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Abstract
Potatoes are at the heart of the world’s diet, being cultivated in more than 100 countries. Being the fourth largest crop after maize,
wheat and rice, the potato production is of utmost interest for food industry, supporting a wide range of research projects. This is
particularly the case of storage, an essential step for the potato industry, which is regularly studied. Indeed, sprouting of potatoes
during storage is very problematic, resulting in a net loss for industries and increased foodwaste. Therefore, there has been a lot of
research on sprout suppressive molecules since the beginning of the twentieth century. However, to date, there is no publication
gathering all the studied molecules. This review presents an overview of the current knowledge on sprout suppressive molecules,
natural and synthetic, along with a comparison of their effectiveness.

Resumen
Las papas están en el corazón de la dieta del mundo, cultivándose en más de 100 países. Siendo el cuarto mayor cultivo después
del maíz, trigo y arroz, la producción de papa es de máximo interés para la industria alimentaria, respaldando una gran amplitud
de proyectos de investigación. Esto es particularmente el caso de almacenamiento, un paso esencial en la industria de la papa que
se estudia regularmente. De hecho, la brotación de las papas durante el almacenamiento es muy problemático, lo que resulta en
pérdidas netas para la industria y en un aumento de desperdicio de comida. De aquí que ha habido mucha investigación en
moléculas inhibidoras de la brotación desde principios del siglo 20. No obstante, a la fecha no hay una publicación que reúna a
todas las moléculas estudiadas. Esta revisión presenta una vista general del conocimiento actual de moléculas supresoras de la
brotación, naturales y sintéticas, junto con una comparación de su efectividad.
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Introduction

Although the history of potato began 8000 years ago in the
Andean region of South America, it was only in the seven-
teenth century that this vegetable was adopted throughout
Europe, and from there, imported to Asia before North
America (International Year of the Potato 2008). Without be-
ing exhaustive, the average world’s production of potato

represented 368.17 millions tons in 2018, with an average
consumption of about 33.47 kg per capita in 2017 (FAOstat
2019). In North America, this number almost doubled to reach
53.79 kg per capita per year which places this vegetable as one
of the most present in the North American diet (International
Year of the Potato 2008; FAOstat 2019). Since markets must
be supplied year-round, potatoes are stored from periods of up
to several months. Long-term storage of potatoes can be prob-
lematic due to two main phenomena: spread of diseases and
sprouting. In order to prevent these phenomena, a wide range
of chemical products can be applied to avoid significant eco-
nomic losses. Although, some of these products, such as
chlorpropham (also known as CIPC), have demonstrated toxic
properties for both, environment and consumer health, there
are still widely used (Paul et al. 2015, 2018). In response,
several governments are increasingly regulating and even con-
sidering banning the use of chlorpropham such as the
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European Union in June 2019 (Juncker 2019). Therefore, it
becomes urgent to develop and market new sprout suppres-
sive products, which are more environmental-friendly.

In order to develop alternative products, several research
projects have investigated sprout suppressive properties of
various molecules. To our knowledge, there is currently no
review reporting on all the molecules (synthetic and natural)
studied and their effectiveness as sprout suppressant.
Therefore, the aim of this literature review is to gain an un-
derstanding of the existing research on sprout suppressive
agents, and to present that knowledge into two categories:
commercially available sprout suppressive products and mol-
ecules, which have shown promising results.

Storage

In order to manage different depository conditions, a reliable
potato storage facility must be able to control temperature as
well as humidity, and be equipped with a good ventilation
system. Since potatoes may have been damaged during har-
vest, a pre-storage of potatoes under high relative humidity
(95%) at 10–15 °C for about two weeks is usually done
(Pinhero et al. 2009). The pre-storage conditions allow the
potatoes to dry and heal the peel (Pinhero et al. 2009). After
pre-storage, potatoes are generally stored in crates at lower
temperatures for a period ranging from a few weeks to several
months.

As previously mentioned, one of the main challenges dur-
ing storage is early sprouting. After potato harvest, tubers are
naturally dormant thus, no sprouting occurs. Unfortunately,
this period of innate dormancy does not last as long as the
storage period required by the market. Therefore, premature
sprouting needs to be controlled, otherwise potatoes will lose
weight and nutritional value. Moreover, the processing quali-
ties of the tubers may be affected leading to major economic
losses (Mani et al. 2014). Thus, inhibit sprouting by managing
environmental conditions (e.g. cold temperature of storage,
humidity regulation and regulated gas composition condi-
tions) and by the application of chemical sprout suppressants

(Fig. 1), help prevent these losses (Pinhero et al. 2009; Alamar
et al. 2017). Regulating sprouting with chemical products
comes with many challenges including the restriction of
chlorpropham residues and the control of sweetening process-
es, ensuring tuber marketability (Alamar et al. 2017). Also, it
is important to consider the storage conditions, which are dif-
ferent according to markets targeted. For example, cold stor-
age is not an option for the processing sector because low
temperatures increase the concentration of reducing sugars,
which cause undesirable colours during frying (Wiltshire
and Cobb 1996). Nevertheless, higher temperature storage of
tubers is not a better option, because it increases tuber’s res-
piration and considerable weight loss occurs (Wiltshire and
Cobb 1996). Taking that into account, potatoes to be sold
for processing will be stored between 8 and 13 °C whereas
the storage of fresh market potatoes is below 7 °C (Alamar
et al. 2017). Processing potatoes thus need application of
sprout suppressant to prevent tubers sprouting promoted by
a higher storage temperature.

Sprout Suppressants Commercially Available
and Currently Used

Used since the mid-twentieth century, chlorpropham (CIPC),
a well-known cost effective potato sprout suppressant, is used
as a postharvest product during storage. However, more and
more studies shown that this product is dangerous for envi-
ronment and consumer health because of the metabolites pro-
duced during its degradation and the long-lasting residues.
Indeed, breakdown products of CIPC are more harmful than
CIPC itself (Paul et al. 2015). For example, 3-chloroaniline (3-
CA) is produced by thermal degradation of CIPC, a phenom-
enon which takes place during fogging and microbial or di-
gestive activity (Paul et al. 2018). Although no studies show
direct evidences of the carcinogenic effect of 3-chloroaniline
(3-CA), 3-CA is highly toxic specifically on the
haematopoietic and renal systems (m-Chloroaniline 1992;
Arena et al. 2017). Furthermore, 3-CA has been suggested
to be toxic because of its structural similarity to 4-CA known

Fig. 1 Sprouting differences
between stored potatoes treated or
not with sprout suppressant
chlorpropham (CIPC): A)
untreated; B) treated with CIPC.
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to be carcinogenic and genotoxic (Paul et al. 2018; Boehncke
et al. 2003). Moreover, prolong and continuous use of CIPC
lead to a gradual accumulation and its residues can be found
everywhere. Actually, breakdown products of CIPC are not
only found in fresh potatoes, they are also found in the proc-
essed potato products such as French fries and potatoes chips
(Paul et al. 2018). CIPC residues have also been found in the
oil used for frying and the water used for washing supporting
the long-last presence of such residues (Paul et al. 2015,
2018). Furthermore, even in presence of low concentration
of CIPC, cases of cross-contamination occurred and resulted
in yield losses because of the presence of CIPC-residues ex-
ceeding the maximum level permitted (Douglas et al. 2019;
Frazier and Olsen 2015).

Faced with this issue, many studies reported on alternatives
less toxic and currently commercially available (Table 1).
Astonishingly, CIPC is still used in over 90% of all current
post-harvest sprout suppressant applications (AHDB
2020). However, it will be reduced since the ban on CIPC
has begun in some countries notably the European Union
(Juncker 2019).

In Canada, despite CIPC, active ingredients registered as
sprout suppressant are 1,4-DMN, 2,6-DIPN, eugenol, maleic
hydrazide and 3-decen-2-one (Agriculture et Agroalimentaire
Canada 2017). In United States, we can add to the previous list
R-carvone, hydrogen peroxide plus (Olsen 2016). In Europe,
Talent is use as a sprout suppressant in the Netherlands since
1995 (Baker 1997) and orange oil is currently undergoing
registration. Worldwide, organic potato production can rely
clove oil, spearmint oil and caraway oil but they are also
hydrogen peroxide plus and ethylene gas (Restrain) (Olsen
2016; Frazier et al. 2004).

Sprout suppressants can basically be classified according to
their modes of action either preventive or curative. Preventive
treatments act as a retardant to the sprouting process by
prolonging dormancy through different physiological process-
es. For example, we can cite plant growth regulator analogs
such as 2,6-DIPN or cell division inhibitor such as CIPC
(Table 1). In opposition, curative treatments act by damaging
sprouts, which is the case for most essential oils but also of 3-
decen-2-one, HPP and CIPC. Since several of these
products require several applications to maintain their
effectiveness, many are currently used in combination
with CIPC to ensure enhanced efficiency rate. This
combination method allows to reduce both the cost of
alternative product application since CIPC is cheaper
and the maximum residues level of CIPC.

Beside CIPC breakdown products, residues from others
sprout suppressants can also be an issue like hydrazine, a
derivative of MH produce by plants, is reputed to be mutagen
and carcinogen (Swietlinksa and Zuk 1978). Breakdown
products of eugenol (by bacteria: ferulic acid, vanillin, vanillic
ac id (Tadasas and Kayahara 1983) ) , S -ca rvone
(dihydrocarvone, dihydrocarveol (Patočka and Kuča 2013;
Bhatia et al. 2008; Arena et al. 2018)) and HPP (oxygen,
water) are considered to be safe while in other cases
like 1,4-DMN (4-methyl-1-naphtanoic acid, 1-hydroxy-
methyl-4-naphtalene (European Food Safety Authority
2 0 1 3 ) ) , 2 , 6 - D I P N ( 2 - [ 6 ( 1 - h y d r o x y - 1 -
methyl)ethylnaphthalen-2-yl]-2-hydroxypionic acid (U.S.
Environmental Protection Agency 2003; Höke and
Zellerhoff 1998)) and 3-decen-2-one (2-decanone, 2-decanol
(European Food Safety Authority 2015)), information about
their toxicity is still missing.

Table 1 List of sprout suppressant agents currently on the market

Commercial Name Active molecule Origin Reference

1,4-Sight/ Dormir 1,4-dimethylnaphtalene (1,4-DMN) Naturally found in potatoes, but
synthesized for commercialization

(DormFresh 2019; Weber 2017; Baker 1997;
Daniels-Lake et al. 2013)

Amplify 2,6-diisopropylnaphtalene (2,6-DIPN) Synthetic (Daniels-Lake et al. 2013; U.S.
Environmental Protection Agency 2003)

Biox-C/ Sprout Torch Eugenol Clove oil (Daniels-Lake et al. 2013)

Biox-M R-carvone Spearmint oil (Daniels-Lake et al. 2013; Rossilion 2018)

Fazor Star Maleic hydrazide (MH) Synthetic (Daniels-Lake et al. 2013; CERTIS 2015)

Restrain Ethylene Natural compound (Daniels-Lake et al. 2013; Rossilion 2018)

SmartBlock 3-decen-2-one Natural origin, but synthesized
for commercialization

(Daniels-Lake et al. 2013; AMVAC 2019)

Sprout Nip Isopropyl-m-chloro-carbonilate
(chlorpropham/CIPC)

Synthetic (Baker 1997; Daniels-Lake et al. 2013;
Brenntag Canada Inc. 2008)

Talent S-carvone Caraway oil (Baker 1997; Daniels-Lake et al. 2013)

Hydrogen peroxide plus (HPP) Synthetic (Daniels-Lake et al. 2013; Afek et al. 2000)

Limonene Orange oil (CIPC 2019)
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Screening of Sprout Suppressant Molecules
According to their Effectiveness

The search for molecules with sprout suppressive properties
has been going on for several decades. Many studies have
determined the efficiency of such molecules and they have
been listed in Tables 2 and 3. Sprout suppressant molecules
can be divided by their composition either single molecule or
extracts. Single molecules are chemically synthesized in the
lab or purified from a biological source (Table 2) whereas
natural plant extracts (Table 3) which are composed of multi-
ple molecules, biosynthesized by living organisms, all present
in a mixture. Although the molecules tested in Table 2 are
often of synthetic origin, it is important to note that most are
also synthesized, in small amount, in plants. For example,
various naphthalene molecules that have shown promising
results (Table 2) have also been isolated from potatoes
(Baker 1997). Yet, it was mostly chemically synthesized
naphthalene molecules that were tested. It must be noted that
the ranking of efficiency of the tables has been determined
according to authors’ results and conclusions. It is also
an approximation since the methodologies between each
study differed.

The first report of use of plant extracts for their sprout
suppressive properties can be traced back to the time of the
Incas at the very beginning of potato cultivation. Indeed, the
precursor to essential oils currently used were Muña plants,
which are rich in essential oil and contain more than 98%
monoterpenes (Song et al. 2008). Table 3 presents a list of
plant extracts, mostly essential oils that have been tested for
their sprout suppressant activities.

Many essential oils display sprout suppressant properties
such as dill, coriander, spearmint and muña. However, many
applications are required during storage period to maintain
sprouting inhibition and since the production of essential oil
is costly, it makes it difficult to implement these kinds of
sprout suppressant on the market (Daniels-Lake et al. 2013;
Raut and Karuppayil 2014; Martin 2013).

Could the Forest Resource Be an Avenue
for Sprout Suppressive Molecules?

Canada’s forest resource is abundant, particularly in the prov-
ince of Quebec where it represents 2.3% of the world’s forest
(Delisle 2019). In 2018, Quebec forest industry generates
alone about 2 million tons of anhydrous bark residues
(Delisle 2019). Like essential oils, it has been demonstrate that
barks molecules can possess a multitude of biological proper-
ties such as antioxidant, antimicrobial or anticancer (Royer
et al. 2012). Then perhaps some bark extractions will have
sprout suppressant properties especially since terpenoid and
phenolic compounds can be enriched in bark extracts, and

which are the same family compounds as found in essential
oils gathered herein. In addition, because bark is a residue
produced by sawmills, production cost could be lower than
essential oils depending on the extraction process. This novel
avenue is presently under investigation by UQTR and
Innofibre.

Non-chemical Alternatives to Control Potato
Sprouting

Beside the utilization of single or mixture of molecules for
regulating sprouting during the storage of potatoes, other ways
such as physical treatment (e.g. cold temperature, gamma ra-
diation (Daniels-Lake et al. 2013; Rezaee et al. 2013), UV-C
(Pristijono et al. 2018) or pressure treatments (Saraiva and
Rodrigues 2011)) as well as biological treatment (e.g. micro-
organisms (Slininger et al. 2000) or genetic engineering
(Munger et al. 2015)) have been studied.

Future Perspectives

Overall, it is hard to recommend best possible options of
sprout suppressant since there is a lot of variables to consider
including if the production is organic or conventional, who is
the end-user market, and what is the genetic variety of the
potatoes (which influences dormancy period and susceptibil-
ity to diseases). The secret of managing potato sprouting prob-
ably lies in planification by coordinating applications of dif-
ferent treatment to retrievemaximum benefits from diversified
mechanisms of action. This was the case with CIPC, before its
was banned. For instance, prolonging dormancy with 2,6-
DIPN (easier to apply then MH, because the window of ap-
plication is easily missed withMH (Daniels-Lake et al. 2013))
combined with applications of essential oils like Talent which
can also prevent the propagation of disease during storage
(Baker 1997). By doing so, it would be possible to profit from
the antimicrobial activity and the low toxicity of essential oil
while reducing, at the same time, costs. Essential oils pose no
problem regarding the storage of potato seeds in the same
facility as the treated potatoes, compared to CIPC, since their
effect is reversible and that their volatility makes it easy to
clear the air of the storage facility from any chemical residues.
Hopefully, bark extracts will prove themselves as sprout sup-
pressant and eventually be more price competitive than essen-
tial oils.

Conclusion

Although CIPC is a sprout suppressant highly efficient and
available at low cost, its consequences on environment and
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Table 2 Sprout suppressive efficiency of synthetic molecules. The efficacy as sprout suppressive molecules was rank as: “+++” effective, “+” partially
effective, “-” ineffective and “?” for inconclusive results

Name Efficiency† Reference

1,2-dimethylnaphthalene +++ (Meigh et al. 1973)
1,3-dimethylnaphthalene +++ (Meigh et al. 1973)
1,4,5-trimethylnaphthalene – (Filmer and Rhodes 1984)
1,4,6-trimethylnaphthalene +++ (Filmer and Rhodes 1984)
1,4-dimethylnaphtalene (1,4-DMN) +++ (Meigh et al. 1973; Filmer and Rhodes 1984; Beveridge et al. 1981a,

1983,
1981b; Lewis et al. 1997; Riggle and Schafer 1997)

1,5-dimethylnaphthalene +++ (Meigh et al. 1973)
1,6,7-trimethylnaphthalene +++ (Meigh et al. 1973; Filmer and Rhodes 1984)
1,6-dimethylnaphthalene +++ (Meigh et al. 1973; Beveridge et al. 1981a)
1-chloronaphthalene +++ (Findlen 1955)
1-ethynylcyclohexyl acetate +++ (Meigh 1969)
1-heptyne – (Meigh 1969)
1-hexadecanol – (Sawyer and Thorne 1962)
1-methylnaphthalene – (Meigh et al. 1973)
1-phenylethanol +++ (Meigh 1969)
1-tridecanol +++ (Sawyer and Thorne 1962)
2,2,5-trimethylhexane – (Meigh 1969)
2,2-dimethyl-2-phenylethanol +++ (Meigh 1969)
2,3,5,6-tetrachloronitrobenzene +++ (Ellison 1952)
2,3,5-trimethylhexanone-3 – (Meigh 1969)
2,3,5-trimethylnaphthalene +++ (Meigh et al. 1973)
2,3,6-trimethylnaphthalene – (Meigh et al. 1973; Filmer and Rhodes 1984)
2,3-dimethylnaphthalene +++ (Beveridge et al. 1981a)
2,3-dimethylnaphthalene + (Meigh et al. 1973)
2,4,5-trimethylacetophenone +++ (Meigh 1969)
2,4,6-trimethylacetophenone +++ (Meigh 1969)
2,4-dimethylacetophenone +++ (Meigh 1969)
2,4-dimethylcyclohex-2-enone-1 +++ (Meigh 1969)
2,5-dimethylacetophenone +++ (Meigh 1969)
2,5-dimethylbenzyl alcohol – (Meigh 1969)
2,5-dimethylcyclopentanone – (Meigh 1969)
2,6-dimethylnaphthalene – (Meigh et al. 1973)
2-cyclohexylethanol +++ (Meigh 1969)
2-methoxy-3-ethylpyrazine + (Beveridge et al. 1981a)
2-methyl-2-heptenone-2 – (Meigh 1969)
2-methyl-5-isopropenylcyclohexanol-1 +++ (Meigh 1969)
2-methylbenzothiazole – (Meigh et al. 1973)
2-methylcyclohexanol +++ (Meigh 1969)
2-methylcyclohexanone – (Meigh 1969)
2-methylfuran – (Meigh 1969)
2-methylnaphthalene +++ (Meigh et al. 1973)
2-methylpentan-2,4-diol – (Meigh 1969)
2-phenylethanol +++ (Meigh 1969)
2-phenylethyl acetate + (Meigh 1969)
3,3,5-trimethylcyclohexanone – (Meigh 1969)
3,3′-dimethylbiphenyl + (Meigh et al. 1973)
3,4,6-trimethylcyclohex-2-enone-1 +++ (Meigh 1969)
3,4-dimethylacetophenone +++ (Meigh 1969)
3,4-dimethylcyclohex-2-enone-1 +++ (Meigh 1969)
3,4-dimethylcyclohexanol +++ (Meigh 1969)
3,4-dimethylcyclohexanone +++ (Meigh 1969)
3,5,5-trimethylhexan-1-nitrile +++ (Meigh 1969)
3,5,5-trimethylhexan-1-thiol +++ (Meigh 1969)
3,5,5-trimethylhexane-1-acetate + (Meigh 1969)
3,5-dimethylbenzyl alcohol – (Meigh 1969)
3,5-dimethylcyclohex-2-enone-1 +++ (Meigh 1969)
3,5-dimethylcyclohexanone +++ (Meigh 1969)
3,5-dimethylhex-1-ynol-3 +++ (Meigh 1969)
3,6-dimethylcyclohex-2-enone-1 +++ (Meigh 1969)
3-methylbenzyl alcohol – (Meigh 1969)
3-phenylpropanol – (Meigh 1969)
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Table 2 (continued)

Name Efficiency† Reference

4,4′-dimethylbiphenyl – (Meigh et al. 1973)
4-isopropylcyclohex-2-enone-1 +++ (Meigh 1969)
4-methyl-4-penten-2-ol – (Meigh 1969)
4-methylacetophenone +++ (Meigh 1969)
Di-allate (S-2,3-dichloroallyl ester of di-isopropylthiocarbamic acid) +++ (Meigh 1969)
N-amyl alcohol +++ (Burton 1958)
Tri-allate (S-2,3,3-trichloroallyl ester of di-isopropylthiocarbamic acid) +++ (Meigh 1969)
α-angelica lactone (3-hydroxy-3-methylprop-2-en-

1-carboxylic acid lactone)
– (Meigh 1969)

β-angelica lactone (3-hydroxy-3-methylprop-1-en-
1-carboxylic acid lactone)

– (Meigh 1969)

Acetaldehyde – (Paul and Ezekiel 2002)
Acetonyl acetone (hexan-2,5-dione) – (Meigh 1969)
Acetophenone – (Meigh 1969)
Acetyl acetone (pentan-2,4-dione) – (Meigh 1969)
Acetyl valerol (heptan-2,3-dione) – (Meigh 1969)
Allyl alcohol (2-propenol) +++ (Meigh 1969)
Anethol + (Baydar and Karadogan 2003; Farooqi et al. 2001)
Anisaldehyde (4-methoxybenzaldehyde) – (Meigh 1969; Farooqi et al. 2001)
Anisic acid +++ (Lulai et al. 1997)
Anisole (methoxybenzene) – (Meigh 1969)
γ-butyrolactone – (Meigh 1969)
Benzaldehyde ? (Meigh 1969; Vaughn and Spencer 1993)
Benzoic acid – (Vaughn and Spencer 1993)
Benzothiazole +++ (Meigh et al. 1973; Beveridge et al. 1981a)
Benzyl alcohol +++ (Meigh 1969)
Benzyl methyl ketone +++ (Meigh 1969)
Biphenyl ? (Meigh et al. 1973; Beveridge et al. 1981a)
Borneol ? (Beveridge et al. 1981a; Baydar and Karadogan 2003)
Camphene – (Beveridge et al. 1981a)
Camphor + (Beveridge et al. 1981a; Baydar and Karadogan 2003;

Farooqi et al. 2001; Vaughn and Spencer 1991;
El-Awady Aml et al. 2014)

Camptothecin +++ (Wang et al. 1980)
Carvacrol (1-hydroxy-2-methyl-5-isopropylbenzene) ? (Meigh 1969; Baydar and Karadogan 2003)
Carveol (2-methyl-5-isopropenyl-cyclohex-2-en-1-ol) – (Meigh 1969)
Carvone (2-methyl-5-isopropenyl-cyclohex-2-en-1-one) +++ (Beveridge et al. 1981a, 1983; Meigh 1969; Baydar and Karadogan

2003; El-Awady Aml et al. 2014; Van Es and Hartmans 1987;
Oosterhaven et al. 1995, 1993; Hartmans et al. 1995;
de Vries 1999; Sorce et al. 1997)

Carvone + β-cyclodextrine +++ (Costa et al. 2007)
Cineole (1,4-cineole) +++ (Vaughn and Spencer 1991)
Cineole (1,8-cineole) +++ (Baker 1997; Vaughn and Spencer 1991; Daniels-Lake et al. 1996;

Suttle et al. 2015)
Cineole (1-methyl-4-isopropyl-cyclohexan-1,8-diol anhydride) – (Meigh 1969)
Cinnamaldehyde (3-phenylprop-2-enal-1) ? (Meigh 1969; Vaughn and Spencer 1993)
Cinnamyl alcohol – (Vaughn and Spencer 1993)
Citral (3,7-dimethyl-2,6-octadienal) +++ (Meigh 1969; Burton 1958; Farooqi et al. 2001; El-Awady Aml et al.

2014)
Citronellal +++ (Farooqi et al. 2001)
Citronellol +++ (Beveridge et al. 1981a; Meigh 1969; Baydar and Karadogan 2003;

Farooqi et al. 2001; Vaughn and Spencer 1991;
El-Awady Aml et al. 2014)

Coumaric acid +++ (Lulai et al. 1997)
Coumarin – (Beveridge et al. 1981a)
Crotyl alcohol (2-butenol) +++ (Meigh 1969)
Cryptone (4-isopropylbenzyl alcohol) – (Meigh 1969)
Cuminaldehyde +++ (Vaughn and Spencer 1993)
Cyclohexanol +++ (Meigh 1969)
Cyclohexanone – (Meigh 1969)
Cyclohexenylacetone – (Meigh 1969)
Cyclohexylacetone – (Meigh 1969)
Cyclohexylcarbinol +++ (Meigh 1969)
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Table 2 (continued)

Name Efficiency† Reference

Cyclopentanol – (Meigh 1969)
Cyclopentanone – (Meigh 1969)
Decan-1-ol +++ (Sawyer and Thorne 1962)
Diacetone alcohol (2-methyl-2-pentanol-4-one) – (Meigh 1969)
Dichlorbenil +++ (Afek et al. 2000)
Diethylene glycol monobutylether – (Meigh 1969)
Diethylene glycol monoethylether – (Meigh 1969)
di-isobutyl ketone (2,6-dimethylheptanone-4) – (Meigh 1969)
Diisopropylnaphthalene
(DIPN)

+++ (Lewis et al. 1997; Riggle and Schafer 1997)

Dimethyl sulphoxide – (Meigh 1969)
Dioxan – (Meigh 1969)
Diphenylamine +++ [(Filmer and Rhodes 1985), (Mehta 2004)
Ehylene glycol monobutylether – (Meigh 1969)]
Ethanol ? [(Paul and Ezekiel 2002), (Claassens et al. 2005)
Ethephon (2-chloroethylphosphonic acid) – (Nyankanga et al. 2018)]
Ethoxyquin – (Filmer and Rhodes 1985)
Ethyl cinnamate – (Vaughn and Spencer 1993)
Ethyl ester of 2,4,5-trichlorophenoxy

acetic acid (2,4,5-T)
+++ (Paul and Ezekiel 2002; Vaughn and Spencer 1993; Paul et al. 2014;

Burton et al. 1992; Burton 1989; Hutchinson et al. 2014;
Tayler et al. 1996; Paul and Ezekiel 2006a, b)

Ethyl ester of 2,4-dichlorophenoxy
acetic acid

(2,4-D)

+++ (Paul and Ezekiel 2002; Vaughn and Spencer 1993; Paul et al. 2014;
Burton et al. 1992; Burton 1989; Hutchinson et al. 2014;
Tayler et al. 1996; Paul and Ezekiel 2006a, b)

Ethylene +++ (Dai et al. 2016; Gnimassou 2017)
Ethylene glycol monoethylether – (Meigh 1969)
Ethylene glycol monohexylether +++ (Meigh 1969)
Ethylene glycol monophenylether – (Meigh 1969)
Eugenol – (Vaughn and Spencer 1993; Luiz Finger et al. 2018)
Fenchone +++ (Meigh 1969; Vaughn and Spencer 1991)
Furfuryl alcohol – (Meigh 1969)
Gallic acid + (Lulai et al. 1997)
Geraniol ? (Meigh 1969; Burton 1958; Baydar and Karadogan 2003;

Farooqi et al. 2001; Vaughn and Spencer 1991;
El-Awady Aml et al. 2014)

Geranyl acetate +++ (Farooqi et al. 2001; El-Awady Aml et al. 2014)
Glyphosate +++ (Paul et al. 2014; Hutchinson et al. 2014; Paul and Ezekiel 2006a, b)
Hexetone (3-methyl-5-isopropyl-cyclohex-2-enone-1) +++ (Meigh 1969)
Hydrocinnamaldehyde +++ (Vaughn and Spencer 1993)
Hydrogen peroxide plus (HPP) +++ (Afek et al. 2000)
α-ionone + (Meigh 1969)
Imazamethabenz-methyl +++ (Tayler 1993)
Imazamethapyr +++ (Tayler 1993)
Imazamox +++ (Olsen 2020)
Imazapyr +++ (Tayler 1993)
Imazaquin – (Tayler 1993)
Imazethapyr +++ (Paul and Ezekiel 2002; Paul et al. 2014; Burton et al. 1992;

Burton 1989; Hutchinson et al. 2014; Tayler et al. 1996;
Paul and Ezekiel 2006a, b; Tayler 1993)

Isoamyl acetate – (Meigh 1969)
Isoeugenol – (Vaughn and Spencer 1993)
Isophorone (3,4,6-trimethylcyclohex-2-enone-1) +++ (Meigh 1969)
Isoprenoid borneol +++ (Beveridge et al. 1981a; Meigh 1969)
isopropyl benzoate +++ (Meigh 1969)
Jasmonates +++ (Lulai et al. 1995; Dhaif Allah et al. 2018)
R-(+)-limonene (1-methyl-4-isopropenyl-cyclohexene-1) ? (Beveridge et al. 1981a; Meigh 1969; Baydar and Karadogan 2003;

Vaughn and Spencer 1991; Hartmans et al. 1995)
Limonene oxide +++ (Vaughn and Spencer 1991)
Linalool ? (Meigh 1969; Baydar and Karadogan 2003; Farooqi et al. 2001;

Vaughn and Spencer 1991; El-Awady Aml et al. 2014;
Coleman et al. 2001)

Linalylacetate – (Baydar and Karadogan 2003)
N-methylpyrrolidone-2 – (Meigh 1969)
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consumer health cannot be ignored which prompt for the de-
velopment of alternatives. This review provided an overview
of sprout suppressive molecules that have been tested and
reported so far. A list of currently commercialized sprout sup-
pressants along with promising molecules have been

described to offer an overall guide for the research in this area.
In addition, the efficiency of single molecules and mixtures of
molecules from different essential oils was reported. Several
alternatives showed promising results and can possess addi-
tional interesting activities such as antimicrobial, which is

Table 2 (continued)

Name Efficiency† Reference

Maleic hydrazide +++ (Findlen 1955; Vaughn and Spencer 1993; Lee et al. 2001)
Menthol ? (Baydar and Karadogan 2003; Farooqi et al. 2001;

Vaughn and Spencer 1991; Luiz Finger et al. 2018;
Coleman et al. 2001)

Menthone (3-methyl-6-isopropylcyclohexanone-1) ? (Meigh 1969; Baydar and Karadogan 2003; Coleman
et al. 2001; Aliaga and Feldheim 1985)

Menthone + neomenthol +++ (Coleman et al. 2001)
Mesityl oxide (4-methylpent-3-enone-2) – (Meigh 1969)
Methanol – (Paul and Ezekiel 2002)
Methional (3-methylmercaptopropanal) – (Meigh 1969)
Methyl 1-naphthaleneacetate (MENA) +++ (Findlen 1955; Ellison 1952)
Methyl acetate +++ (Farooqi et al. 2001)
Methyl benzoate +++ (Meigh 1969)
Methyl cinnamate +++ (Vaughn and Spencer 1993)
Methyl furoate – (Meigh 1969)
Methyl salicylate +++ (Beveridge et al. 1981a; Meigh 1969)
Methyl valeric acid (4-methyl-pentanoic acid) – (Meigh 1969)
Naphthalene ? (Meigh et al. 1973; Beveridge et al. 1981a)
Neomenthol +++ (Coleman et al. 2001)
Nerol +++ (Baydar and Karadogan 2003)
Nonanol (3,5,5-trimethylhexan-1-ol, nonyl alcohol) +++ (Meigh 1969; Burton 1958; Burton et al. 1992;

Currah and Meigh 1968)
Ozone – (Daniels-Lake et al. 1996)
α-phelladrene + (Baydar and Karadogan 2003; Vaughn and Spencer 1991)
α-pinene + (Beveridge et al. 1981a; Baydar and Karadogan 2003;

Vaughn and Spencer 1991)
Paclobutrazol (1-(4chlorophenyl) 4,

4-dimethyl-2-(1,2,4-triazol-1-yl)-pentan3-ol)
+++ (Nyankanga et al. 2018)

Pelargonic acid (nonanoic acid) +++ (Olsen 2020)
Perilla alcohol (4-isopropenylcyclohex-1-en-1-carbinol) – (Meigh 1969)
Perilla aldehyde (4-isopropenyl-cyclohex-1-en-aldehyde-1) +++ (Meigh 1969)
Phenol +++ (Vaughn and Spencer 1993)
Piperitone (3-methyl-6-isopropyl-cyclohex-2-en-1-one) +++ (Beveridge et al. 1981a; Meigh 1969)
Propargyl alcohol (2-propynol) +++ (Meigh 1969)
Pulegone (3-methyl-6-isopropylidene-cyclohexanone-1) +++ (Beveridge et al. 1981a; Beveridge et al. 1983; Meigh 1969;

Vaughn and Spencer 1991; Van Es and Hartmans 1987;
Aliaga and Feldheim 1985)

Safrole (3,4-methylenedioxyallyl benzene) +++ (Meigh 1969)
Salicylaldehyde (2-hydroxybenzaldehyde) +++ (Meigh 1969; Vaughn and Spencer 1993)
Silicone oil MS 200/20 – (Meigh 1969)
α-terpineol (1-methyl-4-isopropyl-cyclohex-1-en-8-ol) ? (Beveridge et al. 1981a; Findlen 1955; Meigh 1969;

Vaughn and Spencer 1991; Coleman et al. 2001)
Terpinen-4-ol +++ (Vaughn and Spencer 1991)
Tetrachloroethane – (Meigh 1969)
Tetrahydrofurfuryl alcohol – (Meigh 1969)
Thujon – (Baydar and Karadogan 2003)
Thymol ? (Farooqi et al. 2001; Vaughn and Spencer 1993)
Triadimefon +++ (Paul and Ezekiel 2003)
Triethyl phosphate + (Meigh 1969)
Unsaturated ketone (3-decen-2-one) +++ (Paul et al. 2015; Baydar and Karadogan 2003; Suttle et al. 2015;

Teper-Bamnolker et al. 2010)
γ-valerolactone – (Meigh 1969)
Vanillin – (Beveridge et al. 1981a; Vaughn and Spencer 1993)

† it should be considered that the effectiveness reported in the table is approximate since the methodologies between each studies differed
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very valuable for industry. Indeed, the application of such
agent will not only help to control sprouting and diseases of
potatoes during storage but would also be cost-effective for
the potato industry.
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