ρRE) Barnes et al. 2000
Normalized Difference Vegetation Index NDVI (ρNIR-ρR)/(ρNIR + ρR) Rouse et al. 1974
Optimized Soil Adjusted Vegetation Index OSAVI (ρNIR-ρR)/(ρNIR + ρR + 0.16) Rondeaux et al. 1996
Weighted Difference Vegetation Index WDVI ρNIRc-(ρNIRs/ρGs)*ρGc Evert et al. 2012
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VIs were calculated for all datasets (Table 1). We chose these 
specific VIs to use the bands registered by the DJI’s multispec-
tral FC6360 camera for their calculation and to rely on VIs 
sensitive to various vegetation parameters. To compensate for 
soil background influences, the GOSAVI – Green Optimized 
Soil Adjusted Vegetation Index and OSAVI – Optimized Soil 
Adjusted Vegetation Index were used (Rondeaux et al. 1996; 
Sripada et al. 2005). The MCARI2 (Modified Chlorophyll 
Absorption Index-Improved) was used because it was proved 
by Haboudane et al. (2004) to be an excellent predictor of 
green leaf area index, which represents living leaves regardless 
of their photosynthetic capacity. The WDVI (Weighted Differ-
ence Vegetation Index) was calculated because it correlated 
well with potato nitrogen uptake (van Evert et al. 2012). Addi-
tionally, NDVI (Normalized Difference Vegetation Index) and 
NDRE (Normalized Difference Red-Edge), commonly used 
for monitoring of crop canopy but not requiring sophisticated 
calculations, were also applied (Rouse et al. 1974; Barnes 
et al. 2000). The MCARI2, NDVI, GOSAVI and OSAVI were 
automatically generated using the ENVI software’s built-in 
functions. There are no such functions to generate NDRE and 
WDVI. Therefore, the NDRE was manually generated by add-
ing the equation and assigning the respective bands to each 
variable using the Band Math function in ENVI. For WDVI, 
the calculation was more complex due to the specific require-
ments in utilizing a combination of bands (green and NIR) and 
segregated canopy and soil reflectance values. To obtain the 
segregated values, the average soil reflectance for the green 
and NIR bands was calculated by creating a supervised clas-
sification of the original image consisting of the crop, shadow, 
and soil (Fig. 3). The classified image was converted into a 
binary image where the pixels corresponding to the crop and 
shadow have no value, while the pixels corresponding to the 
soil were assigned a value of one (Fig. 3c). The binary image 
was then applied to the original reflectance maps, resulting in 
an image dataset consisting of only the soil pixels with their 
respective pixel values (Fig. 3e). Then the pixel values cor-
responding to the soil and shadow were converted to have no 
value. The binary mask was applied to the original reflectance 
maps to generate the dataset with only the canopy pixels and 

respective pixel values (Fig. 3b and 3d). The average soil and 
canopy reflectance was extracted for the green and NIR bands 
and used to compute the WDVI (Fig. 3f). After all the VIs 
were computed, a new band stack was created that included 
all VIs. The ROI was placed over the VI band stack, and pixel 
statistics were generated for all plots. The pixel statistics text 
file was then exported to a spreadsheet for data filtering and 
further statistical analysis.

On‑the‑Ground Image Collection

Potato plant overhead images were captured by a camera built-
in in a Mi 10 T-Lite Xiaomi (Xiaomi Communications Co., 
Ltd., Beijing, China) cell phone facing downwards at a distance 
of ~ 1.2 m above the ground, with a pixel size of 3472 × 4624. 
Images were only taken for plots with specific plant appear-
ance, e.g., potato vines bending on the neighboring rows or 
between them in furrows, damaged plots, clones of distin-
guished color, and visible weed infestation. This approach of 
taking ground images helps to have a close look at the details 
of plant appearance that cannot be noted using UAV images 
and breeder descriptions. Moreover, the on-the-ground photos 
help to demonstrate confounding environmental factors.

Statistical Analysis

Statistical metrics to assess the accuracy of the predicted MC 
based on remotely evaluated VI were calculated using Micro-
soft® Excel (Microsoft Corporation, Redmond, Washington, 
United States). Pearson’s correlation coefficient (r), mean 
absolute error (MAE), and percent coefficient of variation 
(CV) were used to measure the linear correlation, error, and 
dispersion between the MC and VI, respectively. Correlations 
at α = 0.05 were considered significant. The top VIs were 
determined based on the highest correlation with the MC 
and lowest MAE and CV values. Additionally, linear regres-
sion was computed to assess the strength of the relationship 
between the top VIs and MC based on the coefficient of 
determination (R2). The top VI was used to estimate the MC 
on the validation data set using the linear regression equation.

Fig. 3   The workflow of creating 
the WDVI, starting with the 
original image (a); converting 
the soil and canopy to separate 
binary masks (b and c); apply-
ing the masks to the green 
and NIR bands to generate the 
canopy only (d) and the soil 
only (e); then generating the 
WDVI (f)
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Results and Discussion

Distribution of Maturity Class Among the Potato 
A‑clones and B‑clones

The number of plots without MC assigned was 777 (16.7%) 
and 261 (19.8%) for the potato A-clones and B-clones trials, 
respectively. These plots were excluded during the negative 
selection.

The highest number, among the total 3883 – A-clones 
of plots, was found for the MC of 3 (41.6%) and MC of 5 
(33.0%) (Fig. 4a). Ninety-five plots (2.45%) were assigned 
an MC of 0.5. These very early maturing forms (with a 
very short growing season) are desirable in breeding because 
potato production for early harvest is the most profitable in 
Poland, and therefore, breeding objectives at Zamarte Potato 
Breeding Ltd. are focused on such table cultivars (Kamiński 
2017). Among the total 1059 B-clones visually estimated, 
the highest number of plots was assigned to the MC of 3 
(24.4%) and MCs of 4 and 5, each 19.6% (Fig. 4b).

The distribution of the MC among the potato A-clones 
and B-clones should not be compared because these geno-
types come from different crossing combinations (breeding 
programs established in different years), resulting in vari-
ous frequencies of MCs. However, such comparisons are 
acceptable from a technical point of view, i.e., to verify if 
there are significant differences (related to the degrees of 
freedom) in the relationship between VIs derived from UAV 
imagery and visually estimated MC between potato A-clones 
and B-clones grown in plots of 6 and 20 plants, respectively.

At the earlier stage of the potato breeding program, the 
range of genotypes grown is much more comprehensive (MC 
from 0.5 to 7) because only the best-performing genotypes 
among the potato A-clones are selected at the later stage 
of the program (B-clones). For example, of the 4660 geno-
types grown in the potato A-clones in 2021, only 1392 were 
selected as the B-clones to be grown in 2022. Consequently, 
in 2023 experiment with potato C-clones included 240 geno-
types out of the 1392 potato genotypes that were grown in 

2021 as potato B-clones. Tracking by a breeder of the MC 
distribution among the potato genotypes in the subsequent 
generations of the breeding program, supported or replaced 
by the use of UAV imagery, would enhance potato breeding. 
The main goal of the breeding process of the Zamarte Potato 
Breeding Ltd. company is to produce very early and early 
potato varieties, but late-maturing starch varieties (to extend 
the period of this carbohydrate accumulation in their tubers) 
in very limited numbers are also bred. Therefore, the much 
more normal distribution of the MC in the potato B-clones 
population compared to the potato A-clones is accidental.

Changes in Vegetation Index Values Across 
the Maturity Classes of Potato A‑clones and B‑clones

To calculate the vegetation index values across the maturity 
classes, the VI values from each MC were averaged. In the 
case of the B-clones, the values of all VIs increased with 
MC (Fig. 5b). In contrast, values of all VIs for the A-clones 
increased up to the MC of 4 and then showed a tendency to 
increase for the MC of 5 to 7 (Fig. 5a), the MC of 6 was char-
acterized by the highest values of all VIs. The non-smooth-
ness (two peaks in Fig. 5a) of the A-clone curve likely reflects 
the low number of plots in MC groups 4 and 6 in the A-type 
clones (Fig. 4a). But on the other hand, it is also plausible 
that the breeder assigned an overly elevated MC of 4 and 
6 to specific plots as the natural assumption is that higher 
MC (later maturing) is positively correlated with denser 
and greener potato canopies. This result may show that it 
is more challenging to correctly assign MC to a plot with a 
denser canopy of one row of the A-clones plants than a plot 
with a denser canopy of the two-row plants of the B-clones 
plots. Namely, a plot with 20 plants of the B-Clone is more 
representative of the MC than a plot with six plants of the 
A-Clone. The VIs used for MC evaluation do not provide 
direct information on canopy density, but the NIR band often 
tends to increase linearly with increasing biomass. This is 
because the NIR canopy reflectance is a function of scatter-
ing within the mesophyll layer of plant leaves and higher leaf 

Fig. 4   Distribution (%) of maturity class among potato a) A-clones (numbers from 0.5 to 7) and b) B-clones (numbers from 1 to 7)
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transmittance (Holland et al. 2012), thus strongly dependent 
on the structural properties of the canopy.

According to Colwell et al. (2021), the breeders’ bias and 
inaccuracy apply not only to commercial potato traits (e.g., 
yield, tuber shape, and size) but also to traits strongly associ-
ated with plant performance (e.g., canopy development and 
architecture, and growth rates).

Variability of Vegetation Indices Values Between 
the Maturity Classes of Potato A‑clones and B‑clones

Among all the VIs tested in both potato trials, NDRE 
and GOSAVI showed the lowest variation within MCs of 
A-clones and NDRE and WDVI within MCs of B-clones 
(Fig. 6a and 6b). However, there were minimal differences 
between WDVI and GOSAVI regarding A-clones. In com-
parison, MCARI2 had the highest variation in all MCs 
(Fig. 6a and 6b). According to Haboudane et al. (2004), 
MCARI2 is less sensitive to chlorophyll concentration vari-
ations (foliage cover with various pigment contents), which 
is the primary factor that influences LAI retrieval from 
reflectance data. This observation means that NDRE, GOS-
AVI, and WDVI are more useful for the remote evaluation 

of the potato maturity class because a smaller number of 
differently-looking plots is assigned to the same MC.

The number of potato plots in each MC differed (Fig. 4a 
and 4b), so the MC with the highest number of plots could 
have had the highest variability of the VIs. However, as 
expected, the CV of VI values did not increase with the num-
ber of potato plots in each MC. In the case of the B-clones 
(Fig. 6b), the CV of all VI values showed an apparent ten-
dency to decrease with the increasing number of the MC. A 
similar but less clear tendency was observed for the A-clones. 
The much lower CV values of the VI for the MC with a higher 
number suggest that potato plots within one of these MCs 
looked similar in biomass and color. This is because spectral 
indices that use combinations of red (Red) and near-infrared 
(NIR) reflectance are potential candidates for estimating the 
quantity and quality of green vegetation (Holland et al. 2012).

Relationship Between the Maturity Class 
and Vegetation index Values for Potato 
A and B‑clones

Potato varieties are characterized by specific physiological 
differences, such as leaf shape and color, or biochemical 

Fig. 5   Changes of vegetation index values across the maturity classes of the potato: a) A-clones and b) B-clones

Fig. 6   Coefficient of variation (%) of the vegetation index values within the maturity classes of potato: a) A-clones and b) B-clones
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differences that affect potato spectral responses, as Gold 
et al. (2019) observed. All tested VIs showed a significant 
relationship with the MC assigned by the breeder to A- 
and B-clones (Fig. 7a and 7b). Among all the compared 
VIs for the A- and B-clones, NDRE, and WDVI had the 
strongest relationship with the MC assigned. The correla-
tion coefficient values (r) were 0.55 and 0.51 for NDRE and 
WDVI for the A-clones and 0.79 and 0.77 for the B-clones, 
respectively. Therefore, a scatter plot of the VIs values ver-
sus maturity class showing the highest correlation values 

(NDRE and WDVI) expressed by R2 among the VIs is pre-
sented in Fig. 8.

The higher values of the correlation coefficient for the 
B-clones indicate that the MC can be remotely evaluated 
with higher precision for the plots with the two-row plants 
of the B-clones. However, the NDRE values were generated 
using the ENVI software using only the Band Math function 
in ENVI, but WDVI was calculated using the Band Math 
function plus additional image processing to isolate the soil 
and green canopy in ENVI. Therefore, the NDRE could be 

Fig. 7   The correlation coef-
ficient (r) values (solid line) for 
the relationship between the 
maturity class and vegetation 
indices values; and coefficient 
of variation (%) of vegetation 
indices values (grey, dotted line) 
within the vegetation indices 
for (a) potato A-clones and (b) 
potato B-clones
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Fig. 8   A scatter plot of the 
vegetation indices values versus 
maturity class for (a) potato 
A-clones and NDRE; (b) potato 
A-clones and WDVI; (c) potato 
B-clones and NDRE; (d) potato 
B-clones and WDVI, including 
R2 values
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preferred for the remote evaluation of the MC in both potato 
breeding trials due to the less time-consuming procedure.

Relationship Between the Maturity Class 
and Vegetation Index Values for Potato Standard 
Varieties

Potato standard varieties grown in the potato A and 
B-clones trials as the reference varieties (Fig.  1b) of 
known MC were characterized by a weaker relationship 
between all tested VIs and MC assigned (Fig. 9a and 
9b) than genotypes grown in the potato A and B-clones 
(Fig. 7a and 7b). The main reason for this weaker rela-
tionship could be related to the low number of MCs (only 

three: 1, 3, and 5), assigned to the standard varieties versus 
MCs from 0.5 to 7 in the potato A clones trial (Fig. 4a), 
and MCs from 1 to 7 in the potato B-clones trial (Fig. 4b), 
but the variation of the VIs values for each VI character-
izing these varieties was high (Fig. 9a and 9b) and com-
parable to the variation of the VIs values in the potato A 
and B-clones trials (Fig. 7a and 7b). The level at which 
the relationship between all tested VIs and MC assigned 
was statistically significant cannot be directly compared 
for the potato standard varieties and genotypes grown as 
the potato A and B-clones. This was because the number 
of plots was much higher in the case of the potato geno-
types grown as the A and B-clones than in the case of the 
standard varieties (see critical values of r in Fig. 7 and 9).

Fig. 9   The correlation coef-
ficient (r) values (solid line) for 
the relationship between the 
maturity class and vegetation 
indices values and coefficient 
of variation (%) of vegetation 
indices values (grey, dotted line) 
within the vegetation indices for 
potato standard varieties grown 
in the potato (a) A-clones trials 
and (b) potato B-clones trials
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Fig. 10   Variation of NDRE and WDVI values for each potato standard variety grown in the potato (a) A-clones trials and (b) potato B-clones 
trials, respectively. The number in a bracket refers to a maturity class originally assigned to that standard potato variety
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Among all the compared VIs for the potato standard varie-
ties, NDRE (r = 0.16) and WDVI (r = 0.50) showed the strong-
est, significant relationship with the MC assigned, respectively, 
in the A and B-clones trials. The correlation coefficient values 
for the relationship between the MC and VIs are substantially 
lower for the potato standard varieties than for the genotypes 
grown in the potato A and B-clones trials (Fig. 7 and 9). This 
results from a wide range of VIs (e.g., NDRE and WDVI) 
values observed for a single standard variety assigned to one 
MC (Fig. 10a and 10b). Moreover, the range of NDRE values 
for standard varieties cropped in the A-Clone trial, representing 
different MCs overlapped, e.g., variety Impresja (MC of 1) and 
Oberon (MC of 5). The same was found for WDVI values for 
standard varieties grown in the A-Clone trial: Werbena (MC 
of 1) versus Widawa (MC of 5).

This is a natural consequence of standard varieties being 
assigned fixed MC values, developed at the stage of their 
testing before registration in the Common catalogue of vari-
eties of agricultural plant (CCA 2023), and not adjusted to 
year- and site-specific conditions. However, the potato can-
opy of the same variety grown in many replications within 
the A and B-clones trials, evaluated remotely with the use 
of the VIs, differs probably due to soil spatial variability. 

The standard potato varieties grown in the two-row plots (20 
plants per plot) among the B-clones showed a higher cor-
relation between the MC and VIs values than those grown 
in the single-row plots (6 plants per plot). This confirms the 
observation made for the genotypes tested in the trials with 
the potato A-clones and B-clones that a plot with 20 plants 
is more representative of the MC than a plot with six plants. 
Because the range of MC and VIs values is much narrower 
for the potato standard varieties than for the A and B-clones, 
the use of the database of the potato standard varieties to 
improve the accuracy of potato MC estimation remotely 
seems limited. However, the standard varieties of known 
MC might still be used as a reference while evaluating the 
MC of the A- and B-clones potato genotypes.

The MAE of the Maturity Class of Potato A‑ 
and B‑clones, Predicted Based on Vegetation Index 
Values

Results showed that NDRE and WDVI were character-
ized by the lowest MAE values of 1.03 and 1.05 for the 
potato A-clones and 0.73 and 0.78 for the potato B-clones, 
respectively (Table 2). These MAE values indicate that, on 

Table 2   The MAE of the maturity class of potato A-clones and B-clones is predicted based on vegetation index values

Measures of MC prediction error Potato A-clones

OSAVI NDRE GOSAVI MCARI2 NDVI WDVI

MAE 1.11 1.03 1.08 1.10 1.11 1.05
Percentage of plots with an absolute residual value of 1 or less 50.8 54.6 51.8 50.9 50.9 53.2
The maximum value of an absolute residual 4.88 4.54 4.82 4.77 4.90 4.32
Measures of MC prediction error Potato B-clones

0.90 0.73 0.85 0.91 0.87 0.78
Percentage of plots with an absolute residual value of 1 or less 62.1 72.3 64.7 61.4 63.6 69.7
The maximum value of an absolute residual 5.41 4.76 5.29 4.83 5.70 3.57

Table 3   The percentage of plots with a different absolute residual value of the maturity class, calculated based on NDRE, within a total number 
of plots with a particular maturity class for potato A-clones

0.5 1 2 3 4 5 6 7

≥0.50 0 0.28 37.5 59.2 58.8 22.2 7.58 0.0

0.51-1.0 0 4.31 37.5 30.6 28.2 19.1 43.9 0.0

1.01-1.50 7.37 31.0 25.0 7.67 10.6 19.3 21.2 8.33

1.51-2.0 45.3 37.6 0 2.17 2.35 21.9 16.7 33.3

2.01-2.5 32.6 17.2 0 0.37 0 13.5 3.03 16.7

2.51-3.0 9.47 7.22 0 0 0 3.36 4.55 25.0

3.01-3.5 5.26 2.36 0 0 0 0.55 3.03 0.0

<3.5 0 0 0 0 0 0.08 0 16.7

Maturity class
Range of the absolute 

residual value
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average, MC could have been evaluated in the case of the 
A-clones with an error close to one MC and an error of about 
0.75 MC for the B-clones. These values of MAE for the MC 
remote evaluation may seem too high from the breeder’s per-
spective. Therefore, we calculated the percentage of plots for 
which the MC was assigned with a value of the mean abso-
lute error of less than 1. Because the MAE values were the 
lowest for NDRE, the highest number with an MAE value 
of less than one was achieved for the same VI. 54.6% of the 
A-clones and 72.3% of B-clones were assigned the MC with 
the MAE value of less than 1.

For single potato plots of the A- and B-clones, the MC 
was assigned with a very high MAE of 4.54 and 4.76, 
respectively. This was probably a potato genotype with a 
stem-type canopy architecture and, therefore, characterized 
by low VI values derived from UAV images but assigned 
by the breeder due to its still relatively high greenness as 
a high MC genotype. The second reason for the very high 
MAE could have been the breeder’s accidental assignment 
of a high MC value to a potato plot with very low biomass. 
Among the standard potato varieties are genotypes of differ-
ent canopy types. For example, among the very early varie-
ties, Bielik is characterized by a stem-type canopy, while 

Werbena is a leafy-type canopy variety. Consequently, no 
clearly visible relations exist between the MC and canopy 
type among the A- and B-clones.

Percentage of Plots with A Different Absolute 
Residual Value of the Maturity Class

The percentage of plots with a different absolute residual 
value of the maturity class (Tables 3 and 4) was calculated 
based on NDRE because this VI was characterized by the 
lowest MAE (Table 2).

Maturity classes 2, 3, and 4 were calculated using NDRE 
with the lowest MAE. This is because 37.5%, 59.2%, and 
58.8 of the plots, respectively, with the MCs 2, 3, and 4, 
were assigned to the MC with the absolute residual value 
of ≥ 0.50 (Table 2). The percentage of plots for the same 
MCs assigned with the absolute residual value between 0.51 
and 1.0 was 37.5, 30.6, and 28.2, respectively. Regarding 
the other MCs, the maturity class was more often assigned 
with an absolute residual value of above 1.50. This means 
that in the case of potato A-clones, it was easier to assign a 
proper MC using NDRE when the plants were classified to 
the medium MC of 3, 4, and 5 and then to MCs representing 

Table 4   The percentage of plots with a different absolute residual value of the maturity class, calculated based on NDRE, within a total number 
of plots with a particular maturity class for potato B-clones

1 2 3 4 5 6 7
≥0.50 16.5 51.7 53.5 39.9 44.2 41.5 0

0.51-1.0 40.1 26.2 31.0 32.7 26.9 31.7 15.4

1.01-1.50 28.6 20.1 13.2 18.8 14.4 14.6 46.2

1.51-2.0 12.6 0.67 1.94 6.25 5.77 7.32 23.1

2.01-2.5 2.20 1.34 0.39 2.40 6.73 4.88 15.4

2.51-3.0 0 0 0 0 1.44 0 0

<3.0 0 0 0 0 0.48 0 0

Maturity class
Range of the absolute 

residual value

Table 5   Percentage of plots with a different absolute residual value of the maturity class, calculated based on NDRE using the equation from 
Fig. 8a for potato A-clones, within a total number of plots with a particular maturity class for potato C-clones

1 2 3 4 5
≥0.5 0.00 4.3 71.4 50.0 22.2

0.51-1.0 0.0 43.5 21.4 50.0 33.3

1.01-1.50 18.2 26.1 7.14 0.0 44.4

1.51-2.0 59.1 26.1 0.0 0.0 0.0

2.01-2.5 22.7 0.0 0.0 0.0 0.0

Range of the absolute 
residual value

Maturity class
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plants close to drying (MC of 0.5–1 and 2) and of high green 
biomass (MC of 6 and 7).

The situation was different for the potato B-clones 
(Table 4), as a similar and high percentage of plots of MCs 
from 2 through 6 were assigned MC using NDRE with a 
low absolute residual value, i.e., below 0.5 and in the range 
of 0.51–1.0. The plots evaluated by the breeder as MCs 1 
and 7 were assigned to the MC using NDRE with the lowest 
accuracy.

Comparing the results for both potato trials, the MC can 
be more accurately assigned using NDRE to the 2-row plots 
of the potato B-clones than to the 1-row plots of the potato 
A-clones.

Validation of the NDRE Usefulness for Remote 
Maturity Class Estimation

Equations from Fig. 8a (potato A-clones) and 8c (potato 
B-clones) were used to estimate the MC of the potato 
C-clones based on the NDRE values derived from the UAV 
imagery taken on the same day (July 26, 2023) when the 
breeder determined the MC class. The MAE values of MC 
estimation for the 120 validation plots were 1.09 and 0.81 
when the equations from Fig. 8a and 8c for potato A and 
B-clones were used, respectively (data not presented). Matu-
rity classes 3 and 4 using NDRE derived from the potato 
C-clones and the equation from Fig. 8a developed for potato 
A-clones were calculated with the lowest MAE. This is 
because 71.4% and 50% of the plots, with MCs of 3 and 
4, respectively, were assigned to the MC with the absolute 
residual value of ≥ 0.50 (Table 5).

In the case of MC evaluation using NDRE and the equa-
tion from Fig. 8c developed for potato B-clones, the lowest 
MAE was obtained for MCs of 2, 3, and 4 when 52.2%, 
50%, and 50% of the plots, respectively, were assigned to 
the MC with the absolute residual value of ≥ 0.50 (Table 6). 
The highest error was made in the case of MCs of 1 and 
5 evaluated using both questions from Fig. 8a and 8c. It 
is worth adding that in the case of MC 1 and 5, forty-four 

and nine plots belonged to these MCs, respectively. There-
fore, we assume that the low accuracy of the above MCs 
was unrelated to the number of samples in the MCs but was 
associated with potato canopy greenness. This means that 
the greatest divergence between the MC evaluated by the 
breeder and using UAV imagery was observed for plots with 
low and high chlorophyll content (extreme levels of senes-
cence) in the potato plants that were indirectly evaluated by 
low and high NDRE values, respectively.

UAV imagery of larger plots of the potato B-clones was 
characterized by lower MAE of MC estimation using NDRE 
than potato A-clones (Sect. 3.6). Therefore, the NDRE vs. 
MC algorithm derived for the former plots gave better 
results (lower MAE of 0.81) when the NDRE obtained for 
the potato C-clones was used for validation. The number of 
plots with MAE higher than 1 was 40 (33.3%). In twenty-
four of the 40 plots, the MC of 1 assigned by the breeder 
was overestimated (a negative value of residuals) using the 
validation algorithm. In seven of the 40 plots, the MC of 3 
and 5 assigned by the breeder was underestimated (a posi-
tive value of residuals) using the validation algorithm. This 
means that the potato plots of the new potato varieties with 
low plant coverage were often remotely assigned higher MC 
than by the breeder. In contrast, the underestimation of the 
MC using remote methods was often related to the potato 
plots of the new varieties with high plant coverage.

Limitations of Maturity Class Evaluation Using 
Vegetation Indices

Images taken with a cell phone camera were used to closely 
examine neighboring potato plots characterized by a signifi-
cantly different MC prediction error based on the NDRE. 
Among the three potato plots of the A-clones captured in 
Fig. 11b, the middle plot with the most uniform canopy was 
assigned MC with the lowest error of 0.894 compared to 
the MC of 6 assigned by the breeder. The crop canopy of 
the plot in Fig. 11a was partially damaged by a tractor dur-
ing a fungicide spray. That is why the MC of this plot was 
probably underestimated at 2.871 using NDRE versus MC 

Table 6   Percentage of plots with a different absolute residual value of the maturity class, calculated based on NDRE using the equation from 
Fig. 8c for potato B-clones, within a total number of plots with a particular maturity class for potato C-clones

1 2 3 4 5
≥0.5 6.82 52.2 50.0 50.0 33.3

0.51-1.0 38.6 17.4 40.5 0.00 22.2

1.01-1.50 34.1 26.1 9.52 50.0 33.3

1.51-2.0 13.6 4.3 0.0 0.0 11.1

2.01-2.5 6.8 0.0 0.0 0.0 0.0

Range of the 
absolute residual 

Maturity class
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6 given by the breeder, who probably rated the plot based 
on the biomass present. This was because the calculation of 
the VI value derived from the UAV image is based on the 
amount of light reflected from the crop and the surround-
ing soil within the ROI seen within the red-dotted frame. 
However, the breeder might have evaluated the MC of the 

plot by paying more attention to the living green parts of 
the potato crop, not considering the whole crop seen within 
the frame. In the case of the potato plot shown in Fig. 11c, 
the MC was overestimated by 1.458 using NDRE versus the 
MC 3 assigned by the breeder. The UAV image cannot dis-
criminate between vine overlap between plots. In contrast, 

Fig. 11   Variation in potato crop 
appearance of the same three 
neighboring plots of A-clones, 
visible on UAV image (top) and 
overhead, cell phone images 
(bottom), characterized by a 
different MC prediction error 
based on NDRE: a) high – 
2.871; b) low – 0.894, and c) 
medium – 1.458. The red arrow 
indicates which UAV image 
refers to which phone image of 
the same plot



American Journal of Potato Research	

the breeder can do this by making notes on the vine habits 
of the potato clones to improve the accuracy of potato MC 
estimation remotely.

In general, independently from the VI used, the MC was 
predicted to have a lower MAE value for the potato B-clones 
than for the A-clones (Table 2). This was likely the conse-
quence of the more uniform canopy of the two-row versus 
the one-row plots. In Fig. 12, there are examples of two 
neighboring B-Clone plots assigned MC 1 by the breeder but 
remotely evaluated with the use of NDRE as 2.576 (1 plus 
1.576) – Fig. 12a and 1.704 (1 plus 0.704) – Fig. 12b. These 

evaluations go together with the crop canopy appearance on 
the cell phone image, as the plants in Fig. 12b look drier than 
in Fig. 12a, which has also been captured in a UAV image. 
In Fig. 12c, the potato MC was determined remotely with a 
lower error of 0.735 because the canopy looks uniform on 
both the UAV and the cell phone image.

The neighboring plots of the new potato genotypes, 
shown in Fig. 13, look very different regarding uniformity 
of plant distribution and shade of greenness. For example, 
plots number 1284 and 1294 were assigned the same MC of 
2 by the breeder, but the NDRE-based algorithm assigned 

Fig. 12   Variation in potato crop 
appearance of the same three 
neighboring plots of B-clones, 
visible on a UAV image (top) 
and overhead, cell phone 
images (bottom), characterized 
by a different MC prediction 
error based on NDRE: a) high 
– 1.576; b) medium – 0.704 
and c) medium – 0.735. The 
red arrow indicates which UAV 
image refers to which phone 
image of the same plot
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an MC of 2.37 (2 plus 0.37) for plot 1284 and an MC of 
3.27 (2 plus 1.27) for plot 1294. This happens so because 
the coverage of the soil by the potato plants within plot 
1284 was much lower than within plot 1294. The lower 
number of plants within the former plot was caused by 
removing some diseased plants during the negative selec-
tion. The breeder assigned the MC based on the appearance 
of the healthy potato plants, not considering the reduced 
number of plants. However, the NDRE-based algorithm 
took into account both the lowered coverage of the soil by 
the potato canopy due to the removal of diseased plants and 
the color of that potato genotype. While vegetation indices 
like NDRE provide valuable information on the overall 
status of the plots, it is limited to only the spectral char-
acteristics of the plots. Machine learning can potentially 
enhance the analysis by integrating a broader range of data 
to identify subtle variations of features that are indicative 
of the maturity of the potato genotypes (Psiroukis et al. 
2022; Zhang et al. 2019).

Currently, there are no tools to speed up the nega-
tive selection (discrimination between virus-infected and 
healthy plants) done by the breeder and the technical staff’s 
elimination of the infected potato plants. However, using 
UAV imagery can automate the evaluation of vine maturity 
in potato breeding trials, which is done about two weeks 
after the work mentioned above. Moreover, acquiring UAV 
imagery before the negative selection could be an additional 

source of information for the breeder to evaluate the perfor-
mance of the potato genotypes in terms of other potato traits, 
e.g., resistance to diseases.

Insufficient rainfall during most of the growing season 
could have accelerated the yellowing of the potato canopy 
and caused faster maturity of some genotypes. For example, 
one of the standard, early varieties, Gala, matures earlier in 
unfavorable conditions (personal communication with the 
breeder). However, this should not limit the applicability 
of the UAV for MC evaluation; it should ensure that one 
considers the growing conditions of the potato genotypes 
and makes some adjustments in the developed procedure of 
the automated MC evaluation.

Conclusions

This study provided evidence that VIs derived from UAV 
imagery can be used to remotely assign MCs to potato 
plants grown in breeding trials. Higher accuracies (lower 
MAE) with the remote evaluation of the MCs were 
achieved for the potato B-clones than for the A-clones as 
well as for the standard potato varieties grown among the 
A and B-clones. This is probably because it is more chal-
lenging to correctly assign MC to the single-row plots of 
A-clones and standard varieties than the two-row plots of 
B-clones and standard varieties. Moreover, the genotypes 

Fig. 13   Variation in potato crop appearance of five neighboring 
plots of the potato C-clones, visible on a UAV image. The numbers 
on the left stand for a plot number, the upper number in the middle 

represents MC, and the lower number indicates the absolute residual 
value of MC evaluated using the NDRE and the equation from Fig. 8a 
developed for potato A-clones



American Journal of Potato Research	

grown in the potato B-clones trials represent a higher stage 
of a multi-year breeding program because they are selected 
from the potato A-clones grown in the previous year. Con-
sequently, the potato B-clones trials cover a lower range 
of MCs than the potato A-clones and should also be char-
acterized by a narrower range of VI values. It was often 
challenging to interpret low NDVI (the most commonly 
used VI) because if the potato canopy is less green, it may 
be more mature, but at the same time if there is less bio-
mass, it may mean it is a younger plant. With high NDVI 
values, there is higher saturation and generally less vari-
ability because of the similarities between large amounts 
of biomass.

Among the tested VIs, the NDRE allowed for potato 
MC evaluation with the lowest MAE. Using NDRE for 
MC estimation on a validation dataset, resulted in an MC 
estimate with a 0.81 mean absolute error. Potato vines 
bending over the neighboring row of potato plants, causing 
vine overlap between plots, vines damaged by tractor tires 
during field operations (during spray), and the variability 
(non-uniformity caused by the removal of diseased plants 
during the negative selection) of the potato canopy within 
the region of interest were found to be the main factors 
limiting an accurate evaluation of the potato MC by both 
visual (a reference) and remote (UAV image-based) meth-
ods. The future line of work will explore machine learning 
to classify the potato genotypes from UAV-derived images 
and determine the relationship between manually derived 
visual potato canopy status estimation and machine learn-
ing-derived classification. The UAV-derived imagery 
could also be used to discriminate the potato genotype 
differences during early growth regarding other multiple 
plant traits.

The VIs are not a single measure of a structural and 
biochemically specific canopy variable (Haboudane et al. 
2004). Therefore, the RGB images derived from the potato 
breeding trials may also be used for machine learning-
derived classification.
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