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Abstract
Acrylamide is a probable carcinogen found in processed potato products. The compound is formed at elevated temperatures by the
Maillard reaction from two primary precursors - reducing sugars (fructose and glucose) and asparagine. Significant advances have been
made in reducing acrylamide formation by selecting varieties with low precursor concentrations through conventional breeding or
genetic modification techniques. However, acrylamide in many of the traditional varieties processed for fries or chips is sometimes
found at elevated levels. Both agronomic and storage practices can significantly influence glucose, fructose, and asparagine concen-
trations and therefore the potential to form acrylamide during processing. This summary of a symposium presentation given at the 99th
Annual Potato Association of AmericanMeeting is to provide a general overview of previous studies that have examined the effects of
agronomic factors such as nutrient and water management and storage factors such as temperature and duration on acrylamide
precursors and/or acrylamide in processed potato products. A better understanding of how these factors affect acrylamide precursors
is a first step in minimizing acrylamide formation during processing and improving the quality of processed potato products.

Resumen
Acrilamida es un posible carcinogénico encontrado en productos de papa procesada. El compuesto se forma a temperaturas elevadas
mediante la reacción de Maillard de dos precursores primarios: azúcares reductores (fructosa y glucosa) y asparagina. Se han hecho
avances significativos en reducir la formación de acrilamida con la selección de variedades con bajas concentraciones del precursor a
través de mejoramiento convencional o técnicas de modificación genética. No obstante, algunas veces se encuentra la acrilamida a
niveles elevados en muchas de las variedades tradicionales procesadas para fritura. Tanto las prácticas agronómicas como las de
almacenamiento pueden influenciar significativamente las concentraciones de glucosa, fructosa y asparagina, y en consecuencia el
potencial para formar acrilamida durante el procesamiento. Este resumen de la presentación del simposio efectuado durante la 99
Reunión Anual de la asociación Americana de la Papa, es para proporcionar una visión general de estudios previos que han
examinado los efectos de los factores agronómicos, tales como el manejo de nutrientes y agua, y factores de almacenamiento como
la temperatura y la duración de los precursores de la acrilamida en los productos de papa procesada. Un mejor entendimiento de
cómo estos factores afectan a los precursores de la acrilamida, es un primer paso en la minimización de la formación de acrilamida
durante el procesamiento y en el mejoramiento de la calidad de los productos de la papa procesada.
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Introduction

Acrylamide is a compound formed by the Maillard reaction at
high temperatures during potato processing from the precursors
asparagine and reducing sugars, glucose and fructose. While
acrylamide is found in many processed food products, fries
and chips are among the highest contributors of this compound
to the diet in the U.S. and Europe (Seal et al. 2008). This is a
cause for concern because acrylamide is a neurotoxin and prob-
able carcinogen. In 2005 the World Health Organization stated
that Bappropriate efforts to reduce acrylamide concentrations in
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food should continue^ and this was reconfirmed in a recent 2015
report by the European Union (WHO 2005; EFSA 2015).
Reducing acrylamide concentration in processed potatoes, there-
fore, has been a priority of the potato industry for many years.

Since its discovery in 2002, numerous reviews have been
published on acrylamide formation and mitigation in proc-
essed potato as well as other processed food products
(Becalski et al. 2003; Silva and Simon 2005; Halford et al.
2007; Morales et al. 2008; Pedreschi 2010; Medeiros Vinci
et al. 2012; Halford et al. 2012; Bethke and Bussan 2013; Pal
Murugan et al. 2016). These reviews summarized previous
studies dealing with how acrylamide is formed, factors affect-
ing its formation, and ways of reducing its occurrence. Factors
discussed that affect acrylamide formation include variety
selection/genetic modification, production practices and envi-
ronmental conditions, storage conditions, and processing pa-
rameter modifications. While significant improvement can be
made with newer varieties/genetic modification as well as
processing at lower temperatures, traditional varieties and pro-
cessing procedures are often preferred by the consumer and
the quick serve restaurant industry (Carew et al. 2009).
Therefore, production and storage practices that minimize
acrylamide-forming potential remain relevant. The overall ob-
jective of this article is to augment previous reviews and to
focus specifically on agronomic and storage practices that
affect acrylamide formation in processed potatoes.

Acrylamide and Acrylamide Precursors

Because acrylamide was only discovered as a compound in
processed potato products in 2002, studies prior to that time
did not include acrylamide analysis. Additionally, studies since
that time are limited to some extent by the high cost of acryl-
amide analysis using LC/MS or GC/MS techniques. Recently,
a lower cost method for acrylamide analysis has been reported
and may greatly benefit breeding programs and acrylamide
screening for the processing industry (Advant 2016). Despite
the limited database on direct acrylamide analysis, numerous
studies have been conducted that focus primarily on reducing
sugars because of the effect they have on fry color. The obvi-
ous question is - can precursors or fry quality be used to predict
the potential for acrylamide formation? If they can, then prac-
tices that reduce asparagine and reducing sugars or improve fry
quality can be used to mitigate acrylamide formation. Studies
summarized below indicate that acrylamide precursors and fry
quality are for the most part correlated with acrylamide
forming potential; however, a direct measurement of acrylam-
ide is preferable whenever possible.

Studies have shown that acrylamide formation increases in
processed potato products as concentrations of reducing
sugars increase, with correlations (R2) ranging from 0.73 to
0.98 (Amrein et al. 2003; De Wilde et al. 2005). In contrast,

the relationship between asparagine and acrylamide formation
in most situations is weak because the concentration of aspar-
agine alone in conventionally bred potato tubers is usually
much higher than the concentrations of reducing sugars (Lea
et al. 2007). Therefore, theMaillard reaction will be controlled
more by the concentration of reducing sugars than asparagine.
Matsuura-Endo et al. (2006) reported that when the fructose/
asparagine ratio was less than 2 (low fructose), the relationship
between fructose and acrylamide formation was strong (R2 =
0.81) and the relationship between asparagine and acrylamide
was weak (R2 = 0.03). In contrast, when the fructose/
asparagine ratio was greater than 2 (high fructose), the rela-
tionship between fructose and acrylamide was weak (R2 =
0.12) and the relationship between asparagine and acrylamide
was strong (R2 = 0.68). The high fructose in this study was
generated by storing the potatoes at cold temperatures, which
induced cold sweetening. These results clearly indicate that
both precursors can play a role in acrylamide formation, but
reducing sugars will control the reaction when potatoes are
stored properly for processing requirements.

Another indicator of acrylamide content is fry color
(Olsson et al. 2004), which is not too surprising given the
strong association between fry color and reducing sugars
(Roe et al. 1990). In general, the darker the fry color the higher
the acrylamide concentration. The relationship between fry
color and acrylamide is highly significant with R2 ranging
from 0.79 to 0.95 (Silva and Simon 2005; Pedreschi et al.
2006); however, lower correlations are observed when com-
bined over different varieties (Gokmen et al. 2007). These
findings suggest that improvements in fry quality will gener-
ally result in lower acrylamide concentrations.

Pre-Harvest Factors Affecting Acrylamide
Precursors or Acrylamide

It is well established that the best way of improving fry color is
to harvest potatoes when they are chemically mature (Kumar
et al. 2004; Sowokinos and Preston 1988). Chemical maturity
can be defined as the stage of growth when tuber sucrose and
reducing sugars reach a minimum value. This stage occurs
during vine senescence and skin set (physical maturity) and
when tuber dry matter is at its peak. The best fry quality occurs
when sucrose is <1.5 mg/g fw and glucose is less than
0.35 mg/g fw. Even though sucrose is not directly involved
in the Maillard reaction, it does serve as source for reducing
sugars and some may hydrolyze during frying and therefore
lower levels are desirable. Factors affecting chemical maturity
include variety, soil moisture, temperature, nutrition, and har-
vest date. In general, sucrose and reducing sugar concentra-
tions decrease as tubers bulk with higher concentrations of
total sugars for frying varieties compared with chipping
varieties (Herman et al. 1995; Wohleb et al. 2014).
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No studies could be found that directly evaluated the ef-
fects of growing season air temperature on acrylamide forma-
tion; however numerous studies have evaluated temperature
effects on sugars. In general, the optimal temperature for po-
tato growth is between 15 and 20 °C. Below 8 °C, sugars can
increase which can be a problem in Northern climates when
harvest is delayed to later in the growing season. Likewise,
when temperatures increase above 25 to 30 °C, sugars tend to
increase. This is particularly a problem for varieties that are
susceptible to sugar end defect. Periods of high temperature
above 30 °C have been shown to increase sugar ends in vari-
eties like Russet Burbank (Thompson et al. 2008).

In most situations it is difficult to separate the effects of
temperature and water stress since these stresses tend to occur
simultaneously under field conditions (Shock et al. 1993;
Thompson et al. 2008). The timing of water and heat stress
affects the amount of sugar accumulation and where the
sugars accumulate in the tuber. Stress early in the season
causes accumulation of sugars in the stem end and is consid-
ered the most sensitive period. Stress late in the season causes
sugar accumulation in the bud end (Iritani and Weller 1980;
Sowokinos et al. 2000). Short intense stresses over the grow-
ing season tend to result in higher sugar concentrations than a
continuous stress.

Soil temperature (tuber pulp temperature) can directly af-
fect tuber specific gravity, at-harvest sugar content, and build-
up of sugars during storage. The effects of soil temperature
depend on stage of tuber development, temperature (Zommick
et al. 2014) and duration of heat (Herman et al. 2016b). For
example, during the final 53 days of tuber bulking, soil tem-
peratures +7 and + 13 °C above ambient (16 °C) produced
tubers with lower gravities and the effect was greatest at the
highest soil temperature (29 °C) (Zommick et al. 2014). By
contrast, 23 and 29 °C soil temperatures during 29 days of
tuber maturation under dead vines at season end had no effect
on gravities (Zommick et al. 2014). Following a brief posthar-
vest wound-healing period, sucrose and reducing sugar con-
centrations were also substantially higher in tubers grown at
+7 and + 13 °C soil temperatures during the bulking and mat-
uration stages of growth, respectively. Moreover, high soil
(pulp) temperatures during bulking and maturation exacerbat-
ed buildup of sucrose and reducing sugars and hastened dete-
rioration of process quality (fry color) during a 24-day period
of storage at 4 °C for the cold sweetening-susceptible cultivar
Ranger Russet and totally abolished the inherent cold sweet-
ening resistance of Premier Russet. Additional studies dem-
onstrated the importance of duration of high tuber pulp
temperatures in these responses and determined that heat
stress enhances the cold induction of invertase to invoke
sweetening in many cold-sweetening resistant and sus-
ceptible varieties (Herman et al. 2016b). In general, cold-
sweetening resistant varieties have low acrylamide-forming
potential; however, tolerance to heat stress for retention of

the low temperature sweetening resistant phenotype is needed
in developing varieties with robust low acrylamide forming
potential (Herman et al. 2016b).

In a controlled environment study with a chipping potato
where a 14-day water stress or temperature stress was im-
posed, Wang et al. (2012) reported that temperature stress
caused glucose accumulation in one out of two years and
there was no effect due to water stress. They concluded that
moderate stresses did not consistently cause stem end chip
defect, a defect similar to sugar end defect in French fry
varieties. Similarly, Muttucumaru et al. (2015) reported con-
flicting results in field and greenhouse water stress studies. In
a field study, with no major drought occurring, added irriga-
tion caused an increase in glucose and acrylamide when the
tubers were processed. In a greenhouse study, drought caused
an increase in acrylamide in one variety and a decrease in
another. Surprisingly, glucose and asparagine concentrations
increased with drought but acrylamide concentrations in proc-
essed tubers were lower. Results from these studies suggest
that stress-induced sugar accumulation is strongly influenced
by the variety and that more direct measurements of acrylam-
ide following stress is needed to elucidate stress by variety
interactions.

The effects of nitrogen (N) fertility on acrylamide precur-
sors have been extensively studied (Roe et al. 1990; Herman
et al. 1995). Nitrogen fertilization can affect reducing sugars
and asparagine in opposite ways. For example, adequate N
fertilization tends to decrease tuber sugar concentrations at
harvest, although there are some studies showing no effect
or sometimes increasing reducing sugar concentrations de-
pending on the part of the tuber (Westermann et al. 1994;
Brandt et al. 2016). In contrast, asparagine in tubers almost
always increases with increasing N fertilization (Lea et al.
2007) as shown by the average response of six late season
frozen processing cultivars grown in the Columbia Basin of
Washington (Fig. 1). One explanation for lower reducing
sugars with increasing N fertilizer is that the biosynthesis of
asparagine competes for available carbon (Morales et al.
2008). It appears however, this effect depends on variety and
harvest management. In a three-year study, Knowles et al.
(2015a, b) reported that increasing N rate delayed physiological
maturity by approximately 8 days in Sage Russet and Alpine
Russet. Physiological maturity in these studies was defined as
the average days after planting to reach maximum yield and
specific gravity, and minimum sucrose and reducing sugar con-
centrations in tubers (Knowles et al. 2010; Wohleb et al. 2014).
Delaying harvest after tubers achieved physiological maturity
increased reducing sugars with this effect being more pro-
nounced with low N (Fig. 2), which in turn can affect process
quality at harvest (e.g. sugar ends). Further studies demonstrat-
ed that reducing sugars in over mature tubers often continue to
increase postharvest, particularly in the stem ends of tubers,
resulting in earlier deterioration of process quality in storage
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(Knowles et al. 2015b;Wohleb et al. 2014). These results there-
fore suggest that if N fertility is limiting, an earlier harvest date
is warranted to limit over maturation of tubers under dead vines,
which advances tuber age and leads to reducing sugar accumu-
lation and accelerated loss of process quality during storage in
some varieties.

While numerous studies have reported on the effects of N
fertility on acrylamide precursors, there are fewer stud-
ies that have directly measured acrylamide. In studies
that have measured acrylamide directly, the results are vari-
able. Muttucumaru et al. (2013) reported that N fertilization
tended to increase acrylamide although the effect was cultivar
dependent. If N management results in an immature crop at
harvest reducing sugars are likely to be elevated. Other studies
have reported that N fertilization decreased acrylamide forma-
tion (De Wilde et al. 2006). In general, N fertility appears to
influence acrylamide formation by affecting reducing sugars
and asparagine; however, the specific effects depend on vari-
ety, growing conditions, harvest date, and storage conditions
(Amrein et al. 2003; Muttucumaru et al. 2017; Sun et al.
2018). Because so many variables are involved, general rec-
ommendations regarding N fertility and potential acrylamide
formation need to be variety and growing region specific.

No studies could be found that evaluated phosphorus (P)
fertility directly on acrylamide formation. However, a few
studies have reported P effects on reducing sugars. These
studies have shown that low P fertility increases tuber reduc-
ing sugars and increases susceptibility to sugar ends (Kolbe
et al. 1995), although a couple of studies have shown no effect
of P fertility on reducing sugars (Herlihy and Carroll 1969;
Whittaker et al. 2010). It is likely that effects of P fertility on
reducing sugars will depend on the soil type, organic
matter content and initial soil P status. Soils initially
testing medium to high in P will have a lower proba-
bility of response to increasing levels of P fertility than
those testing low in P.

Fig. 1 Changes in tuber asparagine and total nitrogen concentrations with
increasing N fertility. Data are averages of six cultivars (Russet Burbank,
Ranger Russet, Umatilla Russet, Classic Russet, Owyhee Russet and
Teton Russet) grown under late season management at Othello,
WA in 2011 and 2012 (Knowles, N.R., unpublished). N rates
include residual soil N, pre-plant incorporated N and that added
in-season through fertigation

Fig. 2 Changes in reducing sugars (glucose + fructose), specific gravity
and days after planting (DAP) to physiological maturity (PM) of Alpine
Russet tubers grown with relatively low (213 kg ha−1) and high
(409 kg ha−1) rates of N (averaged over 3 seasons, 2011–13) at
Othello, WA (Knowles et al. 2015b). The recommended N rate

for production of Alpine Russet in this region is 409 kg ha−1.
Physiological maturity was determined as the average days after
planting to reach maximum yield, maximum specific gravity and
minimum sucrose and reducing sugar concentrations in tubers
(Wohleb et al. 2014)
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Potassium (K) fertility has been shown to have significant
effects on reducing sugars and fry quality. In general, most
studies indicate that K application results in lower reducing
sugars and lighter chip color (Murphy and Goven 1966;
Herlihy and Carroll 1969; Stanley and Jewell 1989) although,
a couple of studies have reported no effect on reducing sugars
(Kumar et al. 2007). Gerendás et al. (2007) reported that high
N and low K fertility resulted in higher acrylamide than high
N and high K fertility. Gause (2014), however, found no effect
of increasing K application from 0 to 280 kg K ha−1 on acryl-
amide or fry color. As with P, if soil test K is in the medium to
high range, the likelihood of affecting reducing sugars and
acrylamide formation with added K may be low. In general,
the potential for higher acrylamide formation in processed
potatoes exists when potatoes are grown under low K
conditions.

Most of the acrylamide research related to sulfur (S) nutri-
tion has been conducted in the United Kingdom (Elmore et al.
2007, 2010; Muttucumaru et al. 2013). Sulfur effects on ac-
rylamide formation are contradictory and depended on how
the study was conducted. In a pot study, yield was severely
limited in plants not receiving S. In low S plants, asparagine
increased in one variety and decreased in two other varieties.
In all varieties, acrylamide was lower in processed tubers from
S-deprived plants and the correlation between acrylamide and
precursors was poor; which supports direct acrylamide mea-
surement instead of relying solely on precursor measurements
to determine acrylamide forming potential. In a N by S facto-
rial field experiment with 13 varieties, the effects of N on
acrylamide formation were variety dependent. Acrylamide
formation increased with increasing N in 11 varieties and de-
creased in 2 varieties. Yield increased with increasing N for all
varieties. The effects of S on acrylamide depended on N.
Sulfur reduced the effect of high N on acrylamide formation
similar to the response with N and K (Muttucumaru et al.
2013). Yields were not affected by S application indicating
that adequate levels of S were present in the soil. These results
suggest that under conditions when S is not limiting, added S
may be beneficial in reducing acrylamide formation. Reasons
for this benefit are not entirely clear but may be due to changes
in the amino acid profile with S addition.

In a broad survey of potato nutrient composition, reducing
sugars, and acrylamide formation in Italy, tuber copper and
zinc (Zn) were positively correlated with reducing sugars
(Whittaker et al. 2010) when tubers were analyzed within
29 days after harvest and not exposed to temperatures below
8 °C. Zinc was singled out as having a significant effect on
increasing acrylamide in three potato varieties. Further inves-
tigation as to how Zn affects carbohydrate metabolism is
warranted.

As indicated above, potatoes should ideally be harvested
when tubers are physiologically mature, which occurs during
vine senescence and coincides with maximum dry matter

(specific gravity) and minimum sucrose and reducing sugar
concentrations. However, a number of situations may occur to
cause elevated sugars, two of which can be somewhat re-
versed (Sowokinos and Preston 1988). For example, elevated
sugars can occur if tubers are harvested when they are imma-
ture due to a shortened growing season. Another example is
when harvest occurs during a cold period, which induces cold
sweetening. In both of these situations preconditioning is rec-
ommended before processing or storage (Pritchard and Adam
1992). Preconditioning involves maintaining tubers post-
harvest at temperature between 13 °C and 16 °C to promote
wound healing and lower reducing sugars. At least 14 days of
preconditioning is recommended if potatoes are harvested in
temperatures less than about 12.8 °C. Extended precondition-
ing may be required for immature potatoes (Pritchard and
Adam 1992). Herman et al. (1995) reported that harvesting
tubers when they are slightly immature can favor processing
performance during long-term storage. However, early har-
vest without vine killing can result in elevated glucose even
with preconditioning (Bethke and Busse 2010), but this may
be variety dependent (Woodell et al. 2004). Mechanical
stresses/physical damage can increase sucrose concentrations
at harvest and levels may continue to increase in storage.
These increased sugar levels may be related to increased res-
piration rate due to damage (Kumar et al. 2004).

Storage Practices Affecting Acrylamide
Precursors or Acrylamide

Storage practices can significantly influence processing qual-
ity and acrylamide formation by directly affecting the level of
reducing sugars (Chuda et al. 2003; Matsuura-Endo et al.
2006). For most varieties grown for processing, storage tem-
perature exerts significant control over sugar accumulation
and thus acrylamide forming potential through a process
called cold-induced sweetening. Resistance to cold sweeten-
ing is therefore a major goal in developing new varieties for
processing. In contrast to reducing sugars, storage temperature
has minimal effect on tuber asparagine concentration as
depicted in Fig. 3 for eighteen clones/varieties possessing
varying degrees of resistance to cold sweetening. In-season
stress and poor storage conditions can intensify cold sweeten-
ing in susceptible varieties and diminish the inherent resis-
tance to cold sweetening in resistant varieties, resulting in high
sugar accumulation during storage even if sugar levels are
acceptable at harvest (Zommick et al. 2014; Herman 2016b).

De Wilde et al. (2005) clearly showed that when three
varieties Bintje, Ramos, and Saturna were stored at 4 °C, glu-
cose concentrations rose from less than 0.2% to over 6% on a
dry weight basis over a 24-week storage period. In contrast,
when stored for the same time frame at 8 °C, levels remained
relatively constant at less than 0.2%. Following processing,
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acrylamide concentrations mirrored glucose concentrations
with elevated concentration above 1500 μg kg−1 after
24 weeks of storage at 4 °C in all three varieties and concen-
trations less than 500 μg kg−1 when stored at 8 °C. Similar
results were reported by Brandt and Olsen (2013). When stor-
age temperatures increased from 5.6 °C to 8.9 °C, acrylamide
concentrations decreased. In that study, significant positive
correlations between glucose and acrylamide and fry color
and acrylamide were found in 5 of 6 storage times. A positive
relationship between asparagine and acrylamide was found in
only one of six storage times.

While higher temperature reduces cold sweetening after
harvest, eventually tubers in storage will undergo senescent
sweetening, which is characterized by an accumulation of
sugars when dormancy is broken (Sowokinos and Preston
1988). The timing of senescent sweetening is cultivar depen-
dent and is related to dormancy requirements and sprout
growth. Once senescent sweetening occurs, it is not reversible,
which eliminates reconditioning as a management option for
improving process quality and reducing acrylamide forma-
tion. Reconditioning involves raising the storage temperature
to facilitate a drop in reducing sugar levels through stimulating
respiration and starch synthesis. An example of cultivar dif-
ferences in senescent sweetening is clearly shown in a com-
parison of Snowden and Ivory Crisp when stored at 8 °C over
nine months (Fig. 4; Sun et al. 2018). Glucose increased

dramatically for Snowden after six months of storage but not
for Ivory Crisp. The increase in tuber glucose in Snowden was
associated with an increase in acrylamide concentrations in
the chips. Acrylamide in Ivory Crisp chips remained relatively
constant throughout nine months of storage, indicating that
substantial reductions in acrylamide can be attained through
variety selection.

Gaseous composition of the storage atmosphere can also
affect tuber sugar content although the effect is somewhat
temperature and cultivar dependent. Workman and Twomey
(1970) reported that low oxygen can suppress sugar accumu-
lation at 0 °C and 5 °C. Low O2 stimulated buildup in sucrose
and diminished the cold-induced accumulation of reducing
sugars and associated deterioration of process quality in
Russet Burbank and Innovator tubers during storage at 4 °C,
but little if any effect was observed at 8 °C where sweetening
was minimal through 7 months of storage (Herman et al.
2016a). Moreover, the effect of hypoxia (2.5 kPa O2) on lim-
iting cold sweetening and loss of process quality was greater
for Innovator than Russet Burbank tubers during the first
3 months of storage only. Cold sweetening then resumed in
Innovator tubers with reducing sugar concentration increasing
to equal that of Russet Burbank tubers stored at 4 °C and
21 kPa O2. Low O2 inhibited the cold induction of invertase
to limit the extent of sweetening in these two cultivars.
Increased carbon dioxide was found to increase tuber sugars

Fig. 3 Effects of storage temperature on tuber reducing sugar
(glucose plus fructose) and asparagine concentrations of clones
and cultivars from the 2015 Washington Late Regional Russet
Trial of the Northwest Variety Development Program. Tubers

were grown for 153 days (planting to vine kill), wound healed
for 7 days (9 °C, 95% RH) and then stored for an additional
60 days at the indicated temperatures prior to analysis (Pavek
and Knowles 2016)

324 Am. J. Potato Res. (2018) 95:319–327



at 5 °C but not at 3.3 °C (Daniels-Lake and Prange 2009). At
8 °C, Gokmen et al. (2007) reported that increasing CO2 and
decreasing O2 prolonged potato storage life, but increased
reducing sugars and acrylamide when processed. High ethyl-
ene and CO2 have been shown to increase sugars (Daniels-
Lake 2013), but in most storage situations ethylene does not
reach high enough levels to cause problems (Bethke 2014).

Conclusions

Agronomic factors that affect sugars and asparagine will affect
the potential for acrylamide formation in processed potatoes.
However, the interactive effects of variety, nutrition, and en-
vironmental variables often make it difficult to draw specific
conclusions. In most conventionally bred potato cultivars, the
concentration of reducing sugars appears to be the controlling
factor. Temperature and water stress outside the optimal
ranges for potato production will increase sugars and therefore
acrylamide forming potential. The effects of N fertility are
complex because chemical/physiological maturity, sugars
and asparagine are altered but often in opposite directions

and the effects are often cultivar dependent. Nitrogen can af-
fect the potential for acrylamide formation directly through
influencing amino acid concentrations and indirectly through
affecting tuber maturity and thus reducing sugar levels at har-
vest and their subsequent buildup in storage. Other nutrients
can also be involved, but under field conditions, they are not
involved to the same extent as N. In general, any nutrient
stress will increase sugars, but conflicting results are often
reported. Of the micronutrients, the effect of Zn on acrylamide
formation requires further study.

Storage conditions strongly affect reducing sugar concen-
trations. Temperatures greater than 8 °C will reduce cold-
induced sweetening during storage. However, higher temper-
atures promote aging and may induce senescent sweetening.
Lowering oxygen concentration during storage will reduce
sugars at low temperatures, but the effect may only be tempo-
rary for some cultivars and low O2 storage is not an econom-
ical practice. Increasing CO2 in storage may increase reducing
sugars in storage as temperatures increase.

One of the best acrylamide mitigation strategies is to
choose a cold-sweetening resistant cultivar with inherently
low levels of asparagine. Additionally, implementation of ag-
ronomic management and storage recommendations to reduce
acrylamide include the following: manage irrigation to mini-
mize water and heat stress during the growing season; adjust
N rates and other nutrients to optimize yield, avoiding exces-
sive N application rates; harvest as close to physiological/
chemical maturity as possible. If tubers are immature or have
been exposed to cold temperatures prior to harvest, pre-
condition tubers at higher temperatures initially during
storage; and handle tubers appropriately to minimize
mechanical damage. Finally, store tubers at temperatures
that do not cause cold-induced sweetening in the chosen
cultivar.
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Fig. 4 a Senescent sweetening in Snowden and Ivory Crisp tubers as a
function of storage time at 8.3 °C (b) Acrylamide concentrations in chips
processed from Snowden and Ivory Crisp tubers as a function of storage
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