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Introduction

Potato (Solanum tuberosum L.) has been viewed as an 
important food crop worldwide (Amin et al. 2023; Kumar et 
al. 2021). However, potato dry rot, which is caused by over 
13 species of Fusarium has posed a huge threat to potato 
production (Du et al. 2012; Gachango et al. 2012; Heltoft et 
al. 2016; Pan et al. 2023; Recep et al. 2009). Fusarium spp. 
is a species of significant phytopathogenic fungi that can 
easily infect potato tubers via wounds during harvesting, 
storage, and transportation (Bao et al. 2014; Liu et al. 2022). 
Besides, Fusarium sulphureum is a commonly occurring 
fungal pathogen in America, Europe, and China, posing a 
significant risk to potato crops in these regions (Li et al., 
2014; Li et al. 2023).

F. sulphureum can invade the tissue of potato tubers 
through lenticels, bud eyes, and wounds (Yang et al. 2022). 
During the invasion of the host, F. sulphureum secretes a 
suite of cell wall degrading enzymes (CWDEs) that aid in 
the degradation of the plant cell wall structure, facilitating 
colonization within the host cells and subsequent infection 
(Wilfried et al. 2009). Notably, in potato tubers infected 
with F. sulphureum, polygalacturonase (PG), polymethyl-
galacturonase (PMG), carboxymethyl cellulase (Cx), and 
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Potato (Solanum tuberosum L.) dry rot due to fungal infections causes the loss of a significant amount of potatoes. In 
this study, the antifungal effects of sunflower (Helianthus annuus L.) extracts against Fusarium sulphureum were inves-
tigated. The results of in vitro antifungal tests showed that all four sunflower extracts significantly inhibited the growth 
of F. sulphureum. Notably, the optimal inhibitory concentrations of ethyl acetate extract from sunflower disk (EESD), 
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galacturonase (PMG), carboxymethyl cellulase (Cx), and β-glucosidase (β-Glu) secreted by F. sulphureum in three potato 
varieties: Longshu No.7, Longshu No.10 and Xindaping. These results provide a theoretical foundation for the biological 
control of potato dry rot.
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β-glucosidase (β-Glu) exhibit significant activities, surpass-
ing the influence of polygalacturonic acid trans-eliminase, 
pectin methyl-trans-eliminase, pectin methylesterase, and 
pectate lyase in the infected tissues (Yang et al. 2012). In 
addition, F. sulphureum can also produce a variety of myco-
toxins, mainly trichothecenes, which can inhibit cell aerobic 
respiration and destroy cell membranes, further destroying 
host cells and absorbing nutrients, resulting in rotting and 
drying up of potato tubers (Fan et al. 2021; Xue et al. 2014).

So far, the control of potato dry rot has primarily relied 
on the application of chemically synthesized fungicides. 
(Sandipan et al. 2016). Unfortunately, due to various issues 
such as chemical fungicide residues, the emergence of 
fungicide resistance among pathogens, potentially harm-
ful effects on human and animal health, and environmental 
pollution, researchers have been exploring innovative and 
sustainable approaches to prevent plant diseases (Xue et al. 
2018, 2019).

Botanical fungicides are abundant, natural, biodegrad-
able, and renewable resources with antimicrobial activity 
against F. sulphureum (Li et al. 2023). Currently, researchers 
have examined the antifungal activity of onion peel extract 
and potato glycoalkaloids derived from potato peel against 
F. sulphureum, with the highest inhibitory capacity observed 
at concentrations of 5 g/mL and 200 mL/L, respectively, 
surpassing those observed at lower concentrations (Li et al. 
2023; Qiu et al. 2017). Li et al. (2014) also demonstrated 
the control properties of the essential oil of Zanthoxylum 
bungeanum on F. sulphureum, with a minimum inhibitory 
concentration of 6.25%. Although some progress has been 
made in the research on the biological control of potato dry 
rot, there is still a lack of an effective biological fungicide to 
prevent and control the disease (Liu et al. 2020).

Sunflower (Helianthus annuus L.) is one of the three pri-
mary oil crops in the world (Grazielle et al., 2020; Wu et 
al. 2022). However, the main by-products of the sunflower 
industry, such as sunflower stalks and disks, are discarded, 
resulting in resource waste (Daraee et al. 2018; Yang et 
al. 2020; Zhao et al. 2023). Sunflower contains sesquiter-
penes, diterpenes, triterpenes, lignans, flavonoids, phenyl-
propanoid, steroids, and other chemical components, with 
biological activities like antibacterial, anti-tumor, and anti-
oxidant (Alica et al. 2021; Li et al. 2020; Muhammad et 
al. 2018). Currently, sunflower extracts have been dem-
onstrated to possess inhibitory properties against various 
common pathogenic bacteria and fungi, including Staphy-
lococcus aureus, Escherichia coli, and Alternaria alternata 
(Ilori et al. 2022; Li et al. 2019).

In this study, two polar solvents, ethyl acetate and petro-
leum ether, were used to extract secondary metabolites from 
sunflower disks and sunflower stalks, respectively. So far, 
there has been no report on the effects of sunflower extract on 

F. sulphureum. Therefore, this research aimed to explore the 
antifungal potential of sunflower extracts against important 
fungi causing potato dry rot in in vitro conditions. In addi-
tion, to further validate the antifungal activity of sunflower 
extracts on F. sulphureum, we evaluated their impact on the 
activities of PG, PMG, Cx, and β-Glu in infected potato 
tuber slices. To comprehensively elucidate the significance 
of sunflower extract applications across diverse potato cul-
tivars, the present study randomly selected three potato 
varieties (Longshu No.7, Longshu No.10, and Xindaping) 
native to Gansu Province for experimental investigation.

Materials and Methods

Materials and Pathogen

Dried sunflower disks and sunflower stalks were pro-
vided by Jingye Sunflower Industrial Park Co., Ltd. (Lan-
zhou, Gansu, China). Longshu No.7, Longshu No.10, and 
Xindaping were obtained from the Potato Research Cen-
ter of Gansu Academy of Agricultural Sciences (Lanzhou, 
Gansu, China).

F. sulphureum was donated by Gansu Agricultural Uni-
versity (Lanzhou, Gansu, China). The pathogen was inoc-
ulated on potato dextrose agar medium (PDA) at 28 °C 
before use.

Preparation of Sunflower Extracts

The dried sunflower disks and stalks were crushed and 
sieved through a 65-mesh sieve. They were then respectively 
mixed with ethyl acetate and petroleum ether, at a ratio of 
material to liquid was 1:10. The mixtures were allowed to 
stand for 5 days, followed by centrifugation at 4,000 rpm 
for 15 min. The supernatants were concentrated in a rotary 
evaporator (RE5203, Shanghai Yarong Biochemical Instru-
ment Factory) and then freeze-dried to obtain the original 
solutions of sunflower extracts.

Effects of Sunflower Extracts on the Diameter of the 
F. Sulphureum Colony

The extract solutions from sunflower disks and stalks with 
concentrations of 10, 20, 40, 80, 160, 240, and 320 mg/
mL were prepared using ethyl acetate and petroleum ether 
respectively. Each of the four extracts—ethyl acetate extract 
from sunflower disk (EESD), ethyl acetate extract from sun-
flower stalk (EESS), petroleum ether extract from sunflower 
disk (PESD) and petroleum ether extract from sunflower 
stalk (PESS)—was coated evenly on PDA at separate con-
centrations of 0, 10, 20, 40, 80, 160, 240, and 320 mg/mL, 
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using 1 mL of the respective extract solution for each con-
centration (Zhao et al. 2016). Three 6-mm-diameter blocks 
of F. sulphureum were put into each PDA plate, and then the 
plates were incubated at 28 °C for 24 h. The diameters of 
pathogen colonies were measured by the method of crossing 
with a vernier caliper and the average values were calcu-
lated (Li et al. 2019). Each had three replicates.

Effects of Sunflower Extracts on CWDE Activities

Treatment of Potato Tubers

The potatoes of Longshu No.7, Longshu No.10, and 
Xindaping were peeled. The potato tubers were then steril-
ized using 0.1% sodium hypochlorite for 20 min and rinsed 
in sterile water. Slices of potato tuber (50 mm in diameter 
and 1 cm in thickness) were made with a sterile knife. The 
slices were placed on sterile wet filter paper and incubated 
in the dark for 1 h.

The randomly distributed potato slices were subsequently 
coated evenly with 0.1 ml of EESD, EESS, PESD, and 
PESS. The concentrations of EESD and EESS were fixed 
at 0, 140, 160, and 180 mg, respectively, while the concen-
trations of PESD and PESS were adjusted to 0, 220, 240, 
and 260 mg/mL, respectively. Then, F. sulphureum grown 
on PDA for 7 days with a diameter of 6 mm was placed on 
potato slices with the hyphae side in contact. The slices with 
PDA blocks of identical size to the F. sulphureum blocks 
were regarded as the blank control (CK). Each treatment 
had three replicates.

Preparation of CWDE Extracts

Three grams of potato tuber slices, which had been incu-
bated at 28 °C for 2 days, were mixed with 6 mL of 95% 
ethanol. The homogenates were ground in an ice bath and 
then placed at 4 °C for 10 min. They were centrifuged at 
10,000 rpm at 4 °C for 10 min, and the supernatants were 
poured out. The precipitates were mixed with 3 mL of pre-
cooled 80% ethanol and then kept at 4 °C for 10 min. The 
mixtures were centrifuged again. After the supernatants 
were poured out once more, 5 mL of extraction buffer (acetic 
acid-sodium acetate buffer solution with a concentration of 
50 mmol/L and pH of 5.5, containing 1.8 mol/L NaCl) was 
added to the precipitates. After centrifugation, the CWDE 
extracts were obtained and stored at 4 °C before use. Each 
treatment had three replicates.

Determination of the Activities of PG and PMG

The determination of the activities of PG and PMG was 
carried out according to Cao et al. (2007) with some 

modifications. In brief, 0.5 mL of CWDE extract was com-
bined with 1.0 mL of acetic acid-sodium acetate buffer with 
a concentration of 50 mmol/L and pH of 5.5 and 0.5 mL 
of 10 g/L substrate (substrate of PG: polygalacturonic acid; 
substrate of PMG: pectin). The mixture was incubated at 
37 °C for 1 h. Subsequently, 1.5 mL of 3,5-dinitrosalicylic 
acid was added, the mixture was boiled for 5 min, and then 
rapidly cooled to room temperature. The absorbance was 
measured at a wavelength of 540 nm. The standard curve 
was constructed based on the mass and absorbance of glu-
cose. The activities of PG and PMG were calculated based 
on the amount of reducing sugar released by enzymatic 
hydrolysis. The enzyme activities of PG and PMG were cal-
culated by the following formula:

enzyme activity (mg/h · g) =
1.08m′V

Vstm

where m’ is the mass of glucose from the standard curve 
(mg), V is the total volume of sample extraction solution 
(mL), VS is the volume of sample extraction solution used 
for the determination (mL), t is the enzymolysis time (h), m 
is the sample mass (g), and 1.08 is the coefficient of glucose 
converted to galacturonic acid (194/180).

Determination of the Activities of Cx and β-Glu

1.5 mL of 10 g/L substrate (substrate of Cx: sodium car-
boxymethyl cellulose; substrate of β-Glu: salicin) was cho-
sen and processed according to the method outlined for 
the determination of PG and PMG activities. The enzyme 
activities of Cx and β-Glu were calculated by the following 
formula:

enzyme activity (mg/h · g) =
m′V

Vstm

where m’ is the mass of glucose from the standard curve 
(mg), V is the total volume of sample extraction solution 
(mL), VS is the volume of sample extraction solution used 
for the determination (mL), t is the enzymolysis time (h), 
and m is the sample mass (g).

Statistical Analysis

The experiment was repeated at least three times. Data 
were subjected to the analysis of variance (ANOVA) using 
IBM SPSS software. All values were presented as the 
mean ± standard error of at least three independent experi-
ments, and differences showing p < 0.05 were considered 
significant. Figures were created using Origin 8.5 software.
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However, there was no significant change in the concentra-
tion range of 240 to 320 mg/mL.

Inhibition of Sunflower Extracts on the Activities of 
CWDEs

Inhibition of EESD on the Activities of CWDEs

As shown in Fig. 2, the application of EESD led to a notable 
reduction in the activities of PG, PMG, Cx, and β-Glu, pro-
duced by F. sulphureum infecting tubers of Longshu No.7, 
Longshu No.10, and Xindaping, when compared to the 

Results

Effects of Sunflower Extracts on the Diameter of the 
F. Sulphureum Colony

In the concentration range of 10 to 160 mg/mL, the diameter 
of the F. sulphureum colony decreased significantly with the 
increase of EESD and EESS concentrations (Fig. 1A, B). 
However, there was no significant difference in the diameter 
of the colony at concentrations above 160 mg/mL.

In the concentration range of 10 to 240 mg/mL, the diam-
eter of the fungal colony exhibited a negative correlation 
with the concentration of PESD and PESS (Fig. 1C, D). 

Fig. 2 Effects of EESD on the activities of CWDEs secreted by F. sulphureum infecting (A) Longshu No.7, (B) Longshu No.10, and (C) Xindap-
ing. Different letters indicate significant differences in the activity of CWDE (p < 0.05)

 

Fig. 1 The diameter of the F. 
sulphureum colony treated with 
(A) EESD, (B) EESS, (C) PESD, 
and (D) PESS. Different letters 
indicate significant differences 
in the diameter of the colony 
(p < 0.05)
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the activities of PG, Cx, and β-Glu on Longshu No.10 to 
levels not significantly different to samples without F. sul-
phureum infection (Fig. 3A, B).

Inhibition of PESD on the Activities of CWDEs

After PESD treatment, the activities of four kinds of 
CWDEs secreted by F. sulphureum on three kinds of potato 
were significantly reduced, with the optimal inhibitory con-
centration of PESD being 240 mg/mL (Fig. 4). Meanwhile, 
the addition of PESD reduced the activities of PG and PMG 
in Longshu No.7 to levels without infection of the pathogen 
(Fig. 4A).

Inhibition of PESS on the Activities of CWDEs

On the three potato varieties, the activities of four kinds of 
CWDEs secreted by F. sulphureum declined markedly fol-
lowing PESS treatment, and the optimal inhibitory concen-
tration of PESS was 240 mg/mL (Fig. 5).

control without EESD. The optimal inhibitory concentra-
tion of EESD was 160 mg/mL.

At concentrations of 160 and 180 mg/mL, the activities 
of PG and PMG treated with EESD were at the same level as 
those of CK, which meant that EESD could reduce the activ-
ities of PG and PMG secreted by F. sulphureum in Longshu 
No.7 to the normal level without infection (Fig. 2A). In the 
tissue of Xindaping, the activities of PG and Cx were at the 
same level as their respective CK at concentrations of EESD 
at 160 and 180 mg/mL (Fig. 2C). Furthermore, the activities 
of PMG and β-Glu in all EESD-treated groups were also at 
the same level as their respective CK. These results indi-
cate that EESD effectively reduced the activities of the four 
CWDEs in the tuber of Xindaping to the normal level that 
are not significantly different from samples without patho-
genic fungal infection.

Inhibition of EESS on the Activities of CWDEs

EESS could significantly inhibit the activities of four kinds 
of CWDEs secreted by F. sulphureum on Longshu No.7, 
Longshu No.10, and Xindaping, with the optimal inhibi-
tory concentration being 160 mg/mL (Fig. 3). Furthermore, 
EESS could reduce the activity of PG on Longshu No.7 and 

Fig. 4 Effects of PESD on the activities of CWDEs secreted by F. sulphureum infecting (A) Longshu No.7, (B) Longshu No.10, and (C) Xindap-
ing. Different letters indicate significant differences in the activity of CWDE (p < 0.05)

 

Fig. 3 Effects of EESS on the activities of CWDEs secreted by F. sulphureum infecting (A) Longshu No.7, (B) Longshu No.10, and (C) Xindaping. 
Different letters indicate significant differences in the activity of CWDE (p < 0.05)

 

1 3



American Journal of Potato Research

This variation in baseline enzyme activities may indicate 
inherent differences in disease susceptibility or resistance 
mechanisms among the potato cultivars. The application of 
sunflower extracts at varying concentrations further mod-
ulated the activities of these CWDEs to varying degrees. 
These discrepancies in enzyme activities could potentially 
stem from multiple factors, including genetic variations 
among potato cultivars, diverse environmental conditions 
during cultivation, varying developmental stages, unique 
stress responses, and possibly other regulatory mechanisms 
that are yet to be identified. Consequently, further research 
is imperative to elucidate the specific mechanisms underly-
ing these differences and assess their potential implications 
for disease development and management in potato crops.

In conclusion, this study may have implications for the 
prevention and control of potato dry rot and the compre-
hensive utilization of sunflower by-products. However, this 
experiment serves merely as a preliminary exploration into 
the potential of sunflower by-products in the realm of potato 
dry rot control. Further validation throughout the growth 
process of potato plants is warranted to substantiate the 
findings.
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